Experiment Data Record
Software Interface Specification
for the MESSENGER
Mercury Atmospheric and Surface Composition
Spectrometer/
Ultraviolet and Visible Spectrometer
(MASCS/UVVS)
SIE-06-044 D

Prepared by:
Ray Espiritu
Erick Malaret
Applied Coherent Technology Corporation
Document Review

This document and the archive it describes have been through PDS Peer Review and have been accepted into the PDS archive.

William McClintock, MESSENGER Cognizant Co-Investigator/MASCS, has reviewed and approved this document.

Noam Izenberg, MESSENGER MASCS Instrument Scientist, has reviewed and approved this document.

Lyle Huber, PDS Atmospheres Node Representative, has reviewed and approved this document.

Susan Ensor, MESSENGER Science Operations Center Lead, has reviewed and approved this document.
Document Change History

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Revision Date</th>
<th>Author</th>
<th>Section</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 1.1 | 12/30/09 | J. Ward, GEO | TOC, 6.3.1, Appendix | 1. Added page numbers to Table of Contents.
2. Updated column 17 of UVVS.FMT to match delivered file in LABEL directory. |
| 1.2 | 1/7/10 | J. Ward, GEO | 5.3.4 | Replaced sample PDS labels with new versions containing PRODUCT_VERSION_ID. |
| 1.3 | 1/12/10 | J. Ward, GEO | 6.3.2, Appendix | Updated column 64 of MASCS_HK.FMT to match delivered file in LABEL directory. |
| 1.4 | 1/14//10 | J. Ward, GEO | Title Page | Added “Experiment Data Record” to document title. |
| 1.5 | 9/15/10 | J. Ward, GEO | 5.2, 5.3.4, 6.1.2, 6.1.3, 6.1.4 | 1. Updated to describe new macro-based files.
2. Updated data product naming convention.
3. Added EXTRAS directory tables. |
| 1.6 | 12/09/10 | J. Ward, GEO | 7 | Updated archive release schedule. |
| 1.7 | 5/5/11 | J. Ward, GEO | 6.1.3, 6.1.4 | Updated to reflect new data directory structure. |
| 1.8 | 6/10/11 | J. Ward, GEO | 6.1.4 | Updated EXTRAS directory contents. |
| 2.0 | 6/17/11 | J. Ward, GEO | 6.1.4 | Renamed SUPERTABLE.XLS TO MASTER_CRUISE_TABLE.XLS. |
| 2.1 | 12/21/11 | J. Ward, GEO | 6.1.4 | Updated EXTRAS directory contents. |
| 2.2 | 5/25/12 | S. Ensor, SOC | 2, 7, 6.2 | 1. Update document name Data Management and Science Analysis Plan to Data Management and Archiving Plan. Update references.
2. Reference Data Management and Archiving Plan for PDS release schedule and remove release schedule table B-1 from section 7.
3. Add mission phase for second year of orbital operations. |
| 2.3 | 11/12/12 | J. Ward, GEO | 6.1.4 | Updated EXTRAS directory contents. |
| 2.4 | 7/7/2015 | S. Ensor | 5.4.2, Various, 6.1.2 | Note use of clock partitions in time tags in product labels following January 8, 2013 S/C clock reset. Change “Experimental Data Record” to “Experiment Data Record” in text. Add mission phases for third – fifth year of orbital operations. |
Table of Contents

1. Purpose and Scope of Document ... 5
 1.1 Purpose .. 5
 1.2 Scope ... 6

2. Applicable Documents .. 6

3. Relationships with other Interfaces ... 6

4. Roles and Responsibilities .. 6

5. Data Product Characteristics and Environment 7
 5.1 Overview .. 7
 5.2 Data Product Overview .. 7
 5.3 Data Processing .. 8
 5.3.1 Data Processing Level .. 8
 5.3.2 Data Product Generation ... 9
 5.3.3 Data Flow .. 9
 5.3.4 Labeling and Identification ... 12
 5.4 Standards Used in Generating Data Products 14
 5.4.1 PDS Standards .. 14
 5.4.2 Time Standards .. 14
 5.4.3 Coordinate Systems .. 14
 5.4.4 Data Storage Conventions ... 15
 5.5 Data Validation .. 15

6. Detailed Data Product Specifications ... 15
 6.1 Data Archive Structure And Organization ... 15
 6.1.1 Handling Errors ... 16
 6.1.2 File Naming Conventions ... 16
 6.1.3 Directory Structure and Contents for the MASCS EDR Archive Volume ... 17
 6.1.4 Directory Contents .. 17
 6.2 Data Format Description .. 20
 6.3 Label and Header Descriptions .. 21
 6.3.1 UVVS EDR Table Columns .. 21
 6.3.2 MASCS_HK EDR Table Columns ... 24

7. Archive Release Schedule to PDS ... 34

8. Appendices ... 35
 APPENDIX - UVVS.FMT FILE ... 35
 APPENDIX - MASCS_HK.FMT FILE ... 40
 APPENDIX - SPICE Kernel Files Used In Messenger Data Products 55
 APPENDIX - CODMAC ... 56
 APPENDIX - ACRONYMS ... 57
 APPENDIX - MASCS Instrument Overview .. 59
1. Purpose and Scope of Document

1.1 Purpose

This document will serve to provide users of the MESSENGER UltraViolet and Visible Spectrometer (UVVS) data products with a detailed description of the UVVS instrument (Figure 1: MASCS instrument) data product generation, validation and storage. The UVVS is one component of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument. This SIS will address the UVVS component of the MASCS instrument. The UVVS data products are deliverable to the Planetary Data System (PDS) and the scientific community that it supports. All data formats are based on the PDS standard. In addition this SIS provides documentation on the format and content of the MESSENGER MASCS PDS Volume Archive. The document is both a data product SIS and an archive volume SIS.

![Figure 1: MASCS Instrument.](image-url)
1.2 Scope
This specification is useful to those who wish to understand the format and content of the UVVS Experiment Data Record (EDR) data products. Typically, these individuals include scientists, data analysts, and software engineers. The SIS applies to EDR data products produced during the course of MESSENGER mission operations. Reduced and Calibrated Data Records (RDR and CDRs) are outside the scope of this SIS and are described in a separate SIS document – the UVVS RDR SIS. RDRs and CDRs are also archived in their own, separate PDS archive volume.

2. Applicable Documents
The MESSENGER UVVS SIS is responsive to the following Documents:
- MESSENGER Mercury: Surface, Space Environment, Geochemistry, Ranging; A mission to Orbit and Explore the Planet Mercury, Concept Study, March 1999. Document ID number FG632/99-0479
- MESSENGER Data Management and Archiving Plan. The Johns Hopkins University, APL. Document ID number 7384-9019
- [PLR] Appendix 7 to the discovery program Plan; Program Level Requirement for the MESSENGER Discovery project; June 20, 2001.
- MASCS Users Guide. Laboratory for Atmospheric and Space Physics, University of Colorado. Document ID number 20580-T5-5103
- Instrument Calibration Report Mercury Atmospheric and Surface Composition Spectrometer

3. Relationships with other Interfaces
The UVVS data products are stored on Hard Disk and in an SQL (Structured Query Language) relational database for rapid mission access during mission operations. The data products will be electronically transferred to the PDS Geosciences and Atmospheres Nodes according to the delivery schedule in the MESSENGER Data Management and Archiving Plan. The UVVS and VIRS EDRs (detailed in the VIRS EDR SIS) have some data that would be useful in cross-comparison, therefore both the UVVS and VIRS EDR data will be grouped together in the MASCS EDR volume archive stored at both PDS nodes. The data in the EDR files themselves will be stored in a PDS TABLE object as binary tables.

4. Roles and Responsibilities
The roles and responsibilities of the instrument teams, Applied Physics Lab (APL), Applied Coherent Technology (ACT), and the Planetary Data System (PDS) are defined in the MESSENGER Data Management and Archiving Plan.
5. Data Product Characteristics and Environment

5.1 Overview
The UVVS will help determine the composition of the atmosphere of Mercury by;
 a) Measuring the spatial and vertical distribution of known species (H, O, Na, K, Ca)
 b) Measuring the spatial and vertical distributions of previously undetected species (S, Si, Mg, Fe, OH)
The UVVS will also help in the study of the neutral coronal gas and the measure of ionized atmospheric species (Ca II, Mg II, etc.).
UVVS is a scanning grating spectrometer equipped with three photo multiplier detectors. The following is a brief description of the physical aspects of the instrument:

Ultraviolet and Visible Spectrometer

- Focal length: 125 mm
- Grating: 1800 g/mm blazed at 300 nm
- Spectra resolution: 0.5 nm FUV channel, 1.0 nm MUV, VIS channels

Wavelength range:
- FUV channel: 115-190 nm (2nd order)
- MUV channel: 160-320 nm (1st order)
- VIS channel: 250-600 nm (1st order)

Detector:
- FUV channel: Hamamatsu R 1081 PMT - CsI
- MUV channel: Hamamatsu R 759 PMT - CsTe
- VIS channel: Hamamatsu R 647 PMT - Bi Alkali

Field of view:
- FUV, MUV, VIS: 1.0° x 0.04° Atmosphere
- FUV, MUV, VIS: 0.05° x 0.04° Surface

An overview of the entire MASCS instrument is contained in Appendix – MASCS Instrument Overview.

5.2 Data Product Overview
There are three UVVS EDR data products, one for each detector (FUV, MUV, VIS). The detectors may also be referred to as the Photomultiplier Tube detectors (FUV PMT, MUV PMT, VIS PMT). These are identified in the PDS label as “UVVSFUV”, “UVVSMUV” and “UVVSVIS” standard data products, respectively. There is also a MASCS housekeeping EDR data product generated by the MASCS instrument. This is identified in the PDS label as the “MASCSSHK” standard data product. The housekeeping EDR is defined both in this SIS and in the MASCS VIRS SIS for completeness but is the same data product.
Each UVVS EDR data product consists of two files. One file contains the data itself, and is arranged in a PDS binary table format. The other file is a PDS label file, which describes the content of the data file. The label file defines the start time and end of the observation, product creation time, the structure of the binary table and each of the different fields within the table. The UVVS EDR data products all have the same binary table format but contain data specific to the FUV, MUV, or VIS detector.

The UVVS EDR data product contains all the data from one observation set. An observation set is defined in three ways. 1) Before adoption of macro-based commanding on the spacecraft, one observation set contains all the CCSDS (Consultative Committee for Space Data Systems) packets generated by one photomultiplier tube in a given hour of operation. UVVS produces one CCSDS packet per scan of the instrument grating (one scan may have repeated passes and/or a zigzag across a defined number of steps). 2) After macro-based commanding of the instrument commenced, an observation set consists of all scans and packets produced by a single macro call. The exception to this is case 3) for very long executions of high-data rate macros that produce hundreds of megabytes of calibrated data. These “fat” macros are cut subdivided into several hour chunks. A variable number of EDR products are generated each day depending on the UVVS observation plan.

Each UVVS macro-based EDR contains N records, where N is based on the length of the macro, and 1 record per packet.

The MASCS housekeeping EDR product contains the data from all housekeeping CCSDS packets generated in a single day. The day is defined as a 24-hour period starting from 00:00:00 to 23:59:59.999 UTC.

5.3 Data Processing

5.3.1 Data Processing Level

For MESSENGER there is one archive for the UVVS instrument. The archive includes level 2 (or above) CODMAC (Committee on Data Management and Computation) data, SPICE files, standard data products, relevant software, and documentation describing the generation of the products, (see APPENDIX – CODMAC). Each product will have a unique file name across all UVVS data products (see section 6.1.2).

All data level products will be stored at the Applied Physics Lab – Science Operations Center (APL/SOC). Level-1 CODMAC data will be received at the SOC where it will be ingested via an automatic data processing system and stored in a database reserved for the UVVS. Bundled with the sensor spectral data products will be scientific and engineering housekeeping data sampled by the UVVS instrument at the same time as the integral spectra onboard the spacecraft. Data downlink is telemetered through NASA’s Deep Space Network (DSN) managed by the Jet Propulsion Laboratory in Pasadena, CA, and then forwarded to APL. Inputs to the SOC will consist of telemetry in the form of CCSDS packets. The data will be available via a real-time TCP stream service and post pass FTP file service. Level-0 UVVS raw spectral and engineering
data is then broken out of the data stream and stored online at the SOC. The SOC will produce early versions of the data products by utilizing SPICE kernels to enable a “quick look” functionality that lets users view the coverage areas recorded by the sensor. The early versions will be of the same type, content, and format as the final science products with default information for unknown data. Unknown data refers to the values for the PDS keywords: SPACECRAFT_POSITION_VECTOR, SUN_POSITION_VECTOR, and the target latitude and longitude keywords. The values for these keywords will be calculated via the use of SPICE kernels and will be filled in prior to delivery to PDS.

