4/8/2010

National Aeronautics and Space Administration

05.01.PayloadOpPlan.01.v1

LUNAR CRATER OBSERVATION AND SENSING SATELLITE (LCROSS) MEASUREMENT AND OPERATIONS PLAN

April 02, 2010

APPROVAL

Submitted By:

Mark Shirley D LCROSS Payload Software Lead

Date

Kimberly Smith LCROSS Payload Scientist

Date

Date

Approved By:

Anthony Colaprete LCROSS Principle Investigator

1 SCOPE

This document describes the measurement and operation specifications for the Lunar Crater Observation and Sensing Satellite (LCROSS). The measurement specifications and operations are derived form the science and measurement goals as defined in the mission science plan (ARC-04.01.SciMP.01.v-DRAFTD) and Project Level 4 Science/Payload requirements.

The first nine sections describe the measurement and operations plan as it was before launch. Sections 10 and 11 briefly describe the command sequences as they were executed during the flight.

2 TABLE OF CONTENTS

1	Sco	pe	3
2	Tab	le of Contents	3
3	Mis	sion and Measurement Overview	3
4	Imp	act Characterization	5
5	Mis	sion Periods	9
6	Mea	surement Specifications	11
7	Sequ	Jence Guidlines	13
	7.1	Quick Look	15
	7.1	Star Field Sequence Guidelines	20
	7.2	Swing-By / Calibration Sequence Guidelines	25
	7.3	Moon/Earth Look Sequence Guidelines	31
	7.4	Centaur Separation Sequence Guidelines	41
	7.5	Preimpact and the final hour of operations	45
	7.6	Impact/Flash Sequence Guidelines	48
	7.7	Impact/Curtain Sequence Guidelines	51
	7.8	Impact/Crater Sequence GuidelineS	56
	7.9	Fault Guidelines	61
8	Post	-contact status reports	62
9	Ren	naining Work	62

3 MISSION AND MEASUREMENT OVERVIEW

The primary objective of the Lunar Crater Observation and Sensing Satellite (LCROSS) is to confirm the presence of water ice at the Moon's South Pole. This mission uses a 2000 kg kinetic impactor with more than 200 times the energy of the Lunar Prospector (LP) impact to excavate more than 250 metric tons of lunar regolith. The resulting ejecta cloud will be observed from a number of Lunar-orbital and Earth-based assets. The impact is achieved by steering the launch vehicle's spent Earth Departure Upper Stage

(EDUS) into a permanently shadowed polar region (Figure 1). The EDUS is guided to its target by a Shepherding Spacecraft (S-S/C), which after release of the EDUS, flies toward the impact plume, sending real-time data and characterizing the morphology, evolution and composition of the plume with a suite of instruments. The S-S/C then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory, as well as provide significant insight into the processes that delivered the hydrogen to the lunar poles in the first place.

Multiple measurement techniques will be utilized by the LCROSS S-S/C and include some measurement goal overlap. By addressing each measurement goal with overlapping techniques a level of robustness against misinterpretation can be achieved and the mission susceptibility to false positive / negative results minimized. Ground or orbital based measurements other than those performed from the S-S/C are not described here, however, the LCROSS science team, specifically the Observation Coordinator, will work with these other platforms to maximize their utility in achieving the LCROSS science goals. It is anticipated that the LCROSS S-C/C measurements will provide the measurements with a greater resolution and sensitivity than any other known ground based, or earth or lunar orbiting platforms. Therefore, the S-S/C measurements should be of higher priority than those from other platforms. Each measurement technique is summarized below.

<u>Flash Photometry</u> – At impact, the kinetic energy of the projectile is transferred to the kinetic (ejecta) and internal energy the target (compaction, heating). A portion of the internal energy may induce vapor resulting in vibrational and rotational emission lines that will evolve with space and time. The intensity and decay of the initial flash are related to the physical structure of the target (porosity, strength, volatile content, composition). Consequently, characterization of the initial flash provides a complementary tool to understand initial coupling and the nature of the target.

<u>Visible Spectroscopy</u> – Here visible spectroscopy refers to the measurement of spectra between 0.25 μ m and 0.8 μ m with a resolving power of $\lambda/d\lambda > 100$. The LCROSS S-S/C will observe the pre- and post-EDUS-impacted lunar regolith in and outside the targeted region at a spatial resolution and viewing angle unobtainable from Earth. The visible spectrometer shall record the sunlit plume evolution, and track the evolution of OH⁻ radicals from sunlight-dissociated water vapor molecules. The visible spectrometer will measure the OH⁻ (308 nm) and H2O+ (619 nm) transitions simultaneous which shall assess the water vapor production.

<u>NIR (Near Infrared) Spectroscopy</u> – Here NIR spectroscopy refers to the measurement of spectra between 1.0 μ m and 4.0 μ m with a resolving power of $\lambda/d\lambda > 100$. The LCROSS S-S/C will monitor spectral bands associated with water vapor, ice, and hydrated minerals covering the first overtones of the symmetric and asymmetric stretches of water; this band, relatively free from interferences, is more brightly illuminated by sunlight than the fundamentals near 3 microns, more than compensating the weaker absorption of the

overtones. The regions near 1.4 and 1.9 microns, normally obscured by terrestrial atmospheric background in spectra from icy surfaces, will provide a sensitive indication of water vapor from ice or hydrates. The remainder of the spectral band will reveal the nature of ice crystals and mineral hydrates.

<u>NIR Imaging</u> – Imaging provides spatial resolution of the observed target. Two NIR imaging schemes are possible for LCROSS. The baseline includes two imagers, both with bandpass filters, one inside a water absorption line (e.g. at 1.6 μ m) and one outside the line (e.g. at 1.4 μ m), allowing the creation of water absorption band depth maps. The second scheme utilizes only a single broad band NIR imager to provide scene context for the NIR spectroscopy.

<u>MIR (Mid Infrared) Imaging</u> – For LCROSS, MIR imaging refers to imaging at thermal wavelengths between 6 and 15 μ m. The same two NIR imaging schemes apply to MIR imaging. Pre- and post- impact thermal images of the impact terrain will be obtained from MIR cameras on the S-S/C to characterize the surface material (rock vs. regolith), obtain the thermal evolution of the plume (which is dependent on the water content), and observe the ejecta blanket and freshly exposed regolith.

<u>Visible Imaging</u> – Visible imaging for LCROSS refers to imaging at wavelengths between 0.4 and 0.8 μ m with broad bandpass filtering for color.

Throughout the mission a verity of payload/measurement activities are planned prior to the final descent activities. These earlier activities monitor instrument health, perform instrument calibration, monitor for instrument contamination, or determine instrument alignment relative to each other and the spacecraft.

4 IMPACT CHARACTERIZATION

The LCROSS mission uses the impact of the Atlas V Centaur upper stage to excavate eject lunar surface material to where it can be observed by both the LCROSS S-S/C and other lunar orbiting, earth orbiting and ground based assets. It is necessary to model the expected results of the impact in order to plan and deploy the most effective measurement and operations plan. The next section summarizes the predicted characteristics of the impact as they relate to measurements and operation of the payload.

Figure 1 Montecarlo study of ejecta mass: Simulation varied the crater radius (R_{crat}), velocity function exponent (a), total mass (M_e), and ejecta flight angle (q). (See LCROSS technical note "LCROSS ejecta dynamics–Monte Carlo model (09/16/06)" for details)

ejecta mass at any altitude depends on a variety of parameters, including, but not limited to, impact angle, impactor density and ejecta flight angle. Figure 1 shows a Monte-Carlo study of ejecta mass at altitude for a variety of key impact parameter combinations. Uncertainties in low velocity impacts (velocities less than about 6 km s⁻¹), such as the LCROSS impact, results in broad profiles for the possible ejecta mass. The evolution of the ejecta mass and water is shown in Figure 2 assuming a total mass consistent with the "median model" shown on the previous slide and an assumed 1% (wt) water content in the regolith.

