Noachian/Phyllosian Stratigraphy in Nili Fossae

Jack Mustard, Bethay Ehlmann, and CRISM Team

Spectral Geomorphic Diversity of Noachian/Phyllosian Environments (Hydrothermal, alluvial/fluvial, shallow crust/pedogenic)

Distinct relationships among:
- Impact ejecta
- Hesperian volcanics
- Phyllosilicate-bearing infill of Nili Fossae
- Strongly altered Noachian crust
- Unaltered Noachian crust
Nili Fossae Geologic Highlights

- **Noachian Habitable Environments**
 - Ancient crustal and genesis region
 - Fluvially transported sediments
 - Hydrothermal systems
- **Impact processes**
 - Superbly exposed ejecta from 65 km Hargraves crater
 - Ejecta blocks in a phyllosilicate-bearing matrix
 - Transport, fluidization, alteration
- **Composition and character of ancient, unaltered crust**
- **Composition, mineralogy, and texture of Hesperian Syrtis Major lava**
- **Traverse the Noachian-Hesperian Boundary**
Regional Mineral Assemblages, Nili Fossae

Ehlmann et al., 2008; JGR 2009

Minerals in context with observation ID’s and coordinates

- Fe/Mg smectite
- kaolinite
- illite/muscovite
- chlorite
- hydrated Si-OH
- analcime (zeolite)
- Carbonate
- Other zeolite/sulfate
- Serpentine
- Prehnite
Mineralogy identified
Fe-oxide and crystalline hematite
Fe/Mg Smectite with variety of band positions, H₂O content
Kaolinite
Carbonate
Pyroxene (Low and High Ca)
Olivine
FRT000064D9:
2.4, 1.8, 1.15 μm RGB

Mafic mineralogy estimated with MGM model.

Blue=High-Ca pyroxene band strength
Green= Low-Ca pyroxene band strength
Both stretched 0.02-0.12
FRT000064D9: 2.4, 1.8, 1.15 μm RGB

Mafic mineralogy estimated with MGM model.

Blue=High-Ca pyroxene band strength
Green=Low-Ca pyroxene band strength
Both stretched 0.02-0.12
Dune fields show evidence for a weak olivine absorption. Note that pyroxene bands are apparent in the Lambert albedo spectra.
Red crystalline hematite is observed in discrete regions of the material filling the trough floor.
Fe-Mg phyllosilicate indicated by absorptions near 2.3, 1.91, and 1.41 μm

Spectra ratioed to brown-colored dunes
Fe-Mg phyllosilicate indicated by absorptions near 2.3, 1.91, and 1.41 μm

Possible absorption near 3 μm due to H₂O
Fe-Mg phyllosilicate indicated by absorptions near 2.3, 1.91, and 1.41 \(\mu m \)

The spectral properties of Fe/Mg phyllosilicates is relatively consistent across scene but with small variance in the 1.9 \(\mu m \) \(H_2O \) band.
Fill of Nili Fossae floor shows definitive absorptions for hydrated silicate, consistent with Fe/Mg smectite clay.
Small outcrops on the plateau show distinct absorptions diagnostic of kaolinite
Small outcrops on the plateau show distinct absorptions diagnostic of kaolinite.
FRT000064D9: R=2.4 G=1.8 B=1.08 μm

2500 nm Band, may be indicative of carbonate but careful analysis required
Small blocks show possible carbonate (Blue ratio spectrum)
Larger region is not consistent with carbonate (black ratio spectrum)
2500 nm Band, may be indicative of carbonate but careful analysis required. Small blocks show possible carbonate (Blue ratio spectrum). Larger region is not consistent with carbonate (black ratio spectrum).
Layered Sediments
Unaltered Noachian crust embedded in phyllosilicate-bearing formation

Blocks with possible carbonate signature

HiRISE Color

Layered Sediments

Low-Ca Pyroxene
Phyllosilicate
Fe-Phyllosilicate
Olivine
Low-Ca Pyroxene
Phyllosilicate
Fe-Phyllosilicate
22

LCP-rich Noachian Crust
Smectite-rich Noachian Crust
Smectite-bearing Fossae Fill
Smectite-bearing Fossae Fill
Smectite-rich Noachian Crust
LCP-rich Noachian Crust

600 meters

5 kilometers

(Representative vertical and horizontal distances, not to scale)
Nili Fossae Trough

- Distinct morphologic units with broad mineralogic diversity
- Careful analysis of mineral indicators through spectral analysis required for validation and verification
- Can be validated to the level of a few pixels (e.g. breccia blocks)
- Regional geology indicates sustained interaction of water with the crust over an extended period as a consequence of multiple episodes of distinct character
 - Fe/Mg Phyllosilicates with variation in band position, strength of water absorption
 - Smectite clay transported and deposited in fluvial systems
 - Regional episode of kaolinite formation
 - Carbonate formation in association with olivine
 - Chlorite, zeolite, and hydrated silicate in association with impacts
- Hesperian volcanics show no evidence for extensive alteration