5.3.2 Data Product Generation

The UVVS EDR files will be produced by the SOC, which will be operated jointly by APL and ACT. The ‘PIPE-MASCS2EDR’ software converts the data to the proper PDS labeled format. This software is not part of the deliverable to the PDS archive. The EDR data products are made available to the MESSENGER Science Team during the mission for initial evaluation and validation. At the end of the evaluation and validation period, the data are organized and stored in the directory structure described in section 6.1.3 for transmittal to the Geoscience and Atmospheres Nodes. The transmittal process is described in the following section, Data Flow. PDS will then provide public access to the data products through its online data distribution system. These products will be used for engineering support, direct science analysis, and construction of other science products. Although there is enough information in the header to perform some processing, for more sophisticated processing, ancillary data will be required. Examples of ancillary data include calibration files, viewing geometry files, (e.g. SPICE kernels), index tables, etc. Calibration files and their use will be described in the UVVS RDR SIS and VIRS RDR SIS as well as in the MASCS Instrument Calibration Report. The GEOMETRY.TXT file mentioned in section 6.1.4 will contain the SPICE kernel types that will be needed by a user to generate viewing geometry. The SPICE kernel files will be archived with the PDS NAIF Node.

5.3.3 Data Flow

The MESSENGER SOC operates under the auspices of the MESSENGER Project Scientist to plan data acquisition and generate and validate data archives. The SOC supports and works with the MOC, the Science Team, instrument scientists, and the PDS.

The SOC will be located at the Johns-Hopkins University Applied Physics Lab (JHU/APL). During the mission operations phase the SOC will produce early versions of products that can be used by the science and instrument teams.

The MESSENGER SOC will deliver data to both the PDS Geosciences and Atmospheres Nodes in standard product packages according to the schedule outlined in the MESSENGER Data Management and Archiving Plan. The UVVS and VIRS archive volumes (detailed in separate VIRS SIS) will be archived at both Nodes. Each package will comprise both data and ancillary
data files, organized into directory structures consistent with the volume design described in Section 6.1.3.

In the week prior to the delivery date the directory structure will be compressed into a single “zip archive” file for transmittal to both PDS Nodes. The zip archive preserves the directory structure internally so that it can be recreated after electronic delivery to the PDS Node. The zip archive file is transmitted to the PDS Node via FTP to an account set up by the receiving Node. Also transmitted will be a checksum file created using the MD5 algorithm. This provides an independent method of verifying the integrity of the zip file after it has been sent. Within days of transmittal the PDS Node will acknowledge receipt of the archive and checksum file. If acknowledgement is not received, or if problems are reported, the MESSENGER SOC will immediately take corrective action to effect successful transmittal.

After transmittal the PDS Node will uncompress the zip archive file and check for data integrity using the checksum file. The Node will then perform any additional verification and validation of the data provided and will report any discrepancies or problems to the MESSENGER SOC. It is expected that the Node will perform these checks in about two weeks. After inspection has been completed to the satisfaction of the PDS Node, the Node will issue to the MESSENGER SOC acknowledgement of successful receipt of the data.

Following receipt of a data delivery each Node will organize the data into PDS volume archive structure within its online data system. The Node will generate all of the required files associated with a PDS archive volume (index file, readme files, etc) as part of its routine processing of incoming MASCS data. Newly delivered data will be made available publicly from PDS once accompanying labels and other documentation have been validated.
Figure 2. MESSENGER data flow
5.3.4 Labeling and Identification

The PDS label file and the EDR data file conform to the PDS version 3 standards. For more information on this standard consult the PDS Standards Reference document. The purpose of the PDS label is to describe the data product as well as provide ancillary information about the data product. The EDR data file will contain the data itself in a binary table format. There will be one detached PDS label file for every data file. There are four standard data products, “UVVSFUV”, “UVVSMUV”, “UVVSVIS”, “MASCSHK” (Section 5.2). The data files are linked to the standard data product via the STANDARD_DATA_PRODUCT_ID. The following is an example of the contents of the UVVS EDR PDS label. Details about the label format are specified in section 6.3.

EXAMPLE PDS LABEL FOR THE Messenger EDR DATA PRODUCTS

```plaintext
PDS_VERSION_ID                 = "PDS3"
RECORD_TYPE                    = FIXED_LENGTH
RECORD_BYTES                   = 7332
FILE_RECORDS                   = 480
PRODUCT_ID                     = "UFE_MC4_07_09343_064005_DAT"
PRODUCT_VERSION_ID             = "V1"
PRODUCT_CREATION_TIME          = 2010-09-02T18:24:24
PRODUCT_TYPE                   = "EDR"
SOFTWARE_NAME                  = "PIPE-MASCS2EDR"
SOFTWARE_VERSION_ID            = "1.0"
INSTRUMENT_HOST_NAME           = "MESSENGER"
INSTRUMENT_NAME                = "MERCURY ATMOSPHERIC AND SURFACE COMPOSITION SPECTROMETER"
INSTRUMENT_ID                  = "MASCS"
DATA_SET_ID                    = "MESS-E/V/H-MASCS-2-UVVS-EDR-V1.0"
STANDARD_DATA_PRODUCT_ID       = "UVVSFUV"
MISSION_PHASE_NAME             = "MERCURY 4 CRUISE"
TARGET_NAME                    = "VENUS"
TARGET_DESC                    = "Venus-As-Star Cal"
START_TIME                     = 2009-12-09T06:40:05
STOP_TIME                      = 2009-12-09T10:07:39
SPACECRAFT_CLOCK_START_COUNT   = "168828279"
SPACECRAFT_CLOCK_STOP_COUNT    = "168840733"
^TABLE                         = "UFE_MC4_07_09343_064005.DAT"
OBJECT                         = TABLE
COLUMNS                        = 27
INTERCHANGE_FORMAT             = BINARY
ROW_BYTES                      = 7332
ROWS                           = 480
DESCRIPTION                    = "This table contains MESSENGER UVVS spectra collected by the FUV detector and instrument engineering data. Detailed descriptions for the parameters defined below are contained in the EDR SIS document. The complete column definitions are contained in an external file found in the DATA directory of the archive volume."
^STRUCTURE = "UVVS.FMT"
END_OBJECT                     = TABLE
```
The following is an example of the contents of the MASCS housekeeping EDR PDS label. The housekeeping EDR contains instrument parameters that may be useful in analyzing the UVVS data. Details about the label format are specified in section 6.3 Label and Header Descriptions. The large amount of table fields in the housekeeping EDR necessitate the use of an external format (.FMT) file which contains all the fields for the housekeeping EDR. This format file will be placed at the top-level of the MASCS data folder to optimize archive space. The complete layout of the format file can be found in APPENDIX – MASCS_HK.FMT.

EXAMPLE PDS LABEL FOR THE MASCS HOUSEKEEPING EDR

```pds
PDS_VERSION_ID           = "PDS3"
RECORD_TYPE             = FIXED_LENGTH
RECORD_BYTES            = 254
FILE_RECORDS            = 1177
PRODUCT_ID              = "MASCS_HK_09285_DAT"
PRODUCT_VERSION_ID      = "V1"
PRODUCT_CREATION_TIME   = 2009-10-22T07:45:44
PRODUCT_TYPE            = "EDR"
SOFTWARE_NAME           = "PIPE-MASCS2EDR"
SOFTWARE_VERSION_ID     = "1.1"
INSTRUMENT_HOST_NAME    = "MESSENGER"
INSTRUMENT_NAME         = "MERCURY ATMOSPHERIC AND SURFACE COMPOSITION SPECTROMETER"
INSTRUMENT_ID           = "MASCS"
DATA_SET_ID             = ("MESS-E/V/H-MASCS-2-UVVS-EDR-V1.0","MESS-E/V/H-MASCS-2-VIRS-EDR-V1.0")
STANDARD_DATA_PRODUCT_ID = "MASCSHK"
MISSION_PHASE_NAME      = "MERCURY 3 FLYBY"
TARGET_NAME             = "MERCURY"
START_TIME              = 2009-10-12T00:00:08
STOP_TIME               = 2009-10-12T19:32:24
SPACECRAFT_CLOCK_START_COUNT = "163793074"
SPACECRAFT_CLOCK_STOP_COUNT = "163863410"
TABLE                   = "MASCS_HK_09285.DAT"
OBJECT                  = TABLE
COLUMNS                 = 95
INTERCHANGE_FORMAT      = BINARY
ROW_BYTES               = 254
ROWS                    = 1177
DESCRIPTION             = "This table contains MASCS Housekeeping data. Voltage, current, and temperature parameters are converted from raw DN counts into engineering data values.
Detailed descriptions for the parameters defined below are contained in the EDR SIS.
The complete column definitions are contained in an external file found in the DATA directory of the archive volume.
"
^STRUCTURE = "MASCS_HK.FMT"
END_OBJECT             = TABLE
END
```

13
5.4 Standards Used in Generating Data Products

5.4.1 PDS Standards
The UVVS EDR data products are constructed according to the data object concepts developed by the PDS. By adopting the PDS format, the UVVS EDR data products are consistent in content and organization with other planetary data collections. In the PDS standard, the EDR data file is grouped into one or more objects with PDS labels describing the objects. For UVVS the archive uses a detached PDS label, denoting that the data is contained in a separate file rather than being contained within the PDS label file. The data itself is stored as a PDS binary table object.

5.4.2 Time Standards
The SC_TIME field matches the spacecraft time in integer seconds that is transmitted to MESSENGER subsystems by the Integrated Electronics Module (IEM). It is intended to be the Mission Elapsed Time (MET). MET = 0 is August 3, 2004, at 05:59:16 UTC, which is 1000 seconds prior to the MESSENGER launch. Relativistic effects and circumstances occurring during the mission would result in MET not being a true account of seconds since launch. Following a planned spacecraft clock reset\(^1\) on January 8, 2013, partition numbers (1/, or 2/) were added to product labels to disambiguate MET seconds after the spacecraft clock reset (if partition number is not present, SPICE defaults to partition 1/). For this reason the SPICE spacecraft clock coefficients file is included as part of the archive in order to calculate the conversion between MET and UTC.

5.4.3 Coordinate Systems
Table 1 lists the computational assumptions for the geometric and viewing data provided in the PDS label. There are two coordinate systems in use: 1) the celestial reference system used for target and spacecraft position and velocity vectors; and 2) the planetary coordinate system for geometry vectors and target location. The celestial coordinate system is J2000 (Mean of Earth equator and equinox of J2000). The planetary coordinate system is planetocentric.

<table>
<thead>
<tr>
<th>TABLE 1. – COMPUTATIONAL ASSUMPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td><> The start time of observation (MET) is used for the geometric element computations.</td>
</tr>
<tr>
<td><> Label parameters reflect observed, not true, geometry. Therefore, light-time and stellar aberration corrections are used as appropriate.</td>
</tr>
<tr>
<td><> The inertial reference frame is J2000 (also called EME2000).</td>
</tr>
<tr>
<td><> Latitudes and longitudes are planetocentric.</td>
</tr>
</tbody>
</table>

\(^1\) See instrument host catalog file in MASCS EDR volume catalog directory for more information on MESSENGER spacecraft clock reset.
The "sub-point" of a body on a target is defined by the surface intercept of the body-to-target-center vector. This is not the closest point on the body to the observer.

Distances are in km, speeds in km/sec, angles, in degrees, angular rates in degrees/sec, unless otherwise noted.

Angle ranges are 0 to 360 degrees for azimuths and local hour angle. Longitudes range from 0 to 360 degrees (positive to the East). Latitudes range from -90 to 90 degrees.

SPICE kernel files used in the geometric parameters is outlined in APPENDIX – SPICE Kernel Files Used in MESSENGER Data Products.

5.4.4 Data Storage Conventions
The data are organized following PDS standards and stored on hard disk and an SQL (Structured Query Language) relational database for rapid access during mission operations. The MESSENGER SOC will transfer data to PDS via electronic transfer and delivery methods as detailed in section 5.3.3. After verification of the data transfer PDS will provide public access to MESSENGER science data products through its online data distribution system. Binary files are all fixed-length, stored in big-endian format, and identified with the 3 letter extension “.DAT”. ASCII files are fixed length, separated by commas, and character fields are enclosed in double quotation marks (“”). ASCII files are identified by the 3 letter extension “.TAB”. Data will be stored under a unique file name as defined in Section 6.1.2

5.5 Data Validation
The UVVS EDR data products will be validated by the MASCS/UVVS Instrument scientist for science content and for compliance with PDS archive standards and the MESSENGER Data Management and Archiving Plan.