Figure 2 (left) The predicted ejecta curtain mass as a function of altitude and time after impact; (right) the predicted water ice and vapor mass (assuming a 1%[wt] water regolith content) as a function of altitude and time after impact.

The initial ejecta cloud will be cold (T<120 K). As the ejecta cloud reaches sunlight the small particles will sublime quickly (\sim 10 sec for a 40 micron particle) releasing water vapor. The eject water mass at a variety of altitudes is shown in Figure 2 (right panel), along with the estimation of the sublimed water vapor. The opacity of the cloud is estimated from the total mass and simplified cloud geometry. The ejecta cloud will approximately look like an expanding conical section (Figure 3).

Ejecta cloud optical depth modeled with a truncated conical section, the "upside-down lampshade" model. Conical section grows at a rate which follows the maximum cloud density contour.

Figure 3. Shown is the model for approximating the optical depth of the ejecta cloud. Top panels show images from a Vertical Gun experiment (cutesy Peter Schultz). Bottom panels show cartoons of the model used for calculating the ejecta concentration and optical depth (side view, left; top view right).

Figure 4 Ejecta curtain mass, radius (left panel), and optical depth and percent spectrometer aperture fill (right panel) are shown. A 30 µm particle radius was assumed.

Using the model for optical depth described above, combined with an estimate of the curtain radius (Figure 4, left), the ejecta and water ice optical depths (Figure 4, right) as a function of time after impact can be calculated (for the standard 1% water content model) at an altitude of 2 km above the crater floor. The percent area curve (Figure 4, right) shows the percent of the nadir UV/Visible and NIR spectrometer foreoptics aperture filled by curtain radiance (for a four minute follow time).

Figure 5 (a) Total calculated radiance as a function of wavelength for several times following impact. (b) Portion for the total calculated radiance as a function of wavelength attributed to the ejecta cloud.

To simulate the solar illumination of the ejecta curtain the well know and tested multistream scattering code (Discrete Ordinate Radiative Transfer or DISORT) is used. The ejecta dust and water ice optical depths presented in Figure 4 are used for the ejecta opacity. Linear mixing is used to estimate combined dust and water ice cloud optical properties. The total radiance from the sunlit ejecta cloud is shown in Figure 5 (upper panel). Plotted are the total radiance (ejecta cloud + lunar surface) at time impact plus, 10 (pink), 20 (blue), 30 (green), and 60 (red) seconds. The radiance attributed to the ejecta cloud only (derived be subtracting off the spectra from the lunar surface) at three times (10, 20 and 30 seconds) after impact is shown in Figure 5 (lower panel).

5 MISSION PERIODS

Payload operations are organized by measurement goals and/or requirements. Specific instrument operations are specified in sequences of commands/states. These operational sequences, their general goals and the period in the mission in which they are applied are summarized in Table 1.

Operational	Purpose	Mission Period	Data Rate Allocation
Sequence			(kbps)
Quick Look	Instrument health	Initial Checkout	29
Star Field	Star field alignment	Pre-Swing-by, Cruise	220
Swing-by	Calibration and	Lunar Swing-by	1000
	alignment		
Moon-Earth Look	Calibration and	Cruise	29/60
	alignment		
Centaur	Determination of	Centaur separation	220
Separation	Centaur drift		
	properties		
Pre-Impact	Instrument health,	~55 minutes prior to	1000
	calibration	centaur impact	
Impact-Flash	Monitor of impact	Centaur impact	1000
	flash		
Impact-Curtain	Monitor eject curtain	From 5 sec (TBR)	1000
		after Centaur impact	
		to 180 seconds after	
		Centaur impact	
Impact-Crater	Monitor centaur	180 sec after Centaur	1000
	impact site	impact to SSC impact	

 Table 1 Payload Mission Sequences

<u>Quick Look</u> – The primary purpose of this mode/sequence of operation is to check each instrument, individually, for its health status. Each instrument is place in its nominal operating configuration, and in some cases alternate configurations. No instruments are operated simultaneously in this mode. The s mode is used in some cases as a part of other modes/sequences.

<u>Star Field</u> – This mode/sequence makes measurements of specific star fields to be used in determining camera alignment relative to the spacecraft attitude control system.

<u>Swing-by</u> – The purpose of Swing-by is to make both wavelength and radiometric calibration measurements as well as pointing/alignment measurements with all instruments during the lunar swing-by encounter. The sequence is broken into two segments: 1) nadir viewing for calibration and inter-camera alignment, and 2) lunar limb crossings for spectrometer to camera alignment.

<u>Moon-Earth Look</u> – During Cruise at least two opportunities are planned to observe the Moon and one opportunity to observe the Earth. These observations will act as monitors of instrument health and contamination, calibrations and system alignment tests. This mode/sequence utilizes the Quick Look mode/sequence with a limb-crossing activity appended onto the end.

<u>Centaur Separation</u> – The goal of this mode/sequence is to measure the dynamics of the separated Centaur.

<u>Pre-Impact</u> – The first ~55 minutes of the final hour of descent is spend in the Pre-Impact mode/sequence. The purpose of this mode is to routinely check on instrument health, provide contextual descent data and instrument calibrations.

Just prior to impact of the Centaur (about 30 seconds prior to impact) the Impact mode/sequence is entered. In the Impact mode/sequence specific instrument configurations are managed with three sub-sequences including Flash, Curtain and Crater.

<u>Impact-Flash</u> – In this mode/sequence all instruments are configured to optimize measurements of the Centaur impact flash. The key instruments in this mode are the NIR camera #2, the TLP and the spectrometers.

<u>Impact-Crater</u> – In this mode/sequence all instruments are configured to optimize measurements of the impact ejecta curtain. In this mode the emphasis is on measuring the spectra and evolution of the solar-illuminated ejecta cloud.

<u>Impact-Crater</u> – In this mode/sequence all instruments are configured to optimize measurements of the crater formed by the Centaur impact itself.

6 MEASUREMENT SPECIFICATIONS

Measurement specifications trace back to each of the measurement goals. Measurement specifications do not yet specify a technique but do identify a required accuracy and precision. Measurement requirements are captured in the Project Level 4 Requirements. Measurement specifications include (when applicable) instrument wavelength response, resolution, and sensitivity, and spatial resolution. These measurement specifications have been organized by measurement technique, as described the mission science plan (ARC-04.01.SciMP.01.v-DRAFTD), and mission period, and are summarized in Table 2. Ultimately it is the instrument specifications, captured as Level 4 requirements, which result in the particular instruments flown (defined in the Project Internal Payload Specification, document 05.02.PL-IDS.01.vDRAFT1) and, along with the impact characterization, define the specifics of the measurement and operational sequences.