6. Detailed Data Product Specifications

6.1 Data Archive Structure And Organization
The MESSENGER UVVS data set is a static dataset. Static data sets, once produced and validated, are not subject to update or modification.

The UVVS Calibrated and Reduced Data Set, which is contained in a separate archive volume, is a dynamic dataset. Dynamic data sets have the inherent property that they continue to evolve and improve as the knowledge of the mission parameters improve. These data sets are periodically updated or replaced with new versions, and are likely to be updated by post-mission data analysis
programs. As an example, the calibration files continue to evolve as knowledge of the MASCS sensor, as well as of the pointing accuracy of the MESSENGER spacecraft improves.

Calibration has not been performed on the data products stored in the EDR data archive volume. The EDR data archive volume is meant to contain the data in a format close to that received from the MESSENGER spacecraft. The UVVS RDR data archive volume, which is separate from the EDR data archive volume, will contain calibrated data records and reduced data records created via calibration performed on the EDR data set. This calibration process is documented in the MASCS Instrument Calibration Report as well as in the UVVS RDR SIS.

6.1.1 Handling Errors

It is inevitable that errors will be introduced into the archive even with data validation procedures applied to the volumes. As errors are discovered, they are reported to the MESSENGER SOC. An ERRATA report file is maintained to track and document all discovered errors during the mission, including any EDRs that are revised during the course of the mission. Revised EDRs or EDRs that were missing from a previous PDS delivery will be provided at the next scheduled PDS delivery or at the final PDS delivery as needed. PDS will then replace the outdated files with the revised EDR files in the data directories of the archive volume. The ERRATA report file is archived in the ROOT directory of the PDS archive volume.

6.1.2 File Naming Conventions

The general form of the UVVS data file name is “UdL_mmm_XX_YYDDD_HHMMSS” where:

U: UVVS

d: detector (F - FUV, M - MUV, V - VIS)

L: data-level. E=EDR, C=CDR, R=RDR

mmm: Mission phase

 EAC = Earth cruise to Earth flyby
 EAF = Earth flyby
 VC1 = cruise, post Earth flyby to pre-Venus 1 flyby
 VF1 = Venus 1 flyby
 VC2 = cruise, post Venus 1 to pre-Venus 2 flyby
 VF2 = Venus 2 flyby
 MC1 = cruise, post Venus 2 to pre-Mercury 1 flyby
 MF1 = Mercury 1 flyby
 MC2 = cruise, post Mercury 1 to pre-Mercury 2 flyby
 MF2 = Mercury 2 flyby
 MC3 = cruise, post Mercury 2 to pre-Mercury 3 flyby
 MF3 = Mercury 3 flyby
 MC4 = cruise, post Mercury 3 to pre-orbit insertion
 ORB = Orbit insertion till end of nominal orbit mission
 OB2 = second year of orbital operations
 OB3 = third year of orbital operations
 OB4 = fourth year of orbital operations
 OB5 = fifth year of orbital operations

XX: two digit macro id. It will be 00 for data created prior to the existence of UVVS macros or when PIPE cannot determine the macro id used.

YY: two digit year in UTC converted from the first MET in the EDR.
DDD: three digit day of year in UTC converted from the first MET in the EDR.
HHMMSS: six digit hour, minute, second in UTC converted from the first MET in the EDR.

The general form of the MASCS housekeeping EDR will be “MASCS_HK_YYDDD”, where:

MASCS_HK: Identifies the MASCS Housekeeping EDR
YY : two digit year in UTC time converted from the first MET in the EDR.
DDD: three digit day of year in UTC converted from the first MET in the EDR.

The housekeeping EDR is common to both the UVVS and VIRS subsystems. For the UVVS EDR and housekeeping EDR the binary table file will end with a “.DAT” extension and the detached PDS label file will end with a “.LBL” extension.

6.1.3 Directory Structure and Contents for the MASCS EDR Archive Volume

Table 2 shows the directory structure overview for the MASCS EDR Archive Volume. Note that the volume contains UVVS, VIRS, and HK EDRs. Details for the VIRS EDRs are contained in a separate VIRS SIS document. This archive volume is stored at both the Atmospheres and Geosciences PDS Nodes for reasons stated in section 3. A detailed description of the directory tree is provided following TABLE 2. Empty directories are not included on the volume.

TABLE 2 Directory Structure Overview

```
<ROOT>
   |<GEOMETRY> |<INDEX> |<CATALOG> |<DATA> |<DOCUMENT> |<LABEL> |<EXTRAS>
   |<mmm>
   |<MASCSYYYYMMDD>
   |<UVVS> |<VIRS> |<HK>
```

6.1.4 Directory Contents

<ROOT> Directory

This is the top-level directory of a volume. The following are files contained in the root directory.
AAREADME.TXT: General information file. This provides users with an overview of the contents and organization of the associated volume, general instructions for its use, and contact information.

VOLDESC.CAT: PDS file containing the VOLUME object. This gives a high-level description of the contents of the volume. Information includes: production date, producer name and institution, volume ID, etc.

ERRATA.TXT: Text file for identifying and describing errors and/or anomalies found in the current volume, and possibly previous volumes of a set. Any known errors for the associated volume will be documented in this file. This includes revised EDRs meant to replace EDRs in a previous PDS delivery.

<DOCUMENT> Directory

The documentation files exist in several forms in order to facilitate access to the documents.

<> Files with extension 'TXT' are ASCII text files that can be read by virtually all text editors.
<> Files with extension 'PDF' are in Portable Document Format.

DOCINFO.TXT: Description of the DOCUMENT directory

UVVSEDRIOS.*: Contains the Software Interface Specification for the UVVS EDR data products. Different formats of the document exist.

VIRSEDRIOS.*: Contains the Software Interface Specification for the VIRS EDR data products. Different formats of the document exist.

<CATALOG> Directory

This subdirectory contains the catalog object files for the entire volume. The following files are included in the catalog subdirectory.

CATINFO.TXT: Identifies and describes the function of each file in the catalog directory.

INST.CAT: Describes physical attributes of the MASCS instrument and provides relevant references to published literature.

INSTHOST.CAT: Describes the MESSENGER spacecraft.

MISSION.CAT: Describes the scientific goals and objectives of the MESSENGER program.

PERSON.CAT: Lists and provides contact information for the people involved with the MASCS instrument on the MESSENGER mission.

REF.CAT: Contains the reference objects which reference additional documents that may be useful to the person using the MASCS EDR.

UVVS_DS.CAT, VIRS_DS.CAT: Describes the general content of the MASCS/VIRS and MASCS/UVVS datasets, and includes information about the
duration of the mission and the person or group responsible for producing the data.

<INDEX> Directory

This subdirectory contains the indices for all data products on the volume. The following files are contained in the index subdirectory.

INDEXINFO.TXT: Identifies and describes the function of each file in the index subdirectory. This includes a description of the structure and contents of each index table in the subdirectory AND usage notes.

INDEX.TAB: The EDR index file is organized as a table: there is one entry for each of the data files included in the UVVS data set; the columns contain parameters that describe the observation and instrument and spacecraft parameters. These parameters include state information, such as integration time, spacecraft clock count, time of observation, and instrument modes.

INDEX.LBL: Detached PDS label for INDEX.TAB.

<GEOMETRY> Directory

This subdirectory contains information about the files (e.g. SPICE kernels, etc) needed to determine the observation geometry for the data.

GEOMETRY.TXT: Identifies and describes the SPICE kernels that a user must have in order to determine observation geometry for the data. The SPICE kernel files are archived with the PDS NAIF node.

<LABEL> Directory

This subdirectory contains format files that are referenced in the PDS labels for UVVS, VIRS and housekeeping data files. These format files define the structure and contents of the binary data tables. Software that interprets PDS labels will automatically include these files to determine how to read the data.

LABINFO.TXT: Describes this directory.

UVVS.FMT: Format of MASCs UVVS EDR data products.

VIRS.FMT: Format of MASCs VIRS EDR data products.

MASCS_HK.FMT: Format of MASCs housekeeping data products.

<EXTRAS> Directory

This subdirectory contains ancillary material that may be useful but is not required for the understanding of the archive.

VIRS_MISSING_PACKETS_R6.TXT: This file describes the investigation and resolution of the missing packet error described in the "Data Coverage
and Quality" section of VIRS_DS.CAT (Note 6). Included is a list of the EDRs (and thus also CDRs) missing packets for PDS release 6.

VIRS_VIS_EDR_MISSING_PACKET_ANALYSIS_R6.XLS: This is a companion spreadsheet to the file above. It shows a detailed breakdown of the EDRs and exactly which packets are missing.

VIRS_VIS_MISSING_PACKETS_R*.TXT: These files list the incomplete VIRS VIS EDRs/CDRs for PDS releases, where '*' is the release #. The errors are described in the "Data Coverage and Quality" section of VIRS_DS.CAT.

VIRS_NIR_MISSING_PACKETS_R*.TXT: These files list the incomplete VIRS NIR EDRs/CDRs for PDS releases, where '*' is the release #. The errors are described in the "Data Coverage and Quality" section of VIRS_DS.CAT.

MASTER_CRUISE_TABLE.XLS: This is an extended instrument operation table used during cruise and flyby operations of MASCS, showing details of VIRS and UVVS observations, times, and other information useful for quick reference. In orbit, the mission planning software SCIBOX takes over the function of this table. This file can be viewed using Microsoft Excel.

MACRO_DEFINITION_TABLE.XLS: This is a table used to show commanded instrument parameters and other ancillary calculations such as expected durations and data volumes for MASCS macros commanding the spectrograph operation. This file can be viewed using Microsoft Excel. Note: this file is not yet available.

<DATA> Directory

This top level directory contains the EDR data products. Directly underneath the <DATA> directory are the <mmm> directories. The "mmm" characters define the mission phase, detailed in section 6.1.2 above. Below the mission phase directories are the <MASCSYYYYMMDD> directories. The "YYYYMMDD" characters define the four digit year, 2 digit month, and 2 digit day which is common to all the MET times for the EDRs stored in that directory. Each of these directories is further subdivided into as many as three subdirectories, one for each component of the MASCS instrument, and an additional subdirectory for the housekeeping EDR:

- `<UVVS>`: UVVS Subdirectory.
- `<VIRS>`: VIRS Subdirectory.
- `<HK>`: Housekeeping EDR subdirectory.

Each of these directories contains the EDR data files themselves (*.DAT) and, for each EDR data file, a detached label file (*.LBL). Subdirectories only exist if that particular type of data exists for that day. If there are no data of a particular type for a particular day, no subdirectory is included for that type.

6.2 Data Format Description

Data is stored in binary table format. A detached PDS label file will provide a detailed description of the structure of the binary table.
6.3 Label and Header Descriptions

The following are descriptions for the columns in the UVVS EDR and MASCS EDR binary table objects. A replica of the UVVS.FMT and MASCS_HK.FMT files can be found in the Appendix.

6.3.1 UVVS EDR Table Columns

The following are more detailed descriptions of the columns used in the UVVS EDR binary table object. They are numbered in the column order in which they appear in the table.

1. **SEQ_COUNTER**
 - **Bytes**: 2
 - **Type**: MSB Unsigned Integer

 CCSDS packet sequence counter.

2. **SC_TIME**
 - **Bytes**: 4
 - **Type**: MSB Unsigned Integer

 Spacecraft time in integer seconds that is transmitted to the MESSENGER subsystems by the Integrated Electronics Module. This is assigned as the start time of the UVVS observation. A UVVS observation is defined as all the scan data contained within one UVVS science packet. This is due to the highly configurable nature of the instrument, i.e. it can be commanded to take multiple scans over multiple wavelengths. Unit is in mission elapsed time which is the number of seconds since launch.

3. **PACKET_SUBSECONDS**
 - **Bytes**: 2
 - **Type**: MSB Unsigned Integer

 The subsecond time in milliseconds that the telemetry packet was initiated. SC_TIME plus PACKET_SUBSECONDS is the spacecraft time of the first integration. Values of this field are in units of 5 milliseconds.

4. **SPACECRAFT_POSITION_VECTOR**
 - **Bytes**: 12
 - **Number of items**: 3
 - **Item bytes**: 4
 - **Type**: IEEE_REAL

 Derived (x,y,z) vector giving spacecraft position in J2000 reference frame. Reference time will be SC_TIME plus PACKET_SUBSECONDS.

5. **SUN_POSITION_VECTOR**
 - **Bytes**: 12
 - **Number of items**: 3
 - **Item bytes**: 4
 - **Type**: IEEE_REAL

 Derived (x,y,z) vector giving sun position in J2000 reference frame. Reference time will be SC_TIME plus PACKET_SUBSECONDS.

6. **TARGET_LATITUDE**
 - **Bytes**: 4
 - **Type**: IEEE_REAL

 Derived latitude on Mercury corresponding to spectral observation. Reference time will be SC_TIME plus PACKET_SUBSECONDS. Value = -999 for LIMB observations.

7. **TARGET_LONGITUDE**
 - **Bytes**: 4
 - **Type**: IEEE_REAL
Derived longitude on Mercury corresponding to spectral observation. Reference time will be SC_TIME plus PACKET_SUBSECONDS. Value = -999 for LIMB observations.

8. TARGET_ALTITUDE
 Bytes: 4 Type: IEEE_REAL

Derived altitude on Mercury corresponding to a spectral LIMB observation. Reference time will be SC_TIME plus PACKET_SUBSECONDS. = 0 for non-LIMB observations.

9. STARTPOS
 Bytes: 2 Type: MSB Unsigned Integer

Start position where grating drive begins a scan. Grating drive step position corresponds to a given wavelength being observed by an instrument.

10. STEP_COUNT
 Bytes: 2 Type: MSB Unsigned Integer

Number of steps the grating drive will take in a scan. This directly corresponds to the range of wavelengths that will be observed for one UVVS observation.

11. INT_TIME
 Bytes: 2 Type: MSB Unsigned Integer

Integration time in grating drive loop control interrupt periods (nominally 3000 Hz).

12. STEP_TIME
 Bytes: 2 Type: MSB Unsigned Integer

Step time in grating drive loop control interrupt periods (nominally 3000 Hz).

13. PHASE_OFFSET
 Bytes: 2 Type: MSB Unsigned Integer

Phase offset in grating drive loop control interrupt periods.

14. SCAN_CYCLES
 Bytes: 2 Type: MSB Unsigned Integer

Number of times to repeat scan. This value is the number of scans following the first one: if SCAN_CYCLES = 1 then the UVVS performs 2 scans.

15. ZIGZAG
 Bytes: 2 Type: MSB Unsigned Integer

Indicates whether grating drive moves in a triangle motion. =0 disable, =1 enable.

16. COMPRESSION
 Bytes: 2 Type: MSB Unsigned Integer

Selectable data size, =0 16 bit data, =1 9 bit data. Used to help determine the total number of data points contained in the observation.

17. SLIT_MASK_POS
 Bytes: 2 Type: MSB Unsigned Integer
Indicates whether slit mask is in atmospheric (open) or Surface (closed) position. =0 Surface (closed), =1 Atmospheric (open).

18. **FUV_ON**
 Bytes: 2 Type: MSB Unsigned Integer
Indicates whether FUV PMT power is on. A more complete description of this field can be found in the MASCS User's Guide. =0 off, =1 on.

19. **MUV_ON**
 Bytes: 2 Type: MSB Unsigned Integer
Indicates whether MUV PMT power is on =0 off, =1 on.

20. **VIS_ON**
 Bytes: 2 Type: MSB Unsigned Integer
Indicates whether VIS MPT power is on. =0 off, =1 on.

21. **BUFFER_OVERFLOW**
 Bytes: 2 Type: MSB Unsigned Integer
Indicates whether scan programmed overflowed data buffer and was therefore truncated. =0 false, =1 true.

22. **SPARE_BITS**
 Bytes: 2 Type: MSB Unsigned Integer
A two-byte spare location.

23. **GD_SETTLE_CTR**
 Bytes: 2 Type: MSB Unsigned Integer
Number of times during the integration period that the grating drive wandered outside target range.

24. **NUM_SCAN_VALUES**
 Bytes: 2 Type: MSB Unsigned Integer
Total number of values or data points in the entire scan observation. Used to determine the length of valid data points in the SCAN_DATA column. Maximum value is 3626.

25. **STEP_SIZE**
 Bytes: 2 Type: MSB Unsigned Integer
Step size in arcmin units.

26. **PAD_BYTE**
 Bytes: 2 Type: MSB Unsigned Integer
A two-byte spare location.

27. **SCAN_DATA**
 Item bytes: 2 Num items: 3626
 Bytes: 7252 Type: MSB Unsigned Integer
Data points collected by the programmed scan observation. Data points are stored in the order in which they were collected. For example, for a single-cycle zig-zag scan (SCAN_CYCLES = 0) consisting of grating positions A, B, C there are 6 data points which correspond to A, B, C, C, B, A grating drive step positions. Due to the fixed-length nature of the table, not all items may contain valid data points. Number of valid data points is given by NUM_SCAN_VALUES. Ex. If NUM_SCAN_VALUES = 1000, items 1-1000 will contain valid data points.

6.3.2 MASCS_HK EDR Table Columns

The following are more detailed descriptions of the columns used in the MASCS EDR binary table object. They are numbered in the column order in which they appear in the table.

1. **SEQ_COUNTER**

 Bytes: 2 Type: MSB Unsigned Integer

 CCSDS packet sequence counter.

2. **SC_TIME**

 Bytes: 4 Type: MSB Unsigned Integer

 Spacecraft time in integer seconds that is transmitted to MESSENGER subsystems by the Integrated Electronics Module. Unit is in mission elapsed time which is the number of seconds since launch.

3. **TYPE**

 Bytes: 2 Type: MSB Unsigned Integer

 Designates whether row data is from a Short or Long housekeeping packet. This affects the resolution of the analog values, but not the size or format of the data. =0 short, =1 long.

4. **STATUS_INTERVAL**

 Bytes: 2 Type: MSB Unsigned Integer

 Status interval in seconds. A more complete description of this field can be found in the MASCS User's Guide.

5. **MACRO_BLOCKS**

 Bytes: 2 Type: MSB Unsigned Integer

 Number of Macro Blocks free.

6. **TLM_VOLUME**

 Bytes: 2 Type: MSB Unsigned Integer

 Telemetry volume produced.

7. **WATCH_ADDR**

 Bytes: 2 Type: MSB Unsigned Integer

 Address of watch data.

8. **WATCH_MEM**

 Bytes: 2 Type: MSB Unsigned Integer

 Watch Memory. A more complete description of this field can be found in the MASCS User’s Guide.

9. **WATCH_DATA**
Contents of watch data. A more complete description of this field can be found in the MASCS User's Guide.

10. **SW_VERSION**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Software version number.

11. **ALARM_ID**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Latest alarm ID.

12. **ALARM_TYPE**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Latest alarm type. =0 persistent, =1 transient.

13. **ALARM_COUNT**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Count of alarms.

14. **CMD_EXEC**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Number of commands executed.

15. **CMD_REJECT**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Number of commands rejected.

16. **MAC_EXEC**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Number of macro commands executed.

17. **MAC_REJECT**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Number of macro commands rejected.

18. **MACRO_ID**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 ID of most recent macro executed.

19. **MACRO_LEARN**
 - Bytes: 2
 - Type: MSB Unsigned Integer
 Macro learn mode. =0 not learning, =1 learning. A more complete description of this field can be found in the MASCS User’s Guide.
20. **MON_RESPONSE**
 Bytes: 2 Type: MSB Unsigned Integer

Monitor response. =0 disabled, =1 enabled.

21. **WRITE_ENABLE**
 Bytes: 2 Type: MSB Unsigned Integer

Memory write enable. =0 disabled, =1 enabled.

22. **SHUTTER_POS_VALID**
 Bytes: 2 Type: MSB Unsigned Integer

Shutter position was monitored in the status interval. =0 false, =1 true.

23. **SLIT_POS_VALID**
 Bytes: 2 Type: MSB Unsigned Integer

Slit position was monitored in the status interval. =0 false, =1 true.

24. **VIRS_SCANNING**
 Bytes: 2 Type: MSB Unsigned Integer

VIRS scan on going. =0 false, =1 true.

25. **UVVS_SCANNING**
 Bytes: 2 Type: MSB Unsigned Integer

UVVS scan on going. =0 false, =1 true.

26. **GD_TABLE_GEN**
 Bytes: 2 Type: MSB Unsigned Integer

Grating drive table is being generated. =0 false, =1 true.

27. **GD_PASS_THRU**
 Bytes: 2 Type: MSB Unsigned Integer

=1 DAC output value as written to the FPGA from the software will immediately be sent to the DAC.
=0 the DAC output value will be held in an FPGA buffer register until the next GDLCI interrupt.

28. **NIR_ON**
 Bytes: 2 Type: MSB Unsigned Integer

Power enabled to the NIR electronics. =0 off, =1 on.

29. **VIS_ON**
 Bytes: 2 Type: MSB Unsigned Integer

Power enabled to the VIS electronics. =0 off, =1 on.

30. **VIS_HV_ON**
 Bytes: 2 Type: MSB Unsigned Integer

VIS_PMT High Voltage (HV) is on and the regulated output should be at about 900 V. =0 off, =1 on.
31. **MUV_HV_ON**
 Bytes: 2 Type: MSB Unsigned Integer
MUV_PMT High Voltage (HV) is on and the regulated output should be at about 900 V. =0 off, =1 on.

32. **FUV_HV_ON**
 Bytes: 2 Type: MSB Unsigned Integer
FUV_PMT High Voltage (HV) is on and the regulated output should be at about 1800 V. =0 off, =1 on.

33. **HVPS_ON**
 Bytes: 2 Type: MSB Unsigned Integer
HVPS Oscillator has been started and the HVPS unregulated output should be at about 2500 V. =0 off, =1 on.

34. **NIR_FF_LAMP_ON**
 Bytes: 2 Type: MSB Unsigned Integer
NIR Flat Field Lamp is powered. =0 off, =1 on.

35. **VIS_FF_LAMP_ON**
 Bytes: 2 Type: MSB Unsigned Integer
VIS Flat Field Lamp is powered. =0 off, =1 on.

36. **NIR_GAIN**
 Bytes: 2 Type: MSB Unsigned Integer
NIR Gain is configured to a low or 20X high setting. A more complete description of this field can be found in the MASCS User's Guide. =0 low, =1 high.

37. **GD_ON**
 Bytes: 2 Type: MSB Unsigned Integer
Grating drive is on and ready to be controlled. =0 off, =1 on.

38. **SPARE**
 Bytes: 2 Type: MSB Unsigned Integer
Unused spare column.

39. **VIRS_SHUTTER_POS**
 Bytes: 2 Type: MSB Unsigned Integer
VIRS shutter is closed and occulting light out of the fiber optic cable. =0 open, =1 closed.

40. **UVVS_SLIT_POS**
 Bytes: 2 Type: MSB Unsigned Integer
UVVS slit is in the Atmospheric position. =0 surface position. =1 atmospheric position.

41. **GD_AT_INDEX**
 Bytes: 2 Type: MSB Unsigned Integer
Grating drive is positioned at the index position. A more complete description of this field can be found in the MASCs User's Guide. =0 false, =1 true.

42. VIRS_BUSY
 Bytes: 2 Type: MSB Unsigned Integer

VIRS FPGA State Machines are currently accessing the VIRS detector memory. If true then during writes to VIRS memory the data will be thrown away and during reads the data returned will be 0FFFFh. =0 false, =1 true.

43. COVER_CMD_ERR
 Bytes: 2 Type: MSB Unsigned Integer

Error flag: Exact sequence covered in Section 8.1.1 Contamination Cover Implementation (FPGA document) is violated. =0 no error, =1 error.

44. SHUTTER_CMD_ERR
 Bytes: 2 Type: MSB Unsigned Integer

Error flag: CPU attempts to set any pair of A, B, or C drive enables to the slit stepper motor. Also set if the software does not clear all six slit bits between setting any set of two bits active. Will be cleared by the FPGA logic after any read of this register. =0 no error, =1 error.

45. SLIT_CMD_ERR
 Bytes: 2 Type: MSB Unsigned Integer

Error flag: CPU attempts to set any pair of A, B, or C drive enables to the slit stepper motor. Also set if the software does not clear all six slit bits between setting any set of two bits active. Will be cleared by the FPGA logic after any read of this register. =0 no error, =1 error.

46. HV_CMD_SEQ_ERR
 Bytes: 2 Type: MSB Unsigned Integer

UVVS HVPS command sequence error. =0 no error, =1 the UVVS High Voltage Control register has been sequenced improperly and the write to the register has been ignored.