Sequence	Specification	Flash Photometry	Visible Spectroscopy	NIR Spectroscopy	NIR Imaging	MIR Imaging
	Sensitivity	$<10 \ \mu W \ m^{-2}$	20%	20%	20 %	20 %
	dt	<0.01 sec	<1 sec	<1 sec	<0.1 sec	<0.1 sec
hsh	dλ	None	<0.01 µm	<0.05 µm	<2 μm	<2 µm
Fla	λ-range	0.4-0.8 μm	0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
	FOV	N/A	N/A	N/A	> 6°	> 10°
	dx	N/A	N/A	N/A	< 2000 m	< 2000 m
	Sensitivity		10%	0.2 %	10 %	10 %
	dt		<5 sec	<10 sec	<60 sec	<1 sec
tain	dλ		<0.005 µm	<0.05 µm	<2 μm	<2 μm
Cur	λ-range		0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
· ·	FOV		< 6°	< 6°	> 6°	> 10°
	dx		N/A	N/A	< 2000 m	< 2000 m
	Sensitivity				50 %	30 %
	dt				<0.1 sec	<0.05 sec
iter	dλ				<2 µm	<2 µm
Cra	λ-range				1.35-2.35 μm	6-12 μm
	FOV				< 6°	> 10°
	dx				< 500 m	< 500 m
	Sensitivity	$<10 \ \mu W \ m^{-2}$				30 %
L U	dt	<0.01 sec				<0.05 sec
taur	dλ	None				<2 µm
Cen	λ-range	0.4-0.8 μm				6-12 μm
S S	FOV	N/A				> 10°
	dx	N/A				< 5 m
	Sen. (Mag)				2	
р	dt				>0.1 sec	
Fiel	dλ				N/A	
tar	λ-range				0.9-1.7 μm	
\mathbf{x}	FOV				> 6°	
	dx				N/A	
	Sensitivity	None	20%	20%	50 %	30 %
arth	dt	<0.02 sec	<1 sec	<1 sec	<0.1 sec	<0.05 sec
/ E ook	dλ	None	0.005 µm	0.05 µm	<2 µm	<2 µm
Don	λ-range	None	0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
W	FOV	None	< 6°	< 6°	< 6°	> 10°
	dx	N/A	N/A	N/A	> 3 pixels	> 3 pixels
	Sensitivity	None	20%	20%	10 %	30 %
3y	dt	<0.02 sec	<1 sec	<1 sec	<60 sec	<0.05 sec
lg-J	dλ	None	0.005 µm	0.05 µm	<2 µm	<2 μm
wir	λ-range	0.4-0.8 μm	0.28-0.65 μm	1.35-2.35 μm	1.35-2.35 μm	6-12 μm
S	FOV	N/A	< 6°	< 6°	> 6°	> 10°
	dx	N/A	N/A	N/A	N/A	N/A

7 SEQUENCE GUIDELINES

Presented in this section are the guidelines for developing the mission sequences. Each sequence guideline defines the primary sequence goals, requirements and instrument operational specifications.

Instrument Definition

The various instruments that make up the LCROSS payload are summarized in Table 3. Detailed specifications for each instrument can be found in the Project Internal Payload Specification, document (05.02.PL-IDS.01.vDRAFT1).

			<u> </u>		5				≥		کو ا	eze
			Vate	8	Vapo	S	<u>s</u> ed	ies	- Solo	on al		e St
				er	er	ani	Irat era	get	rph, tair	in in	ear	ticl
Science Instrument	Qty.	Vendor	Lot:	Wat	Wat	Org	Min	Pro	Moi	The	Min	Par
		Ecliptic										
Visible Camera	1	Enterprises										
		Goodrich										
Near Infrared		Sensors										
Cameras	2	Unlimited										
		Thermoteknix										
Mid-Infrared		Ltd.; Indigo										
Cameras	2	FLIR Sys.										
Visible												
Spectrometer	1	Ocean Optics										
Near Infrared												
Spectromters	2	Polychromix										
Total Luminance												
Photometer	1	NASA/ARC										
		Ecliptic	Data &	Data &	Data &	Data &	Data &	Data &	Data &	Data &	Data &	Data &
Data Handling Unit	1	Enterprises	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K
		Aurora Design										
Fore-optics	3	& Tech.										
Flight Fiber Optics	3	FiberGuide										
Flight Electrical &			Data &	Data &	Data &	Data &	Data &	Data &	Data &	Data &	Data &	Data &
Thermal Harnesses	1	NASA/ARC	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K	H/K
Telescope Aperture												
Door Assembly	1	NASA/ARC	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Payload												
Observation Deck	1	NASA/ARC										
Payload R6 Panel	1	NGST	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Integrated Payload	1	LCROSS										

Table 3. LCROSS Instrument Summary

KEY:

Direct/Strong; Very direct measure with little modeling / assumption; highly sensitive Indirect/Strong; Indirect measure with the goal removed by several steps; highly sensitive Indirect/Weak; Indirect measure with the goal removed by several steps; moderately sensitive

The guidelines for developing the payload operational sequences are listed below. Each sequence is described in detail.

Review Status

The review status of each flight DHU sequence is summarized:

Sequence	Last Reviewed
Quicklook-29k	2009-02-19
Starfield-29k	2009-03-06
Starfield-58k	2009-03-06
Swingby-1000k	2009-02-19
Swingby-220k	2009-02-19
Earthmoon-60k	2008-03-09
Earhtmoon-29k	2008-03-09
Separation-220k	2009-03-06
Separation-58k	Post launch
Preimpact-impact-	2009-03-09
1000k	
Preimpact-impact-220k	2009-03-09
Fault-1000k	2009-03-09

Information:

Test Period	Dates	Comments
Functional	2008-03-11	First time connected to S/C.
(Funct.)	2008-03-12	Only time most contingencies were tested on the S/C.
	2008-03-19	Note that the S/C Avionics had older FSW.
TT6	2008-03-18	Thread Test 6 with DSN Van.
CPT	2008-04-11	Payload Comprehensive Performance Test (CPT) that was defined as
		Quicklook-29k, PreImpact-Impact-1000k, and some DHU load tests, to be
		the baseline tests compared during the rest of the S/C testing.
Lid-I	2008-05-13	Post-Acoustic, Pre-TVAC baseline (atm. pressure, room temperature)
	2008-05-14	
TVAC	2008-06-01	Testing during TVAC (instruments at temperature and under vacuum)
	2008-06-06	
	2008-06-07	
Lid-II	2008-06-11	Post-TVAC baseline (atm. pressure, room temperature)
Post-NSP	2008-09-25	Repeat of CPT testing but after repair to NSP1 and NSP2 optical modules
Repair	2008-09-26	
Post	2008-12-10	Repeat of CPT testing but after misc. work and new FSW loads to avionics
Capacitor		
E2E	2009-02-26	End2End test of final proposed Flight Sequences for launch load. Post-
	2009-02-27	shipment to KSC aliveness testing.

7.1 QUICK LOOK

Primary Goals:

- 1. Take images/spectra from each instrument separately to determine functionality
- 2. Provide for commanding mode change for each instrument as appropriate

Requirements:

- 1. Must fit within in the specified downlink rate (29 kps)
- 2. Must isolate each instrument when powered
- 3. Require sufficient number of images/spectra from each instrument to ascertain contamination effects on performance

Instruments and Specifications:

<none>

Rate/Spec Summary:

<none>

Comparison	of Specification	to the QUICKL	OOK Sequence:
------------	------------------	---------------	----------------------

Channel	Specified	Commanded	Observed	Deviations
[a]	_	(CPT)	Rates/# Files	from Spec
			(CPT)	1
VIS	<none></none>	Rate=0 12Hz dur=120s	0 11Hz	<none></none>
115	Home	Total Powered Time: 120s	Total: 14 images	Hone
NIR1	<none></none>	Rate=0 3Hz Gain=1x	0.28Hz	<none></none>
1,1111	none	• OPR 6 ENH: OFF AGC: OFF dur=30 s	10 @ setup [b]	none
		• OPR 9 ENH: OFF AGC:OFF dur=30s	10 @ OPR 6	
		• OPR 15 ENH: OFF AGC: OFF dur= $30s$	9 @ OPR 9	
		• Test Mode dur=30s	9 @ OPR 15	
		Total Powered Time: 120s	9 @ TestPat	
		Total I owered Time. 1209	Total: 46 images	
NIR2	<none></none>	Rate=0.3Hz, Gain=1x	0.3Hz	<none></none>
		• OPR 6, ENH: OFF, AGC:OFF, dur=30 s	10 @ setup [b]	
		• OPR 9. ENH: OFF. AGC:OFF. dur=30s	10 @ OPR 6	
		• OPR 15 ENH: OFF AGC: OFF dur=30s	9 @ OPR 9	
		• Test Mode dur=30s	9 @ OPR 15	
		Total Powered Time: 120s	9 @ TestPat	
			Total: 46 images	
MIR1	<none></none>	Rate=0.07 Hz	0.07Hz	<none></none>
		• High Gain, dur=60s	5 @ High Gain	
		• Lo Gain, dur=60s	4 @ Low Gain	
		• Test Mode. dur=60s	4 @ TestPat	
		Total Powered Time: 180s	Total: 13 images	
MIR2	<none></none>	Rate=0.07 Hz	0.07Hz	<none></none>
		• High Gain, dur=60s	5 @ High Gain	
		• Lo Gain. dur=60s	4 @ Low Gain	
		• Test Mode, dur=60s	4 @ TestPat	
		Total Powered Time: 180s	Total: 13 images	
NSP1	<none></none>	Rate=72 Hz	72.2Hz. 30s	<none></none>
		• (IF), dur=30s	2168 @ IF[c]	
		Rate=166 Hz	145 Hz, 5s	
		• (DM). dur=5s	726 @ DM[c]	
		Rate=1.7 Hz	1.7Hz, 120s	
		• (HS), dur=120s	203 @ HS	
		Total Powered Time: 155s	Total: 203 HS	
NSP2	<none></none>	Rate=72 Hz	72.1Hz, 10s	<none></none>
	-	• (IF), dur=10s	722 @ IF[c]	-
		Rate=166 Hz	135.4Hz, 5s	
		• (DM), dur=5s	676 @ DM[c]	
		Rate=1.7 Hz	1.7Hz, 59.4s	
		• (HS), dur=60s	102 @ HS	
		Total Powered Time: 75s	Total: 102 HS	
VSP	<none></none>	Rate=0.2 Hz	0.2 Hz	<none></none>
		• int=0.1, 0.5, 2.5 sec. dur=60s	12 @ bracket	
		Rate=1.4Hz	1.36 Hz	
		• int=0.4s, dur=30s	40 @ single	
		Two 4s exposures	2 @ 4s snap	
		Rate=0.2Hz	0.19 Hz	
		• int=0.1, 0.5, 2.5 sec, dur=30s	5 @ bracket	
		Total Powered Time: 128s	Total: 93 spectra	
TLP	<none></none>	Off	Off	(1)

Notes:

[a] Each instrument is powered on/off sequentially in the order: VIS, NIR1, NIR2, VSP, MIR1, MIR2, NSP1 and NSP2. The TLP is **not** powered in this sequence. This pattern of instrument activation is used as an instrument checkout.

[b] NIR1/NIR2 undergo a specific set-up that fluctuates between a low and high base offset. Some of these images appear "saturated" although it is not dependent on light levels.

[c] Total numbers of IF and DM spectra from the NSP1/NSP2 do vary from run to run. The number shown here is from an actual run during CPT (4/2008) or later testing at NGST with the spacecraft.

Notes (Deviations from Specification):

(1) The TLP is not powered in this operation therefore its functionality is not checked.

68	elinde : Q U ICANOO K 29 Sinde Siddhe i Ce	Mipde: NIR.72	73	Mode: NIR:	75	Bode: VSP77	1	Start VS Start VSP	And a state of the second	81 8:	Mode: Ng	9° 84	85	Mode SIGs 1	87	8 Book: NS B9	Exite UPC 100 K291	92
CLK				<u> </u>							<u> </u>		-					-+-
VIS																		
NIR1																		
NIR2																		
MIR1																		
MIR2																		
NSP1																		
NSP2							_											
VSP								1										
TLP																		
				umm f														_

Quicklook-29k Observational Pattern: Last Updated: 2008-04-28

Tick marks on each row represent images or spectra returned by the instrument named at the left (the text label appears below the line containing its tick marks). For the cameras, a tick mark represents a single image. For the VSP, ticks represent either individual spectra or groups of three spectra (bracket mode). The VSP tick marks the receipt time of packet of the spectrum/spectra just taken (either single or triplet). Regarding the latter, a triplet spectra contains spectra take in this time order: (1) itime (base), 7ms delay, (2) itime/factor (short exposure), 7 ms delay, (3) itime*factor (long exposure) order then transfer time before time stamping packet. The yellow sections of the NSP1 and NSP2 lines represent flash mode (low resolution) spectra, and the red sections represent diagnostic mode packets. The black sections of those lines represent individual fullresolution spectra (Hadamard mode) and are individual ticks drawn too closely to distinguish at this scale. The TLP was not active here. The bottom row represents downlink capacity and usage. The top row is a timeline marked in minutes; this pattern is plotted using the DHU's internal clock to generate the timeline rather than having it start with 0 at the beginning of the command sequence.

Ouicklook-29k Sequence Milestones: Last Updated: 2009-02-19

Start Simulation length: full-length slot: 4 filename: quicklook-29k.cmd msec NVM Msg min:sec 00000000 4 ECHO: Start Sequence (000:00.00)00000050 4 ECHO: TLM HSS RATE :rate 29000 (000:00.05)00000100 4 ECHO: Mode: QUICKLOOK 29 (000:00.10)00000150 4 ECHO: Mode: VIS (000:00.15)00121000 4 ECHO: Mode: NIR1 (002:01.00)00273850 4 ECHO: Mode: NIR2 00426700 4 ECHO: Mode: VSP (004:33.85)(007:06.70)00546500 4 ECHO: Start VSP Exposure (009:06.50)00556600 4 ECHO: Start VSP Exposure (009:16.60)00610050 4 ECHO: Mode: MIR1 (010:10.05)00799750 4 ECHO: Mode: MIR2 (013:19.75)00989450 4 ECHO: Mode: NSP1 (016:29.45)01144800 4 ECHO: Mode: NSP2 (019:04.80)01220150 4 ECHO: Exit QUICKLOOK 29 (020:20.15)_____

The sequence milestones listing shows messages printed by the QUICKLOOK command sequence when run on the DHU. The listing is intended for use when monitoring sequence execution.

Quicklook-29k Observation Statistics: Last Updated: 2009-02-19

Slot:		4			
Filenar	ne:	quicklo	ok-29k.d	cmd	
Elapsed	d Time:	1220250	msec (2	20.34	min)
		F	DS Data		
Instrur	nent	Counts	Volume	Kbyte	S
VIS:		1.5	15000		
MIR1:		13	780		
MIR2:		13	780		
NIR1:	:	47	94000		
NIR2:	:	47	94000		
NSP1	IF:	2172	217		
NSP1	HS:	205	2460		
NSP1	DM:	100	10		
NSP2	IF:	728	73		
NSP2	HS:	103	1236		
NSP2	DM:	100	10		
VSP	BM:	18	1620		
VSP	SM:	75	2250		
TLP:		0	0		

263 Mbytes

The observation statistics show how many of each type of observation will be generated by each command sequence. The volume column is an early estimate of the contribution of this sequence to the PDS archive.

Quicklook Contingency:

There is no contingency rate case for Quicklook.

7.1 STAR FIELD SEQUENCE GUIDELINES

Primary Goals:

- 1. Take images of star fields for use in pointing calibration
- 2. Activate the TADA

Requirements:

- 1. Multiple images of star field with visible and NIR cameras
- 2. Deploy TADA
- 3. Take measurements with spectrometers before and after TADA deployment
- 4. Telemetry rate < 220 kbps

Instruments and Specifications:

- 1. Visible camera with periods of maximum rate (to minimize SC blur)
- 2. NIR camera following visible camera barrage, with integration times > 0.1 sec (TBR)
- 3. VSP and NSP sampled before and after TADA Activation at "nominal" rates/modes

Rate/Spec Summary:

Vis cam: 5 Hz NIR1 cam: off NIR2 cam: 0.5 Hz, integration = 0.1 sec MIR1 cam: off MIR2 cam: off TLP: off VSP: Bracket Mode with tau = 0.5 sec, factor = 5 NSP1: No Decimation, Hadamard mode