47. NIR_LP
 Bytes: 2 Type: MSB Unsigned Integer

AD7809 ADC in the NIR array electronics has gone into latchup protection mode(brief power down, power up sequence) due to a single event upset. =0 false, =1 true.

48. VIS_LP
 Bytes: 2 Type: MSB Unsigned Integer

AD7809 ADC in the VIS array electronics has gone into latchup protection mode(brief power down, power up sequence) due to a single event upset. =0 false, =1 true.

49. RESET_CMD_ERR
 Bytes: 2 Type: MSB Unsigned Integer

Reset Command Error flag. =1 if the software attempts to reset the FPGA through any method other than that described in Section 12.2 of the FPGA document. =0 no error, =1 error.

50. GD_MOVING
Grating drive is making any movement. =0 not moving, =1 moving

51. **SPARE_BITS_2**
 Bytes: 2 Type: MSB Unsigned Integer

Spare unused column.

52. **UVVS_EOI**
 Bytes: 2 Type: MSB Unsigned Integer

During a GDLCI this signals the software to read the PMT count registers. They are stable and valid when the flag is true. Will be cleared automatically at the next GDLCI interrupt. =0 false, =1 true.

53. **MOVE_GD_NOW**
 Bytes: 2 Type: MSB Unsigned Integer

During a GDLCI this signals the software that it is time to start moving the grating drive by changing the control step position. Will be cleared automatically at the next GDLCI interrupt. =0 false, =1 true.

54. **TABLE_GENERATED**
 Bytes: 2 Type: MSB Unsigned Integer

Lookup table has been generated. The lookup table is only used internally by the Grating Drive control algorithm. A more complete description of this field can be found in the MASCS User’s Guide. =0 false, =1 true.

55. **GD_DIRECTION**
 Bytes: 2 Type: MSB Unsigned Integer

Initial direction for the grating drive rotation when given a ‘find index’ command. =0 counter-clockwise, =1 clockwise.

56. **VIRS_IRQ**
 Bytes: 2 Type: MSB Unsigned Integer

IRQ2 is active, integration period is complete, and that all VIRS Data has been sampled and stored in the VIRS array memory. =0 false, =1 true.

57. **GDLCI_IRQ**
 Bytes: 2 Type: MSB Unsigned Integer

IRQ1 is active. Occurs after the GDLCI register has reached its timeout period. =0 false, =1 true.

58. **GD_POSITION**
 Bytes: 2 Type: MSB Unsigned Integer

Grating drive position reported from software. Values range from 0-2700 arc minutes.

59. **CC_ENABLED**
 Bytes: 2 Type: MSB Unsigned Integer

Software enable set to open contamination cover. =0 disabled, =1 enabled.
60. FPGA_RESET_ENABLE
Bytes: 2 Type: MSB Unsigned Integer
Software enable to reset FPGA. =0 disabled, =1 enabled.

61. SBOS_ENABLE
Bytes: 2 Type: MSB Unsigned Integer
Software Bright Object Sensor (SBOS) is commanded to be active. =0 false, =1 true.

62. SBOS_TRIGGERED
Bytes: 2 Type: MSB Unsigned Integer
SBOS has been triggered. =0 false, =1 true.

63. SBOS_LEVEL
Bytes: 2 Type: MSB Unsigned Integer
SBOS sensor level (upper 8 bits of MUV PMT counts).

64. FPGA_2_5V
Bytes: 4 Type: IEEE Real
Digital Electronics Board FPGA 2.5 Volt Monitor. Value is derived from the Housekeeping DN value by the following formulas:
For the Short Housekeeping packet (8 bits):
FPGA_2_5V = 0.000366 * (DN*64)
For the Long Housekeeping packet (14 bits):
FPGA_2_5V = 0.000366 * DN.

65. HVPS_MON_SUM
Bytes: 4 Type: IEEE Real
HVPS Test Monitor Sum. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas:
For the Short Housekeeping packet (8 bits):
HVPS_MON_SUM = 0.000366 * (DN*64)
For the Long Housekeeping packet (14 bits):
HVPS_MON_SUM = 0.000366 * DN.

66. PLUS_5V
Bytes: 4 Type: IEEE Real
+5V Monitor. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas:
For the Short Housekeeping packet (8 bits):
PLUS_5V = 0.0024805 * (DN*64)
For the Long Housekeeping packet (14 bits):
PLUS_5V = 0.0024805 * DN.

67. MINUS_5V
Bytes: 4 Type: IEEE Real
-5 Volt Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5V.

68. PLUS_12V
 Bytes: 4 Type: IEEE Real

+12 Volt Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5V.

69. MINUS_12V
 Bytes: 4 Type: IEEE Real

-12 Volt Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5V.

70. PLUS_5_CURRENT
 Bytes: 4 Type: IEEE Real

+5 Volt Current. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas:
 For the Short Housekeeping packet (8 bits):
 PLUS_5_CURRENT = 0.00024414 * (DN*64)
 For the Long Housekeeping packet (14 bits):
 PLUS_5_CURRENT = 0.00024414 * DN.

71. MINUS_5_CURRENT
 Bytes: 4 Type: IEEE Real

-5 Volt Current. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5_CURRENT.

72. PLUS_12_CURRENT
 Bytes: 4 Type: IEEE Real

+12 Volt Current. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5_CURRENT.

73. MINUS_12_CURRENT
 Bytes: 4 Type: IEEE Real

-12 Volt Current. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5_CURRENT.

74. PLUS_28_CURRENT
 Bytes: 4 Type: IEEE Real

+28 Volt Current. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5_CURRENT.

75. SWITCHED_28_CUR
 Bytes: 4 Type: IEEE Real

Switched +28V current monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5_CURRENT.
76. UNREG_HV_MON
Bytes: 4 Type: IEEE Real

Unregulated PMT High Voltage monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for HVPS_MON_SUM.

77. VIS_HV_MON
Bytes: 4 Type: IEEE Real

VIS PMT High Voltage Monitor. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas:
For the Short Housekeeping packet (8 bits):
\[\text{VIS}_\text{HV}_\text{MON} = 0.366 \times (\text{DN} \times 64) \]
For the Long Housekeeping packet (14 bits):
\[\text{VIS}_\text{HV}_\text{MON} = 0.366 \times \text{DN} \]

78. MUV_HV_MON
Bytes: 4 Type: IEEE Real

MUV High Voltage Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for VIS_HV_MON.

79. FUV_HV_MON
Bytes: 4 Type: IEEE Real

FUV High Voltage Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for VIS_HV_MON.

80. DEB_TEMP
Bytes: 4 Type: IEEE Real

Digital Electronics Board Temperature. A more complete description of this field can be found in the MASCS User’s Guide. Value is converted from DN telemetry value by the following formulas:
From the short housekeeping packet (12 bit data):
\[\text{DEB}_\text{TEMP} = -1.67826 - 0.0061(\text{DN} \times 4) - 2.703 \times 10^{-6}(\text{DN} \times 4)^2 + 3.8131 \times 10^{-11}(\text{DN} \times 4)^3 \\
+ 8.9793 \times 10^{-13}(\text{DN} \times 4)^4 - 3.4338 \times 10^{-18}(\text{DN} \times 4)^5 \]
From the long housekeeping packet (14 bit data):
\[\text{DEB}_\text{TEMP} = -1.67826 - 0.0061(\text{DN}) - 2.703 \times 10^{-6}(\text{DN})^2 + 3.8131 \times 10^{-11}(\text{DN})^3 \\
+ 8.9793 \times 10^{-13}(\text{DN})^4 - 3.4338 \times 10^{-18}(\text{DN})^5. \]

81. VIS_PMT_TEMP
Bytes: 4 Type: IEEE Real

VIS_PMT Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

82. MUV_PMT_TEMP
Bytes: 4 Type: IEEE Real

MUV_PMT Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

83. FUV_PMT_TEMP
Bytes: 4 Type: IEEE Real

FUV_PMT Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

84. HVPS_LV_TEMP
Bytes: 4 Type: IEEE Real

High Voltage Power Supply Low Voltage Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

85. HVPS_HV_TEMP
Bytes: 4 Type: IEEE Real

High Voltage Power Supply High Voltage Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

86. UVVS_GRATING_TEMP
Bytes: 4 Type: IEEE Real

UVVS Grating Drive temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

87. VIS_ARRAY_TEMP_1
Bytes: 4 Type: IEEE Real

VIS Array Temperature #1. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

88. VIS_ARRAY_TEMP_2
Bytes: 4 Type: IEEE Real

VIS Array Temperature #2. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

89. NIR_ARRAY_EXT_TEMP
Bytes: 4 Type: IEEE Real

NIR Array External Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

90. NIR_ARRAY_INT_TEMP
Bytes: 4 Type: IEEE Real

NIR Array Internal Temperature. A more complete description of this field can be found in the MASCS User's Guide. Value is converted from DN telemetry value by the following formulas:

- From the short housekeeping packet (12 bit data):
 \[\text{NIR_ARRAY_INT_TEMP} = -22.2879012 - 702.301101 \times 10^{-5} (\text{DN} \times 4) + 339.958815 \times 10^{-9} (\text{DN} \times 4)^2 + 173.862825 \times 10^{-12} (\text{DN} \times 4)^3 - 9.72043502 \times 10^{-15} (\text{DN} \times 4)^4 - 8.891005 \times 10^{-18} (\text{DN} \times 4)^5 \]

- From the long housekeeping packet (14 bit data):
 \[\text{NIR_ARRAY_INT_TEMP} = -22.2879012 - 702.301101 \times 10^{-5} (\text{DN}) + 339.958815 \times 10^{-9} (\text{DN})^2 + 173.862825 \times 10^{-12} (\text{DN})^3 - 9.72043502 \times 10^{-15} (\text{DN})^4 - 8.891005 \times 10^{-18} (\text{DN})^5 \]

91. BOB_TEMP
Bytes: 4 Type: IEEE Real

Break out Board Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

92. VIRS_GRATING_TEMP
Bytes: 4 Type: IEEE Real

VIRS Grating Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

93. COVER_TEMP
Bytes: 4 Type: IEEE Real

Contamination Cover Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP.

94. LVPS_TEMP
Bytes: 4 Type: IEEE Real

Low Voltage Power Supply Temperature. A more complete description of this field can be found in the MASCS User's Guide. Value is converted from DN telemetry value by using the following formulas:
 For the short housekeeping packet (12 bits):
 \[\text{LVPS_TEMP} = 25 + \frac{(A/B)-10000}{78.5} \]
 \[A = 3333.333 \times ((\text{DN}\times 4\times 0.000366/3)+1) \]
 \[B = 1 - \frac{(((\text{DN}\times 4\times 0.000366/3)+1)/3)}{3} \]
 For the long housekeeping packet (14 bits):
 \[\text{LVPS_TEMP} = 25 + \frac{(A/B)-10000}{78.5} \]
 \[A = 3333.333 \times ((\text{DN}\times 0.000366/3)+1) \]
 \[B = 1 - \frac{(((\text{DN}\times 0.000366/3)+1)/3)}{3} \]

95. SPARE_BITS
Bytes: 2 Type: MSB Unsigned Integer

Spare unused column.

7. Archive Release Schedule to PDS

The MESSENGER MASCS EDR archive will be transferred from the SOC to the Planetary Data System Geosciences and Atmospheres Nodes using whatever electronic media transfers are appropriate. Both Nodes have agreed to store the MASCS EDR Archive volume containing both UVVS and VIRS EDRs (VIRS is detailed in a separate VIRS EDR SIS). The details of transfer are specified in section 5.3.3. The transfer will take place according to the schedule in the MESSENGER Data Management and Archiving Plan.