Lust op			01 1	
	Specified	Commanded	Observed	Deviations
		(CPT)	(TVAC)	from Spec
VIS	Rate=5 Hz	Off	Off	(1)
NIR1	Off	Off	Off	<none></none>
NIR2	Rate=0.5 Hz	Rate=0.5 Hz	0.5 Hz	(2)
	Int= 0.1 s	Gain=1x	112 Setup @ OPR15	
		OPR 15, ENH: OFF, AGC:OFF, dur=10 min	303 @ OPR15/ENHOFF	
		OPR 15, ENH: ON, AGC:OFF, dur=10 min	128 @ OPR15/ENHON	
		Note: $OPR15$ has int=16.24ms	<none $>$ (2) @ OPR15/ENHOFF	
		Note: Of K15 has int=10.24ms	Total: 543 images (3)	
MIR1	Off	Off	Off	<none></none>
MIR2	Off	Rate=0.5 Hz	0.5 Hz	<none></none>
		High Gain	High Gain	
		_	Total: 598 images (3)	
NSP1	Rate=1.7 Hz	Off	Off	(4)
	Hadamard			
	Mode			
NSP2	Not	Off	Off	<none></none>
	specified			
VSP	Bracket	Single Mode	0.13 Hz	<none></none>
	Mode	Rate = 0.125 Hz	Single Mode	
	Rate= <not< td=""><td>Int = 5 seconds</td><td>Int = 5000 msec</td><td></td></not<>	Int = 5 seconds	Int = 5000 msec	
	specified>		Total: 147 spectra	
	int=0.1,0.5,2		•	
	.5 s			
TLP	Off	Off	Off	<none></none>
TADA	Operated	To be operated via ground	Not Operated	(5)
		command		

Comparison of Specification to the STARFIELD Sequence: Last Updated: 2000-02-10

Notes (Deviations from Specification):

- (1) VIS is not expected to be sensitive enough for this measurement and was removed from the sequence
- (2) NIR2 (unfiltered) is the best candidate large-FOV imager for starfield.
- (3) During CPT/TVAC testing however, a shortened version of starfield was used which is not representative of the actual flight sequence. The simulation suggests there will be 1620 and 1588 total NIR2 and MIR2 images, respectively.
- (4) It is not expected that NSP1 will have sufficient sensitivity to detect stars in the proposed starfields.
- (5) The syntax of the discrete commands to the DHU for TADA was tested during space vehicle thermal vacuum testing. In flight, TADA operations are to be performed with a ground command containing those same discrete commands through a STOL proc.

Starfield-220k Observational pattern: Last Updated: 2008-04-28

	Mode: Start Set	WRINELDEED Trucen MIR2	Activate TADA		NIR2 Et Vancement ON
CLK					
VIS			vie		
NIR1			A		В
NIR2					
MIR1					
MIR2			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
NSP1					
NSP2					
VSP				***************************************	
TLP					

- (A) The vertical line to the left of (A) indicates when the TADA will be commanded open via the ground. (Data: dhu_tvac_cpt2_starfield_220k-2008-06-06-PODCover-LiteTest)
- (B) Marks approx. 17.4 minutes (1045s) since sequence start. Actual flight sequence is 53.5 minutes. Therefore this image is missing the NIR2 Enhancement OFF with continued MIR2 and VSP for another ~36 minutes of data.

Starfield-220k Sequence Milestones: Last Updated: 2009-02-19

Start Simulation length: full-length slot: 5 filename: starfield-220k.cmd

msec	NVM	Msg		min:sec
00000000) 5	ECHO:	Start Sequence	(000:00.00)
00000050) 5	ECHO:	TLM HSS RATE :rate 220000	(000:00.05)
00000100) 5	ECHO:	Mode: STARFIELD-220	(000:00.10)
00033600) 5	ECHO:	Turn on MIR2	(000:33.60)
00037950) 5	ECHO:	Turn on VSP	(000:37.95)
00170300) 5	ECHO:	Activate TADA	(002:50.30)
00832550) 5	ECHO:	NIR2 Enhancement ON	(013:52.55)
01432700) 5	ECHO:	NIR2 Enhancement OFF	(023:52.70)
03210850	D 5	ECHO:	Expected Sequence End	(053:30.85)

Starfield-220k Observation Statistics: Last Updated: 2009-02-19

Slot:	5								
Filename:	starfie	starfield-220k.cmd							
Elapsed Time:	: 3210950	msec (S	53.52 min)						
	P	DS Data							
Instrument	Counts	Volume	Kbytes						
VIS:	0	0							
MIR1:	0	0							
MIR2:	1588	95280							
NIR1:	0	0							
NIR2:	1620	3240000							
NSP1 IF:	0	0							
NSP1 HS:	0	0							
NSP1 DM:	0	0							
NSP2 IF:	0	0							

NSP2	HS:	0	0
NSP2	DM:	0	0
VSP	BM:	0	0
VSP	SM:	396	11880
TLP:		0	0

6428 Mbytes

Starfield Contingency:

Nominal starfield is starfield-220k. Rate contingency is starfield-58k. Comparison between the baseline and contingency is summarized below. Only the rates for NIR2 and MIR2 were altered. This was not actually run on the S/C during March 2008 functionals. It was designed on the simulator with sufficient instrument complement to predict correct loads.

	Baseline starfield-220k	Contingency starfield-58k
VIS	Off	Off
NIR1	Off	Off
NIR2	Rate=0.5 Hz	Rate=0.2 Hz
	Gain=1x	Gain=1x
	OPR 15, ENH: OFF, AGC:OFF, dur=10 min	OPR 15, ENH: OFF, AGC:OFF, dur=10 min
	OPR 15, ENH: ON, AGC:OFF, dur=10 min	OPR 15, ENH: ON, AGC:OFF, dur=10 min
	OPR 15, ENH: OFF, AGC:OFF, dur=20 min	OPR 15, ENH: OFF, AGC:OFF, dur=20 min
	Note: OPR15 has int=16.24ms	Note: OPR15 has int=16.24ms
MIR1	Off	Off
MIR2	Rate=0.5 Hz	Rate=0.2 Hz
	High Gain	High Gain
NSP1	Off	Off
NSP2	Off	Off
VSP	Single Mode	Single Mode
	Rate = 0.125 Hz	Rate = 0.125 Hz
	Int = 5 seconds	Int = 5 seconds
TLP	Off	Off
TADA	To be operated via ground command	To be operated via ground command

Contingency Starfield-58k Sequence Milestones: Last Updated: 2009-02-19

```
Start Simulation
length: full-length
slot: 6
filename: starfield-58k.cmd
```

msec	NVM	Msg		min:sec
0000000	0 6	ECHO:	Start Sequence	(000:00.00)
0000005	0 6	ECHO:	TLM_HSS_RATE :rate 58000	(000:00.05)
0000010	0 6	ECHO:	Mode: STARFIELD-58	(000:00.10)
0003360	0 6	ECHO:	Turn on MIR2	(000:33.60)
0003795	0 6	ECHO:	Turn on VSP	(000:37.95)
0017030	0 6	ECHO:	Activate TADA	(002:50.30)
0083255	0 6	ECHO:	NIR2 Enhancement ON	(013:52.55)
0143270	0 6	ECHO:	NIR2 Enhancement OFF	(023:52.70)
0321085	0 6	ECHO:	Expected Sequence End	(053:30.85)

Contingency Starfield-58k Observation Statistics: Last Updated: 2009-02-19

 Slot:
 6

 Filename:
 starfield-58k.cmd

 Elapsed Time:
 3210950 msec (53.52 min)

 PDS Data

 Instrument
 Counts

 VIS:
 0

 0
 0

 MIR1:
 0

 0
 0

 MIR2:
 636

 648
 1296000

 NSP1
 IF:

 0
 0

 NSP1
 0

 NSP1
 0

 0
 0

 NSP1
 0

 0
 0

 NSP1
 0

 0
 0

 NSP2
 0

 0
 0

 NSP2
 0

 0
 0

 NSP2
 0

 0
 0

 VSP
 BM:

 0
 0

 VSP
 SM:

 396
 11880

 TLP:
 0

2580 Mbytes

7.2 SWING-BY / CALIBRATION SEQUENCE GUIDELINES

Primary Goals:

- 1. Radiometric and spectral calibration all instruments
- 2. Determine instrument pointing relative to SC reference frame (Star Tracker)
- 3. Demonstrate SC "Science Mode" pointing control
- 4. Demonstrate "Final Hour" operation of all instruments.

Requirements:

- 1. Observation of lunar near side
- 2. Observations from the dark-side of the lunar terminator to the illuminated limb, with at least two "stares" with payload pointing drift rates of < 0.3 deg/sec
- 3. Crossing observations of the E-W and S-N lunar limb with payload pointing crossing rates of < 0.6 deg/sec (expected rate = 0.5 deg/sec)

Instruments and Specifications:

- 1. During nadir/ground viewing run instruments in curtain mode
- 2. During limb-crossing viewing:
 - a. NSP1: Flash mode with no decimation
 - b. VSP: Bracket Mode with tau = 0.2 sec, factor = 2
 - c. Vis Cam: Sample Rate to constrain pixel crossing to < 0.1 deg = drift rate/0.1 = 5 Hz.

Rate/Spec Summary:

Nadir/Ground: Per "Curtain" Mode

Limb-Crossings

Vis cam: 5 Hz NIR1 cam: off NIR2 cam: off MIR1 cam: 0.5 Hz, High Gain MIR2 cam: 0.5 Hz, High Gain TLP: 1000 Hz VSP: Bracket Mode with tau = 0.2 sec, factor = 2 NSP1: No Decimation, Flash mode NSP2: No Decimation, Flash mode

	Specified	Commanded (CPT)	Observed (CPT)	Deviations from Spec
VIS	Rate=1 Hz	Rate=0.816 Hz	0.79 Hz	(1)
NIR1	Rate=3 Hz	Rate=0.408 Hz	0.39 Hz	(1)
	OPR 8 and OPR	AGC:ON		(2)
	15	ENH:ENABLE OFF		
NIR2	Rate=3 Hz	Rate=0.408 Hz	0.40 Hz	(1)
	OPR 8 and OPR	AGC:ON		(2)
	15	ENH:ENABLE OFF		
MIR1	Rate=3 Hz	Rate=3 Hz	3.00 Hz	
	High Gain	High Gain		
MIR2	Rate=3 Hz	Rate=3 Hz	2.99 Hz	
	High Gain	High Gain		
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	
	Hadamard Mode	Hadamard Mode		
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	
	Hadamard Mode	Hadamard Mode		
VSP	Rate= <none></none>	Rate=0.5 Hz	0.50 Hz	(3)
	int=0.1, 0.2, 0.4	int=0.1, 0.2, 0.4 sec		
	sec			
TLP	Rate=1000 Hz	Rate=0 Hz	Off	(4)

Comparison of Specification to the SWINGBY-GROUND Sequence: Last Updated: 2008-04-28

Comparison of Specification to the SWINGBY-LIMB Sequence: Last Updated: 2008-04-28

	Specified	Commanded (CPT)	Observed (CPT)	Deviations from Spec
VIS	Rate=5 Hz	Rate=3.0 Hz	3.0 Hz	(5)
NIR1	Rate=0 Hz	2 context images AGC:ON ENH:ENABLE OFF	2 context images per position	(6)
NIR2	Rate=0 Hz	2 context images AGC:ON ENH:ENABLE OFF	2 context images per position	(6)
MIR1	Rate=0.5 Hz High Gain	2 context images High Gain	2 context images per position	(6)
MIR2	Rate=0.5 Hz High Gain	2 context images High Gain	2 context images per position	(6)
NSP1	Rate=72 Hz Flash Mode	Rate=72 Hz Flash Mode	Flash mode	
NSP2	Rate=1.7 Hz Hadamard Mode	Disabled	Disabled	(7)
VSP	Rate= <none> int=0.1, 0.2, 0.4 sec</none>	Rate=0.5 Hz int=0.1, 0.2, 0.4 sec	0.49 Hz int=0.1, 0.2, 0.4 sec	(8)
TLP	Rate=1000 Hz	Off	Off	(4)

Notes (Deviations from Specification):

- (1) The DHU cannot continuously take images with more than one camera without allocating a command sequence to control the camera. Command sequences are a limited resource and are shared between science modes. The command sequence used here to control VIS, NIR1 and NIR2 is also used during the impact sequence, and the rates are determined by bandwidth available at that time.
- (2) Image radiance in this situation will vary and has high uncertainty. The auto-gain mechanism on the NIR cameras was selected and the DHU periodically collects reports from the cameras to log the gain setting the cameras have adopted as a function of time.
- (3) The VSP rate was not clearly specified in the requirements. For swingby-ground, the rate is higher (faster) than curtain mode due to shorter exposure times. Swingby-ground-1000k and (preimpact-impact-1000k) curtain have VSP bracket rates at 0.5 Hz and 0.2 Hz, respectively.
- (4) The TLP will not be powered on during the swingby to reduce the number of power cycles it experiences.
- (5) 5 Hz did not fit within the downlink budget
- (6) NIR1, NIR2, MIR1 and MIR2 were changed to provide context images at the end of each limb crossing.
- (7) 'Disabled' means the instrument is powered but its telemetry packets are suppressed.
- (8) The VSP rate was unspecified in the requirements.

3 420		SWING PT 1000	AUTOGAIN	424	425	426	427	428	Stop	CHINE SHOW	f30		w (limb	,92 -°	**493	s_m43	siew to th	352	436	437	438	439-	Slew 4140	Limb	sew (imt	442-	siew.414mg	Eid M Eid Im
CLK	Ľ							'			'				- 1				1		1							· ·
VIS																										Ξ.	-	
NIR1														"														
NIR2																										Ι.		
MIR1														-"														
MIR2										- "		Ċ	۲	- 1											1			
NSP1													/															
NSP2																												
VSP		************		·····		******			****							*******								*****				
TLP				A						P																		

Swingby-1000k Observational Pattern: Last Updated: 2008-04-28

in the second seco

- (A) The ground phase is shortened in this run.
- (B) The red line to the left of B represents the transition between the swingby ground and limb phases.
- (C) The columns of double hash marks represent the context images taken with NIR1, NIR2, MIR1 and MIR2

Swingby-1000k Sequence Milestones: Last Updated: 2009-02-19

Start Simu	lation								
length: full-length									
slot:	9								
filename:	swingby-1000k-ground.cmd								
msec NV	/M Msg	min:sec							
00000000	9 ECHO: Start Sequence	(000:00.00)							
00000050	9 ECHO: TLM HSS RATE :rate 1000000	(000:00.05)							
00000100	9 ECHO: Mode: SWINGBY 1000 AUTOGAIN	(000:00.10)							

00003050	9	ECHO:	Mode: CURTAIN 1000 AUTOGAIN	(000:03.05)
01840050	8	ECHO:	Stop Other Sequences	(030:40.05)
01840150	8	ECHO:	Mode: Limb1_out	(030:40.15)
01870150	8	ECHO:	Limb_Slew (limb 1)	(031:10.15)
01900150	8	ECHO:	Limb1_in	(031:40.15)
01960150	8	ECHO:	Limb_Slew (limb 1)	(032:40.15)
01990150	8	ECHO:	Limb1_out	(033:10.15)
02050150	8	ECHO:	Limb_Slew (limb 1)	(034:10.15)
02080150	8	ECHO:	Limb1_in	(034:40.15)
02140150	8	ECHO:	5 minute slew to limb 2	(035:40.15)
02440150	8	ECHO:	Limb1 out	(040:40.15)
02470150	8	ECHO:	Limb Slew (limb 2)	(041:10.15)
02500150	8	ECHO:	Limb1_in	(041:40.15)
02560150	8	ECHO:	Limb_Slew (limb 2)	(042:40.15)
02590150	8	ECHO:	Limb1 out	(043:10.15)
02650150	8	ECHO:	Limb_Slew (limb 2)	(044:10.15)
02680150	8	ECHO:	Limb1_in	(044:40.15)
02740150	8	ECHO:	End limb 2	(045:40.15)
02740750	8	ECHO:	End LIMB 1000	(045:40.75)

Swingby-1000k Observation Statistics: Last Updated: 2009-02-19

Slot:		9		
Filenar	ne:	swingb	oy-1000k-	ground.cmd
Elapsed	d Time	: 274085	50 msec (45.68 min)
-			PDS Data	
Instrur	nent	Counts	Volume	Kbytes
VIS:		4293	4293000	
MIR1:		8232	493920	
MIR2	:	8223	493380	
NIR1:	:	724	1448000	
NIR2	:	724	1448000	
NSP1	IF:	65426	6543	
NSP1	HS:	3129	37548	
NSP1	DM:	0	0	
NSP2	IF:	0	0	
NSP2	HS:	3129	37548	
NSP2	DM:	0	0	
VSP	BM:	1360	122400	
VSP	SM:	0	0	
TLP:		0	0	

40303 Mbytes

4/8/2010

Swingby Contingency: Last Updated: 2009-02-19

Nominal swingby is swingy-1000k. Rate contingency is swingby-220k. Comparison between the baseline and contingency is summarized below.