Table B-1. Schedule of Data Releases by Mission Phase – REMOVED – refer to schedule in MESSENGER Data Management and Archiving Plan.
8. Appendices

APPENDIX - UVVS.FMT FILE

```
OBJECT = COLUMN
NAME = SEQ_COUNTER
COLUMN_NUMBER = 1
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 1
DESCRIPTION = "CCSDS packet sequence counter."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SC_TIME
COLUMN_NUMBER = 2
BYTES = 4
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 3
DESCRIPTION = "Spacecraft time in integer seconds that is transmitted to the MESSENGER subsystems by the Integrated Electronics Module. This is assigned as the start time of the UVVS observation. A UVVS observation is defined as all the scan data contained within one UVVS science packet. This is due to the highly configurable nature of the instrument, i.e. it can be commanded to take multiple scans over multiple wavelengths. Unit is in mission elapsed time which is the number of seconds since launch."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PACKET_SUBSECONDS
COLUMN_NUMBER = 3
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 7
DESCRIPTION = "The subsecond time in milliseconds that the telemetry packet was initiated. SC_TIME plus PACKET_SUBSECONDS is the spacecraft time of the first integration. Values of this field are in units of 5 milliseconds."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SPACECRAFT_POSITION_VECTOR
COLUMN_NUMBER = 4
BYTES = 12
DATA_TYPE = IEEE_REAL
START_BYTE = 9
ITEMS = 3
ITEM_BYTES = 4
UNIT = "KM"
DESCRIPTION = "Derived (x,y,z) vector giving spacecraft position in J2000 reference frame. Reference time will be SC_TIME plus PACKET_SUBSECONDS."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SUN_POSITION_VECTOR
COLUMN_NUMBER = 5
BYTES = 12
DATA_TYPE = IEEE_REAL
START_BYTE = 21
ITEMS = 3
ITEM_BYTES = 4
UNIT = "KM"
DESCRIPTION = "Derived (x,y,z) vector giving sun position in J2000 reference frame. Reference time will be SC_TIME plus PACKET_SUBSECONDS."
```
NAME = TARGET_LATITUDE
COLUMN_NUMBER = 6
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 33
UNIT = "DEGREE"
DESCRIPTION = "Derived latitude on Mercury corresponding to spectral observation. Reference time will be SC_TIME plus PACKET_SUBSECONDS. Value = -999 for LIMB observations."

NAME = TARGET_LONGITUDE
COLUMN_NUMBER = 7
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 37
UNIT = "DEGREE"
DESCRIPTION = "Derived longitude on Mercury corresponding to spectral observation. Reference time will be SC_TIME plus PACKET_SUBSECONDS. Value = -999 for LIMB observations."

NAME = TARGET_ALTITUDE
COLUMN_NUMBER = 8
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 41
UNIT = "KM"
DESCRIPTION = "Derived altitude on Mercury corresponding to a spectral limb observation. Reference time will be SC_TIME plus PACKET_SUBSECONDS. =0 for non-limb observations."

NAME = START_POS
COLUMN_NUMBER = 9
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 45
DESCRIPTION = "Start position where grating drive begins a scan. Grating drive step position corresponds to a given wavelength being observed by an instrument."

NAME = STEP_COUNT
COLUMN_NUMBER = 10
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 47
DESCRIPTION = "Number of steps the grating drive will take in a scan. This directly corresponds to the range of wavelengths that will be observed in one UVVS observation."

NAME = INT_TIME
COLUMN_NUMBER = 11
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 49
DESCRIPTION = "Integration time in grating drive loop control interrupt periods (nominally 3000 Hz)."
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 51
DESCRIPTION = "Step time in grating drive loop control interrupt
Periods (nominally 3000 Hz)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PHASE_OFFSET
COLUMN_NUMBER = 13
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 53
DESCRIPTION = "Phase offset in grating drive loop control interrupt
periods."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SCAN_CYCLES
COLUMN_NUMBER = 14
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 55
DESCRIPTION = "Number of times to repeat scan."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = ZIGZAG
COLUMN_NUMBER = 15
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 57
DESCRIPTION = "Indicates whether grating drive moves in a triangle
motion. =0 disable, =1 enable."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = COMPRESSION
COLUMN_NUMBER = 16
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 59
DESCRIPTION = "Selectable data size, =0 16 bit data, =1 9 bit data.
Used to help determine the total number of data points contained
in the observation."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SLIT_MASK_POS
COLUMN_NUMBER = 17
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 61
DESCRIPTION = "Indicates whether slit mask is in atmospheric (open) or
Surface (closed) position. =0 Surface (closed), =1 Atmospheric (open)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FUV_ON
COLUMN_NUMBER = 18
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 63
DESCRIPTION = "Indicates whether FUV PMT power is on. =0 off, =1 on."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MUV_ON
COLUMN_NUMBER = 19
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 65
DESCRIPTION = "Indicates whether MUV PMT power is on. A more complete
description of this field can be found in the MASCS User's Guide
=0 off, =1 on."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = VIS_ON
COLUMN_NUMBER = 20
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 67
DESCRIPTION = "Indicates whether VIS PMT power is on, =0 off, =1 on."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = BUFFER_OVERFLOW
COLUMN_NUMBER = 21
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 69
DESCRIPTION = "Indicates whether scan programmed overflowed data buffer and was therefore truncated. =0 false, =1 true."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SPARE_BITS
COLUMN_NUMBER = 22
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 71
DESCRIPTION = "A two-byte spare location."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_SETTLE_CTR
COLUMN_NUMBER = 23
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 73
DESCRIPTION = "Number of times during integration that the grating drive wandered outside target range."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NUM_SCAN_VALUES
COLUMN_NUMBER = 24
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 75
DESCRIPTION = "Total number of values or data points in the entire scan observation. Used to determine the number of valid data points in the SCAN_DATA column. Maximum value is 3626."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = STEP_SIZE
COLUMN_NUMBER = 25
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 77
DESCRIPTION = "Step size in arcmin units."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PAD_BYTE
COLUMN_NUMBER = 26
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 79
DESCRIPTION = "A two-byte spare location."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SCAN_DATA
COLUMN_NUMBER = 27
BYTES = 7252
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 81
ITEMS = 3626
ITEM_BYTES = 2
DESCRIPTION = "Data points collected by the programmed scan observation. Data points are stored in the order in which they were collected. For example, for a single-cycle zig-zag scan (SCAN_CYCLES = 0) consisting of grating positions A,B,C there are 6 data points which correspond to A,B,C,C,B,A grating drive step positions. Due to the fixed length nature of the table, not all items may contain valid data points. Number of valid data points is given by NUM_SCAN_VALUES, Ex. If NUM_SCAN_VALUES=1000, items 1-1000 will contain valid data points."
END_OBJECT = COLUMN
APPENDIX - MASCS_HK.FMT FILE

OBJECT = COLUMN
 NAME = SEQ_COUNTER
 COLUMN_NUMBER = 1
 BYTES = 2
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 1
 DESCRIPTION = "CCSDS packet sequence counter."
END_OBJECT = COLUMN

OBJECT = COLUMN
 NAME = SC_TIME
 COLUMN_NUMBER = 2
 BYTES = 4
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 3
 UNIT = "SECONDS"
 DESCRIPTION = "Spacecraft time in integer seconds that is transmitted
to MESSENGER subsystems by the Integrated Electronics Module. Unit is in
mission elapsed time which is the number of seconds since launch."
END_OBJECT = COLUMN

OBJECT = COLUMN
 NAME = TYPE
 COLUMN_NUMBER = 3
 BYTES = 2
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 7
 DESCRIPTION = "Designates whether row data is from a Short or Long
housekeeping packet. This affects the resolution of the analog values,
but not the size or format of the data. =0 short, =1 long"
END_OBJECT = COLUMN

OBJECT = COLUMN
 NAME = STATUS_INTERVAL
 COLUMN_NUMBER = 4
 BYTES = 2
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 9
 DESCRIPTION = "Status Interval in seconds. A more complete description
of this field can be found in the MASCS User's Guide."
END_OBJECT = COLUMN

OBJECT = COLUMN
 NAME = MACRO_BLOCKS
 COLUMN_NUMBER = 5
 BYTES = 2
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 11
 DESCRIPTION = "Number of Macro Blocks free."
END_OBJECT = COLUMN

OBJECT = COLUMN
 NAME = TLM_VOLUME
 COLUMN_NUMBER = 6
 BYTES = 2
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 13
 DESCRIPTION = "Telemetry volume produced."
END_OBJECT = COLUMN

OBJECT = COLUMN
 NAME = WATCH_ADDR
 COLUMN_NUMBER = 7
 BYTES = 2
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 15
 DESCRIPTION = "Address of watch data."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = WATCH_MEM
COLUMN_NUMBER = 8
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 17
DESCRIPTION = "Watch memory. A more complete description of this field can be found in the MASCS User's Guide."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = WATCH_DATA
COLUMN_NUMBER = 9
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 19
DESCRIPTION = "Contents of watch data. A more complete description of this field can be found in the MASCS User's Guide."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SW_VERSION
COLUMN_NUMBER = 10
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 21
DESCRIPTION = "Software version number."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = ALARM_ID
COLUMN_NUMBER = 11
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 23
DESCRIPTION = "Latest alarm ID."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = ALARM_TYPE
COLUMN_NUMBER = 12
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 25
DESCRIPTION = "Latest alarm type. =0 persistent, =1 transient."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = ALARM_COUNT
COLUMN_NUMBER = 13
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 27
DESCRIPTION = "Count of alarms."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CMD_EXEC
COLUMN_NUMBER = 14
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 29
DESCRIPTION = "Number of commands executed."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CMD_REJECT
COLUMN_NUMBER = 15
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 31
DESCRIPTION = "Number of commands rejected."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MAC_EXEC
COLUMN_NUMBER = 16
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 33
DESCRIPTION = "Number of macro commands executed."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MAC_REJECT
COLUMN_NUMBER = 17
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 35
DESCRIPTION = "Number of macro commands rejected."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MACRO_ID
COLUMN_NUMBER = 18
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 37
DESCRIPTION = "ID of most recent macro executed."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MACRO_LEARN
COLUMN_NUMBER = 19
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 39
DESCRIPTION = "Macro learn mode. =0 not learning, =1 learning. A more complete description of this field can be found in the MASCS User's Guide."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MON_RESPONSE
COLUMN_NUMBER = 20
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 41
DESCRIPTION = "Monitor response. =0 disabled, =1 enabled."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = WRITE_ENABLE
COLUMN_NUMBER = 21
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 43
DESCRIPTION = "Memory write enable. =0 disabled, =1 enabled"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SHUTTER_POS_VALID
COLUMN_NUMBER = 22
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 45
DESCRIPTION = "Shutter position was monitored in the status interval. =0 false, =1 true."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SLIT_POS_VALID
COLUMN_NUMBER = 23
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 47
DESCRIPTION = "Slit position was monitored in the status interval. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIRS_SCANNING
COLUMN_NUMBER = 24
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 49
DESCRIPTION = "VIRS scan on going. =0 false, =1 true."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = UVVS_SCANNING
COLUMN_NUMBER = 25
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 51
DESCRIPTION = "UVVS scan on going. =0 false, =1 true."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_TABLE_GEN
COLUMN_NUMBER = 26
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 53
DESCRIPTION = "Grating drive table is being generated. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_PASS_THRU
COLUMN_NUMBER = 27
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 55
DESCRIPTION =
0 DAC output value as written to the FPGA from the software will immediately be sent to the DAC. =0 DAC output value will be held in an FPGA buffer register until the next GDLCI interrupt."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NIR_ON
COLUMN_NUMBER = 28
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 57
DESCRIPTION = "Power enabled to the NIR electronics. =0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_ON
COLUMN_NUMBER = 29
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 59
DESCRIPTION = "Power enabled to the VIS electronics. =0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_HV_ON
COLUMN_NUMBER = 30
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 61
DESCRIPTION = "VIS_PMT High Voltage (HV) is on and the regulated output should be at about 900 V. =0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MUV_HV_ON

43
COLUMN_NUMBER = 31
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 63
DESCRIPTION = "MUV_PMT High Voltage (HV) is on and the regulated
output should be at about 900 V. =0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FUV_HV_ON
COLUMN_NUMBER = 32
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 65
DESCRIPTION = "FUV_PMT High Voltage (HV) is on and the regulated
output should be at about 1800 V. =0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = HVPS_ON
COLUMN_NUMBER = 33
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 67
DESCRIPTION = "HVPS Oscillator has been started and the HVPS
unregulated output should be about 2500 V. =0 on, =1 off"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NIR_FF_LAMP_ON
COLUMN_NUMBER = 34
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 69
DESCRIPTION = "NIR Flat Field Lamp is powered. = 0 off, = 1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_FF_LAMP_ON
COLUMN_NUMBER = 35
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 71
DESCRIPTION = "VIS Flat Field Lamp is powered. =0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NIR_GAIN
COLUMN_NUMBER = 36
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 73
DESCRIPTION = "NIR Gain is configured to a low or 20X high setting.
A more complete description of this field can be found in the MASCS User's
Guide. =0 low, =1 high"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_ON
COLUMN_NUMBER = 37
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 75
DESCRIPTION = "Grating drive is on and ready to be controlled.
=0 off, =1 on"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SPARE
COLUMN_NUMBER = 38
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 77
DESCRIPTION = "Unused spare column."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIRS_SHUTTER_POS
COLUMN_NUMBER = 39
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 79
DESCRIPTION = "VIRS shutter is closed and occulting light out of the fiber optic cable. =0 open, =1 closed"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = UVVS_SLIT_POS
COLUMN_NUMBER = 40
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 81
DESCRIPTION = "UVVS slit is in the Atmospheric position
=0 surface position. =1 atmospheric position."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_AT_INDEX
COLUMN_NUMBER = 41
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 83
DESCRIPTION = "Grating drive is positioned at the index position. A more complete description of this field can be found in the MASCS User's Guide. =0 false, =1 true"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIRS_BUSY
COLUMN_NUMBER = 42
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 85
DESCRIPTION = "VIRS FPGA State Machines are currently accessing the VIRS detector memory. If true then during writes to VIRS memory the data will be thrown away and during reads the data returned will be 0FFFFh. =0 false, =1 true"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = COVER_CMD_ERR
COLUMN_NUMBER = 43
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 87
DESCRIPTION = "Error flag: Exact sequence covered in Section 8.1.1 Contamination Cover Implementation (FPGA document) is violated. =0 no error, =1 error"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SHUTTER_CMD_ERR
COLUMN_NUMBER = 44
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 89
DESCRIPTION = "Error flag: CPU attempts to set any pair of A, B, or C drive enables to the slit stepper motor. Also set if the software does not clear all six slit bits between setting any set of two bits active. Will be cleared by the FPGA logic after any read of this register. =0 no error, =1 error"