	Baseline Swingby-ground-1000k	Contingency Swingby-ground-220k
VIS	Rate=0.816 Hz	Rate=0.119 Hz
NIR1	Rate=0.408 Hz	Rate=0.119 Hz
	AGC:ON; ENH:ENABLE OFF	
NIR2	Rate=0.408 Hz	Rate=0.119 Hz
	AGC:ON; ENH:ENABLE OFF	
MIR1	Rate=3 Hz; High Gain	Rate=0.2 Hz; High Gain
MIR2	Rate=3 Hz; High Gain	Rate=0.2 Hz; High Gain
NSP1	Rate=1.7 Hz; Hadamard Mode	Rate=1.7 Hz; Hadamard Mode
NSP2	Rate=1.7 Hz; Hadamard Mode	Rate=1.7 Hz; Hadamard Mode
VSP	Rate=0.5 Hz; int=0.1, 0.2, 0.4 sec	Rate=0.5 Hz; int=0.1, 0.2, 0.4 sec
TLP	Rate=0 Hz	Rate=0 Hz
	Baseline Swingby-limb-1000k	Contingency Swingby-limb-220k
VIS	Rate=3.0 Hz	Rate=0.5 Hz
NIR1	2 context images	2 context images
	AGC:ON; ENH:ENABLE OFF	AGC:ON; ENH:ENABLE OFF
NIR2	2 context images	2 context images
	AGC:ON; ENH:ENABLE OFF	AGC:ON; ENH:ENABLE OFF
MIR1	2 context images	2 context images
	High Gain	High Gain
MIR2	2 context images	2 context images
	High Gain	High Gain
NSP1	Rate=72 Hz	Rate=72 Hz
	Flash Mode	Flash Mode
NSP2	Disabled	Disabled
VSP	Rate=0.5 Hz	Disabled
	int=0.1, 0.2, 0.4 sec	
TLP	Off	Off

Swingby Contingency Sequence Milestones: Last Updated: 2009-02-19

```
Start Simulation
 length: full-length
 slot:
                     6
 filename: swingby-220k-ground.cmd
msec NVM Msg
                                                                                                                                  min:sec

        00000000
        6 ECHO: Start Sequence
        (000:00.00)

        00000050
        6 ECHO: TLM_HSS_RATE :rate 220000
        (000:00.05)

        00000100
        6 ECHO: Mode: SWINGBY 220 AUTOGAIN
        (000:00.10)

        00003050
        6 ECHO: Mode: CURTAIN 220 AUTOGAIN
        (000:03.05)

        01840050
        5 ECHO: Stop Other Sequences
        (030:40.05)

        01840150
        5 ECHO: Mode: Limb1_out
        (030:40.15)

        01870150
        5 ECHO: Limb_Slew (limb 1)
        (031:10.15)

        01900150
        5 ECHO: Limb1_in
        (031:10.15)

 01900150 5 ECHO: Limb1 in
                                                                                                                                  (031:40.15)
                                                                                                                                  (032:40.15)
 01960150 5 ECHO: Limb Slew (limb 1)
 01990150 5 ECHO: Limb1 out
                                                                                                                                    (033:10.15)
 02050150 5 ECHO: Limb_Slew (limb 1)
02080150 5 ECHO: Limb1_in
                                                                                                                                     (034:10.15)
                                                                                                                                     (034:40.15)
```

5	ECHO:	5_minute_slew to limb 2	(035:40.15)
5	ECHO:	Limb1 out	(040:40.15)
5	ECHO:	Limb Slew (limb 2)	(041:10.15)
5	ECHO:	Limb1_in	(041:40.15)
5	ECHO:	Limb Slew (limb 2)	(042:40.15)
5	ECHO:	Limb1_out	(043:10.15)
5	ECHO:	Limb_Slew (limb 2)	(044:10.15)
5	ECHO:	Limb1_in	(044:40.15)
5	ECHO:	End limb 2	(045:40.15)
5	ECHO:	End LIMB 220	(045:40.75)
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	 5 ECHO: 	<pre>5 ECHO: 5_minute_slew to limb 2 5 ECHO: Limb1_out 5 ECHO: Limb_Slew (limb 2) 5 ECHO: Limb1_in 5 ECHO: Limb1_out 5 ECHO: Limb1_out 5 ECHO: Limb1_in 5 ECHO: Limb1_in 5 ECHO: End limb 2 5 ECHO: End LIMB 220</pre>

Swingby Contingency Observation Statistics: Last Updated: 2009-02-19

Slot:		6		
Filenar	ne:	swing	by-220k-g:	round.cmd
Elapsed	d Tir	ne: 27408	50 msec (45.68 min)
			PDS Data	
Instrur	nent	Counts	Volume	Kbytes
VIS:		650	650000	
MIR1	:	560	33600	
MIR2	:	559	33540	
NIR1		227	454000	
NIR2	:	227	454000	
NSP1	IF:	65422	6542	
NSP1	HS:	3129	37548	
NSP1	DM:	0	0	
NSP2	IF:	0	0	
NSP2	HS:	3129	37548	
NSP2	DM:	0	0	
VSP	BM:	910	81900	
VSP	SM:	0	0	
TLP:		0	0	
			3960	Mbytes

7.3 MOON/EARTH LOOK SEQUENCE GUIDELINES

Assumptions:

- 1. SC drift rate during measurement = 0.3 deg/sec
- 2. SC in "science" pointing/control mode

Primary Goals:

- 1. Calibration of spectrometers
- 2. Instrument health check
- 3. Contamination check

Requirements / Measurements:

- 1. Observe the moon from a distance between 100,000 km (lunar angle \sim 2 deg) and 200,000 km (lunar angle \sim 1 deg).
- 2. Observe the moon with all instruments.
- 3. Telemetry rate < 220 kbps

Instruments and Specifications:

- 1. Visible camera running at rate sufficient to track lunar edge between images to 0.1 deg: for a SC drift rate of 0.3 deg/sec, this is \sim 3 Hz
- 2. NIR camera IFOV ~0.1 deg: thus NIR cam integration should be < 0.3 sec, sample rate about 1/3 that of the visible camera (ratio of IFOVs ~3)
- 3. VSP at "nominal" rate
- 4. NSP sampled in Hadamard mode

Rate/Spec Summary:

Vis cam: 3 Hz NIR1 cam: 1 Hz, integration ~0.08 sec (OPR 12) (TBR) NIR2 cam: 1 Hz, integration ~0.05 sec (OPR 8) (TBR) MIR1 cam: sample rate = 0.5 Hz MIR2 cam: sample rate = 0.5 Hz TLP: 1000 Hz VSP: Bracket Mode with tau = 0.5 sec, factor = 5 NSP1: No Decimation, Hadamard mode NSP2: No Decimation, Hadamard mode

Notes:

A single sequence has been prepared for both the earth looks and the moon looks (called EARTHMOON). Two versions of this sequence have been prepared to fit within 29K and 60K downlink budgets (EARTHMOON_29K and EARTHMOON_60K). Each EARTHMOON sequence combines an instrument health check (shortened quicklook) with instrument function and boresight calibration. The sequence (designed in March 2009) has three phases (1) shortened quicklook, (2) camera sleep (during a slew maneuver to bring the Earth/Moon into view, and (3) Alignment (a series of N-S then E-W operations with controlled stares at center, a pattern repeated 2x).