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SLIT_CMD_ERR
COLUMN_NUMBER = 45
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 91
DESCRIPTION = "Error flag: CPU attempts to set any pair of A, B, or C drive enables to the slit stepper motor. Also set if the software does not clear all six slit bits between setting any set of two bits active. Will be cleared by the FPGA logic after any read of this register.
=0 no error, =1 error"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = HV_CMD_SEQ_ERR
COLUMN_NUMBER = 46
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 93
DESCRIPTION = "UVVS HVPS command sequence error. =0 no error, =1 the UVVS High Voltage Control register has been sequenced improperly and the write to the register has been ignored."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NIR_LP
COLUMN_NUMBER = 47
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 95
DESCRIPTION = "AD7809 ADC in the NIR array electronics has gone into latchup protection mode (brief power down, power up sequence) due to a single event upset. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_LP
COLUMN_NUMBER = 48
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 97
DESCRIPTION = "AD7809 ADC in the VIS array electronics has gone into latchup protection mode (brief power down, power up sequence) due to a single event upset. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = RESET_CMD_ERR
COLUMN_NUMBER = 49
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 99
DESCRIPTION = "Reset Command Error flag. =1 if the software attempts to reset the FPGA through any method other than that described in Section 12.2 of the FPGA document. =0 no error, =1 error"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_MOVING
COLUMN_NUMBER = 50
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 101
DESCRIPTION = "Grating drive is making any movement. =0 not moving, =1 moving"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SPARE_BITS_2
COLUMN_NUMBER = 51
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 103
DESCRIPTION = "Spare unused column"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = UVVS_EOI
COLUMN_NUMBER = 52
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 105
DESCRIPTION = "During a GDLCI this signals the software to read the PMT count registers. They are stable and valid when the flag is true. Will be cleared automatically at the next GDLCI interrupt. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MOVE_GD_NOW
COLUMN_NUMBER = 53
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 107
DESCRIPTION = "During a GDLCI this signals the software that it is time to start moving the grating drive by changing the control step position. Will be cleared automatically at the next GDLCI interrupt. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = TABLE_GENERATED
COLUMN_NUMBER = 54
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 109
DESCRIPTION = "Lookup table has been generated. The lookup table is only used internally by the Grating Drive control algorithm. A more complete description of this field can be found in the MASCS User's Guide. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_DIRECTION
COLUMN_NUMBER = 55
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 111
DESCRIPTION = "Initial direction for the grating drive rotation when given a 'find index' command. =0 counter-clockwise =1 clockwise"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIRS_IRQ
COLUMN_NUMBER = 56
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 113
DESCRIPTION = "IRQ2 is active, integration period is complete, and that all VIRS Data has been sampled and stored in the VIRS array memory. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GDLCI_IRQ
COLUMN_NUMBER = 57
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 115
DESCRIPTION = "IRQ1 is active. Occurs after the GDLCI register has reached its timeout period. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = GD_POSITION
COLUMN_NUMBER = 58
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 117
DESCRIPTION = "Grating drive position reported from software. Values range from 0-2700 arc minutes."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CC_ENABLED
COLUMN_NUMBER = 59
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 119
DESCRIPTION = "Software enable set to open contamination cover. =0 disabled, =1 enabled"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FPGA_RESET_ENABLE
COLUMN_NUMBER = 60
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 121
DESCRIPTION = "Software enable to reset FPGA. =0 disabled, =1 enabled"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SBOS_ENABLE
COLUMN_NUMBER = 61
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 123
DESCRIPTION = "Software Bright Object Sensor (SBOS) is commanded to be active. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SBOS_TRIGGERED
COLUMN_NUMBER = 62
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 125
DESCRIPTION = "SBOS has been triggered. =0 false, =1 true"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SBOS_LEVEL
COLUMN_NUMBER = 63
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE = 127
DESCRIPTION = "SBOS sensor level (upper 8 bits of MUV PMT counts)"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FPGA_2_5V
COLUMN_NUMBER = 64
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 129
UNIT = "VOLT"
DESCRIPTION = "Digital Electronics Board FPGA 2.5 Volt Monitor. Value is derived from the Housekeeping DN value by the following formulas: For the Short Housekeeping packet (8 bits): FPGA_2_5V = 0.000366 * (DN*64) For the Long Housekeeping packet (14 bits): FPGA_2_5V = 0.000366 * DN"
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = HVPS_MON_SUM
COLUMN_NUMBER = 65
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 133
UNIT = "VOLT"
DESCRIPTION = "HVPS Test Monitor Sum. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas: For the Short Housekeeping packet (8 bits): HVPS_MON_SUM = 0.000366 * (DN*64)"
For the Long Housekeeping packet (14 bits):
 HVPS_MON_SUM = 0.000366 * DN

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PLUS_5V
COLUMN_NUMBER = 66
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 137
UNIT = "VOLT"
DESCRIPTION = "+5V Monitor. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas:
 For the Short Housekeeping packet (8 bits):
 PLUS_5V = 0.0024805 * (DN*64)
 For the Long Housekeeping packet (14 bits):
 PLUS_5V = 0.0024805 * DN

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MINUS_5V
COLUMN_NUMBER = 67
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 141
UNIT = "VOLT"
DESCRIPTION = "-5 Volt Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5V."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PLUS_12V
COLUMN_NUMBER = 68
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 145
UNIT = "VOLT"
DESCRIPTION = "+12 Volt Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5V."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MINUS_12V
COLUMN_NUMBER = 69
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 149
UNIT = "VOLT"
DESCRIPTION = "-12 Volt Monitor. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for PLUS_5V."

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PLUS_5_CURRENT
COLUMN_NUMBER = 70
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 153
UNIT = "AMP"
DESCRIPTION = "+5 Volt Current. A more complete description of this field can be found in the MASCS User's Guide. Value is derived from the Housekeeping DN value by the following formulas:
 For the Short Housekeeping packet (8 bits):
 PLUS_5_CURRENT = 0.00024414 * (DN*64)
 For the Long Housekeeping packet (14 bits):
 PLUS_5_CURRENT = 0.00024414 * DN

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MINUS_5_CURRENT
COLUMN_NUMBER = 71
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 157
UNIT = "AMP"
DESCRIPTION = "-5 Volt Current. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for PLUS_5_CURRENT."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PLUS_12_CURRENT
COLUMN_NUMBER = 72
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 161
UNIT = "AMP"
DESCRIPTION = "+12 Volt Current. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for PLUS_5_CURRENT."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = MINUS_12_CURRENT
COLUMN_NUMBER = 73
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 165
UNIT = "AMP"
DESCRIPTION = "-12 Volt Current. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for PLUS_5_CURRENT."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = PLUS_28_CURRENT
COLUMN_NUMBER = 74
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 169
UNIT = "AMP"
DESCRIPTION = "+28 Volt Current. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for PLUS_5_CURRENT."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = SWITCHED_28_CUR
COLUMN_NUMBER = 75
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 173
UNIT = "AMP"
DESCRIPTION = "Switched +28V current Monitor. A more complete
description of this field can be found in the MASCS User's Guide.
Conversion from DN value is the same as that for PLUS_5_CURRENT."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = UNREG_HV_MON
COLUMN_NUMBER = 76
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 177
UNIT = "VOLT"
DESCRIPTION = "Unregulated PMT High Voltage Monitor. A more complete
description of this field can be found in the MASCS User's Guide.
Conversion from DN value is the same as that for HVPS_MON_SUM."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_HV_MON
COLUMN_NUMBER = 77
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 181
UNIT = "VOLT"
DESCRIPTION = "VIS PMT High Voltage Monitor. A more complete
description of this field can be found in the MASCS User's Guide. Value
is derived from the Housekeeping DN value by the following formulas:

For the Short Housekeeping packet (8 bits):

\[VIS_{-}HV_{-}MON = 0.366 \times (DN \times 64) \]

For the Long Housekeeping packet (14 bits):

\[VIS_{-}HV_{-}MON = 0.366 \times DN \]

OBJECT = COLUMN
NAME = MUV_HV_MON
COLUMN_NUMBER = 78
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 185
UNIT = "VOLT"
DESCRIPTION = "MUV High Voltage Monitor. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for VIS_HV_MON."

OBJECT = COLUMN
NAME = FUV_HV_MON
COLUMN_NUMBER = 79
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 189
UNIT = "VOLT"
DESCRIPTION = "FUV High Voltage Monitor. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for VIS_HV_MON."

OBJECT = COLUMN
NAME = DEB_TEMP
COLUMN_NUMBER = 80
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 193
UNIT = "CELSIUS"
DESCRIPTION = "Digital Electronics Board Temperature. A more complete
description of this field can be found in the MASCS User's Guide. Value is
converted from DN telemetry value by the following formulas:

For the Short Housekeeping packet (12 bit data):

\[DEB_{-}TEMP = -1.67826 - 0.0061(DN\times4) - 2.703\times10^{-8}(DN\times4)^2 +
3.8131\times10^{-11}(DN\times4)^3 + 8.9793\times10^{-15}(DN\times4)^4 -
3.4338\times10^{-18}(DN\times4)^5 \]

For the Long Housekeeping packet (14 bit data):

\[DEB_{-}TEMP = -1.67826 - 0.0061(DN) - 2.703\times10^{-8}(DN)^2 +
3.8131\times10^{-11}(DN)^3 + 8.9793\times10^{-15}(DN)^4 - 3.4338\times10^{-18}(DN)^5 \]

OBJECT = COLUMN
NAME = VIS_PMT_TEMP
COLUMN_NUMBER = 81
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 197
UNIT = "CELSIUS"
DESCRIPTION = "VIS PMT Temperature. A more complete description of
this field can be found in the MASCS User's Guide. Conversion from DN
value is the same as that for DEB_TEMP."

OBJECT = COLUMN
NAME = MUV_PMT_TEMP
COLUMN_NUMBER = 82
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 201
UNIT = "CELSIUS"
DESCRIPTION = "MUV_PMT Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FUV_PMT_TEMP
COLUMN_NUMBER = 83
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 205
UNIT = "CELSIUS"
DESCRIPTION = "FUV_PMT Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = HVPS_LV_TEMP
COLUMN_NUMBER = 84
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 209
UNIT = "CELSIUS"
DESCRIPTION = "High Voltage Power Supply Low Voltage Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = HVPS_HV_TEMP
COLUMN_NUMBER = 85
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 213
UNIT = "CELSIUS"
DESCRIPTION = "High Voltage Power Supply High Voltage Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = UVVS_GRATING_TEMP
COLUMN_NUMBER = 86
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 217
UNIT = "CELSIUS"
DESCRIPTION = "UVVS Grating Drive Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_ARRAY_TEMP_1
COLUMN_NUMBER = 87
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 221
UNIT = "CELSIUS"
DESCRIPTION = "VIS Array Temperature #1. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIS_ARRAY_TEMP_2
COLUMN_NUMBER = 88
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 225
UNIT = "CELSIUS"
DESCRIPTION = "VIS Array Temperature #2. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NIR_ARRAY_EXT_TEMP
COLUMN_NUMBER = 89
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 229
UNIT = "CELSIUS"
DESCRIPTION = "NIR Array External Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = NIR_ARRAY_INT_TEMP
COLUMN_NUMBER = 90
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 233
UNIT = "CELSIUS"
DESCRIPTION = "NIR Array Internal Temperature. A more complete description of this field can be found in the MASCS User's Guide. Value is converted from DN telemetry value by the following formulas:

From the short housekeeping packet (12 bit data):

From the long housekeeping packet (14 bit data):

END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = BOB_TEMP
COLUMN_NUMBER = 91
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 237
UNIT = "CELSIUS"
DESCRIPTION = "Break out Board Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VIRS_GRATING_TEMP
COLUMN_NUMBER = 92
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 241
UNIT = "CELSIUS"
DESCRIPTION = "VIRS Grating Temperature. A more complete description of this field can be found in the MASCS User's Guide. Conversion from DN value is the same as that for DEB_TEMP."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = COVER_TEMP
COLUMN_NUMBER = 93
BYTES = 4
DATA_TYPE = IEEE_REAL
START_BYTE = 245
UNIT = "CELSIUS"
DESCRIPTION = "Contamination Cover Temperature. A more complete description of this field can be found in the MASCS User's Guide."
Conversion from DN value is the same as that for DEB_TEMP.

Name: LVPS_TEMP
Column number: 94
Bytes: 4
Data type: IEEE_REAL
Start byte: 249
Unit: °C

Description: Low Voltage Power Supply Temperature. A more complete description of this field can be found in the MASCS User's Guide. Value is converted from DN telemetry value by using the following formulas:

For the short housekeeping packet (12 bits):

LVPS_TEMP = 25 + ((A/B) - 10000) / 78.5 where
A = 3333.333 * ((DN * 4 * 0.000366 / 3) + 1)
B = 1 - (((DN * 4 * 0.0003666 / 3) + 1) / 3)

For the long housekeeping packet (14 bits):

LVPS_TEMP = 25 + ((A/B) - 10000) / 78.5 where
A = 3333.333 * ((DN * 0.000366 / 3) + 1)
B = 1 - (((DN * 0.0003666 / 3) + 1) / 3)
APPENDIX - SPICE Kernel Files Used In Messenger Data Products

The following SPICE kernel files will be used to compute the UTC time and any geometric quantities found in the PDS labels. Kernel files will be generated throughout the mission with a file naming convention specified by the MESSENGER project.

*.bsp:
MESSENGER spacecraft ephemeris file. Also known as the Planetary Spacecraft Ephemeris Kernel (SPK) file.

*.bc:
Messenger spacecraft orientation file. Also known as the Attitude C-Kernel (CK) file.

*.tsc:
Messenger spacecraft clock coefficients file. Also known as the Spacecraft Clock Kernel (SCLK) file.

*.tpc:
Planetary constants file. Also known as the Planetary Constants Kernel (PcK) file.

*.tls:
Leapseconds kernel file. Used in conjunction with the SCLK kernel to convert between Universal Time Coordinated (UTC) and MESSENGER MET (Mission Elapsed Time). Also called the Leap Seconds Kernel (LSK) file.
APPENDIX - CODMAC

CODMAC/NASA Definition of processing levels for science data sets

<table>
<thead>
<tr>
<th>CODMAC Level</th>
<th>Proc. Type</th>
<th>Data Processing Level Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raw Data</td>
<td>Telemetry data stream as received at the ground station, with science and engineering data embedded. Corresponds to NASA packet data.</td>
</tr>
<tr>
<td>2</td>
<td>Edited Data</td>
<td>Instrument science data (e.g. raw voltages, counts) at full resolution, time ordered, with duplicates and transmission errors removed. Referred to in the MESSENGER program as Experiment Data Records (EDRs). Corresponds to NASA Level 0 data.</td>
</tr>
<tr>
<td>3</td>
<td>Calibrated Data</td>
<td>Edited data that are still in units produced by instrument, but have transformed (e.g. calibrated, rearranged) in a reversible manner and packaged with needed ancillary and auxiliary data (e.g. radiances with calibration equations applied). Referred to in the MESSENGER Program as Calibrated Data Records (CDRs). In some cases these also qualify as derived data products (DDRs). Corresponds to NASA Level 1A.</td>
</tr>
<tr>
<td>4</td>
<td>Resampled data</td>
<td>Irreversibly transformed (e.g. resampled, remapped, calibrated) values of the instrument measurements (e.g. radiances, magnetic field strength). Referred to in the MESSENGER program as either derived data products (DDPs) or derived analysis products (DAPs). Corresponds to NASA Level 1B.</td>
</tr>
<tr>
<td>5</td>
<td>Derived Data</td>
<td>Derived results such as maps, reports, graphics, etc. Corresponds to NASA Levels 2 through 5</td>
</tr>
<tr>
<td>6</td>
<td>Ancillary Data</td>
<td>Non-Science data needed to generate calibrated or resampled data sets. Consists of instrument gains, offsets; pointing information for scan platforms, etc.</td>
</tr>
<tr>
<td>7</td>
<td>Corrective Data</td>
<td>Other science data needed to interpret space-borne data sets. May include ground based data observations such as soil type or ocean buoy measurements of wind drift.</td>
</tr>
<tr>
<td>8</td>
<td>User Description</td>
<td>Description of why the data were required, any peculiarities associated with the data sets, and enough documentation to allow secondary user to extract information from the data.</td>
</tr>
</tbody>
</table>

The above is based on the national research council committee on data management and computation (CODMAC) data levels.
APPENDIX - ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>Applied Coherent Technology Corporation</td>
</tr>
<tr>
<td>APL</td>
<td>The John Hopkins University Applied Physics Laboratory</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>CCSDS</td>
<td>Consultative Committee for Space Data Systems</td>
</tr>
<tr>
<td>CDR</td>
<td>Calibrated Data Record</td>
</tr>
<tr>
<td>CK</td>
<td>MESSENGER spacecraft orientation file. (SPICE)</td>
</tr>
<tr>
<td>CoDMAC</td>
<td>Committee on Data Management and Computation</td>
</tr>
<tr>
<td>Co-I</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>DEB</td>
<td>Digital Electronics Board</td>
</tr>
<tr>
<td>DPU</td>
<td>Data Processing Unit</td>
</tr>
<tr>
<td>DSN</td>
<td>Deep Space Network</td>
</tr>
<tr>
<td>EDR</td>
<td>Experiment Data Records</td>
</tr>
<tr>
<td>EPPS</td>
<td>Energetic Particle and Plasma Spectrometer</td>
</tr>
<tr>
<td>ET</td>
<td>Ephemeris Time</td>
</tr>
<tr>
<td>FIPS</td>
<td>Fast Imaging Plasma Spectrometer</td>
</tr>
<tr>
<td>FOV</td>
<td>Field-of-View</td>
</tr>
<tr>
<td>FUV</td>
<td>Far UltraViolet PMT channel of the UVVS</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer protocol</td>
</tr>
<tr>
<td>GC</td>
<td>Geochemistry Group</td>
</tr>
<tr>
<td>GDLCI</td>
<td>Grating Drive Loop Control Interrupt. Refers to timing unit in MASCS UVVS</td>
</tr>
<tr>
<td>GP</td>
<td>Geophysics Group</td>
</tr>
<tr>
<td>GRNS</td>
<td>Gamma-ray and Neutron Spectrometer</td>
</tr>
<tr>
<td>GRS</td>
<td>Gamma-ray Spectrometer</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HK</td>
<td>Housekeeping data</td>
</tr>
<tr>
<td>HVPS</td>
<td>High Voltage Power Supply</td>
</tr>
<tr>
<td>I&T</td>
<td>Integration and Test</td>
</tr>
<tr>
<td>I2C</td>
<td>Inter-Integrated Circuit</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IEM</td>
<td>Integrated Electronic Module</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared channel of the MASCS instrument</td>
</tr>
<tr>
<td>J2000</td>
<td>The celestial reference frame defined using Julian epoch 2000</td>
</tr>
<tr>
<td>LVPS</td>
<td>Low Voltage Power Supply</td>
</tr>
<tr>
<td>LSK</td>
<td>Leapseconds Kernel (SPICE)</td>
</tr>
<tr>
<td>MAG</td>
<td>Magnetometer</td>
</tr>
<tr>
<td>MASCS</td>
<td>Mercury Atmospheric and Surface Composition Spectrometer</td>
</tr>
<tr>
<td>MDIS</td>
<td>Mercury Dual Imaging System</td>
</tr>
<tr>
<td>MESSENGER</td>
<td>MErcury, Surface, Space ENvironment, Geochemistry, and Ranging</td>
</tr>
<tr>
<td>MET</td>
<td>Mission Elapsed Time</td>
</tr>
<tr>
<td>MLA</td>
<td>Mercury Laser Altimeter</td>
</tr>
<tr>
<td>MOC</td>
<td>Mission Operations Center</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MUV</td>
<td>Mid UltraViolet PMT channel of the UVVS</td>
</tr>
<tr>
<td>NAIF</td>
<td>Navigation and Ancillary Information Facility</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infra-red detector for the VIRS instrument</td>
</tr>
<tr>
<td>NS</td>
<td>Neutron Spectrometer</td>
</tr>
<tr>
<td>PCK</td>
<td>Planetary Constant Kernel (SPICE)</td>
</tr>
<tr>
<td>PDS</td>
<td>Planetary Data System</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier Tube. Refers to the UVVS detectors.</td>
</tr>
<tr>
<td>RDR</td>
<td>Reduced Data Record</td>
</tr>
<tr>
<td>SBOS</td>
<td>Software Bright Object Sensor. Refers to detector saving mechanism on MASCS UVVS</td>
</tr>
<tr>
<td>SCLK</td>
<td>Spacecraft Clock Kernel (SPICE)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SIS</td>
<td>Software Interface Specification</td>
</tr>
<tr>
<td>SOC</td>
<td>Science Operations Center</td>
</tr>
<tr>
<td>SPICE</td>
<td>Spacecraft, Planet, Instrument, C-matrix Events, refers to the kernel files and functions used to generate viewing geometry</td>
</tr>
<tr>
<td>SPK</td>
<td>Spacecraft and Planets Kernel (SPICE)</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>UVVS</td>
<td>UltraViolet and Visible Spectrometer</td>
</tr>
<tr>
<td>VIS</td>
<td>Visible channel (applies to both VIS PMT and VIS Array detector in MASCS)</td>
</tr>
<tr>
<td>VIRS</td>
<td>Visible and InfraRed Spectrograph</td>
</tr>
<tr>
<td>XRS</td>
<td>X-Ray Spectrometer</td>
</tr>
</tbody>
</table>
APPENDIX - MASCS Instrument Overview

Visible and Infrared Spectrograph measures the visible and infrared surface reflectance. It is a concave grating spectrograph equipped with Si and InGaAs photodiode arrays (see Figure below).

Ultraviolet and Visible Spectrometer

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>125 mm</td>
</tr>
<tr>
<td>Grating</td>
<td>1800 g/mm blazed at 300 nm</td>
</tr>
<tr>
<td>Spectra resolution</td>
<td>0.5 nm FUV channel</td>
</tr>
<tr>
<td></td>
<td>1.0 nm MUV, VIS channels</td>
</tr>
</tbody>
</table>

Wavelength range:

- **FUV channel**: 115-190 nm (2\(^{nd}\) order)
- **MUV channel**: 160-320 nm (1\(^{st}\) order)
- **VIS channel**: 250-600 nm (1\(^{st}\) order)

Detector:

- **FUV channel**: Hamamatsu R 1081 PMT - CsI
- **MUV channel**: Hamamatsu R 759 PMT - CsTe
- **VIS channel**: Hamamatsu R 647 PMT - Bi Alkali

Field of view:

- **FUV, MUV, VIS**: 1.0° x 0.04° Atmosphere
- **FUV, MUV, VIS**: 0.05° x 0.04° Surface

Visible and Infrared Spectrograph

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>210 mm</td>
</tr>
<tr>
<td>Grating</td>
<td>120 g/mm blazed at 600 nm</td>
</tr>
<tr>
<td>Spectral resolution</td>
<td>4 nm</td>
</tr>
</tbody>
</table>

Wavelength range:

- **VIS channel**: 300-1050 nm
- **IR channel**: 850-1450 nm

Detector:

- **VIS channel**: Hamamatsu S3902-512 Si Diode Array
- **IR channel**: Hamamatsu G8052-256 InGaAs Diode Array

Field of view:

- **0.023° diameter**
MASCS Optical Design

MASCS Optical Design

Mercury Atmospheric and Surface Composition Spectrometer

Mercury Atmospheric and Surface Composition Spectrometer

60