The boresight calibration is expected to involve sweeping the instrument boresight across the Earth or Moon in the pattern shown below. The solid circle represents the Earth (blue) or Moon (orange) and the dashed circle represents the NSP1 field-of-view (green). The drawing reflects their relative sizes for a 400,000 km distance calibration. The arrows show the movement of the boresight (NSP1) axis, moving 3 degree full swing, or 1.5 degree off-center. Center is defined at points 1,4, & 7. The 1-degree NSP1 field-of-view is expected to move completely off the target at points 2,3,5, & 6. The target will stay well-within the VIS/NIR/MIR camera's field of view at all times. The Moon (dia. \sim 0.5 deg) is expected to under fill the 1deg NSP1/FOV for this distance.

Figure 1. NSP1 FOV (dotted green circles) superimposed on the Earth (blue circle) or Moon (orange circle) for a 400,000 km Earthmoon look along with a representative pattern of slews and relative direction and lengths of slews drawn to proportion.

Figure 2. Two camera FOVs arranged to be co-centered (there are offsets in practice, but on order of a few pixels) with the NSP1 FOV (dotted green circles) center for the same scene in Figure 1. This figure shows that the Earth/Moon will be well captured within the Cameras for the duration of the sequence.

6

Comparison of Specification to the EARTHMOON_29K Sequence: Last Updated 2009-03-09

	Specified	Commanded	Observed	Commanded	Deviations from		
	-	(3/08 Funct.)	(3/08 Funct)	(3/9/09 Ver.)	Spec		
	Mini-Ouicklook ~9 minutes (a)						
VIS	Rate=3 Hz	Rate=0.816 Hz	0 79 Hz	0 12 Hz	(1)		
115		1000 0.010 112	0.79 112	Duration: 60 s	(1)		
NIR1	Rate=1 Hz	Rate=0 408 Hz	0 39 Hz	0 3 Hz	(1)		
1,1111	OPR 8 and OPR	AGC'ON	0.57 112	Setup 15s	(1) (2)		
	15	ENH:ENABLE		OPR6. 15s	(-)		
	-	OFF		Duration: ~30s			
NIR2	Rate=1 Hz	Rate=0.408 Hz	0.40 Hz	0.3 Hz	(1)		
	OPR 8 and OPR	AGC:ON		Setup, 15s	(2)		
	15	ENH:ENABLE		OPR6, 15s			
		OFF		Duration: ~30s			
MIR1	Rate=3 Hz	Rate=3 Hz	3.00 Hz	0.07Hz			
	High Gain	High Gain		HiGain			
	C	0		LoGain			
				Duration: 120s			
MIR2	Rate=3 Hz	Rate=3 Hz	2.99 Hz	0.07Hz			
	High Gain	High Gain		HiGain			
	-	-		LoGain			
				Duration: 120s			
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	IF: 72.2Hz, 30s			
	Hadamard Mode	Hadamard		DM: 145 Hz, 5s			
		Mode		HS: 1.7Hz, 30s			
				Duration: 65s			
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	IF: 72.2Hz, 10s			
(a)	Hadamard Mode	Hadamard		DM: 145 Hz, 5s			
		Mode		HS: 1.7Hz, 30s			
				Duration: 45s			
VSP	Rate= <not< td=""><td>Rate=0.5 Hz</td><td>0.50 Hz</td><td>0.2 Hz/int=0.1, 0.5,</td><td>(3)</td></not<>	Rate=0.5 Hz	0.50 Hz	0.2 Hz/int=0.1, 0.5,	(3)		
	specified>	nt=0.1, 0.2, 0.4		2.5s, for 30s			
	1nt=0.1, 0.2, 0.4	sec		1.3 Hz/int=0.4s, for 20s			
	sec	D A A H	0.00	Duration: ~82s			
ILP	Rate=1000 Hz	Rate=0 Hz	Off	Uff	(4)		
LUC	Cam	iera Sleep (during I	Large Slew to	\circ 1 arget) ~ 10 minutes			
VIS				0.12 Hz for ~ 2.5 min			
				Gap for ~ 2.5 min			
				0.12 HZ IOF ~2.5 min			
NIDO				Gap for 2.5 min			
INIK2				$\Delta GC:ON$ for 2.5 min			
				Gap for 2.5 min			
				$\Delta GC:ON$ for 2.5 min			
MIR2				0.07 Hz for 10 min			
IVIII\Z	Alignment (Store	Slew N-S Center	Stare Slow	$\frac{10.071121011011011111}{\text{F-W-Center Stare v2} - 20}$	minutes		
VIS			Stare, Siew	2 snaps at Position 1.4.7	minutes		
NIR1				2 snaps at 1 ostitoli 1,4,7			
				OPR6 @ Position 1			
				OPR9 @ Position 4			
				AGC:ON @ Position 7			
NIR2				OPR6 @ Position 1			
				OPR9 @ Position 4			

	AGC:ON @ Position 7
MIR1	2 snaps per Position
	1,4,7 separated by 6s
MIR2	2 snaps per Position
	1,4,7 separated by 6s
VSP	0.1 Hz/int=0.1,0.5,2.5
NSP1	IF: 5Hz during slews
	HS: 0.425 Hz during
	stare
NSP2	Off

Notes:

(a) The order for powering the instruments is slightly different from Quicklook. For EarthMoon they are in order: VIS, NIR1, NIR2, VSP, MIR1, MIR2, NSP2, and NSP1, keeping each instrument on after being powered EXCEPT NSP2 which is turned off after its quicklook operation. The TLP is not powered during this sequence

Notes (Deviations from Specification):

- 1. The DHU cannot continuously take images with more than one camera without allocating a command sequence to control the camera. Command sequences are a limited resource and are shared between science modes. The command sequence used here to control VIS, NIR1 and NIR2 is also used during the impact sequence, and the rates are determined by bandwidth available at that time.
- 2. Image radiance in this situation will vary and has high uncertainty. The auto-gain mechanism on the NIR cameras was elected, along with key OPR 6/9 settings and the cameras report periodically what gain setting they are using.
- 3. The VSP rate was unspecified in the requirements.
- 4. The TLP will not be powered on during the swingby to reduce the number of power cycles it experiences.
- 5. 5 Hz did not fit within the downlink budget.
- 6. NIR1, NIR2, MIR1 and MIR2 were changed to provide context images at the end of each limb crossing.
- 7. 'Disabled' means the instrument is powered but its telemetry packets are suppressed.

Lui million 2/K Obser varion						
State Hole Weige State (1997) 1990 (1997) 56 100 (1997) 1991 1991 1991 1991 1991 1991 1991	Start OSI Early Roll 4 15 16 17 18 star	g Sant Piter Horizan Sant Piter 15 militaria Jan Barr Sont gasit 15	stanna il Ban Kony Spit Yangasti Seferit Anister i Sin Stan Spit Se	n start værvisterna i i Ean Points Weitigstart i Stal Starten Milster 45 m	start Provinceingen Scient Providenzeite Baren (kollego Stana Javin gelen Schol potert (1914) Stev Barin (Kollego (185	kan vagan de kan vagasaget i an log i
CLK						
NIR2						
MRI	6 6 F					
MR2						
				Language of the second s	Accesses by	
ASP1						-
NSP1 B NSP2 B NSP2 B						
KSPI						
KSP KSP VSP TP	С	D1	E1 F	G1	D2 E2	F2 G2
	C	D1	E1 F	G1	D2 E2	F2 G2

Earthmoon-29k Observation Pattern: Last Updated 2009-03-09

Notes: The pattern above is missing NIR1, MIR1 and NSP2. This is because this sequence was developed on the PL simulator that did not have a complete instrument complement.

(A) A shortened quicklook sequence (with a reverse in NSP2 and NSP1 order).

(B) During a slew towards the Earth/Moon where the Earth/Moon might be captured in the largest FOVs (VIS and NIR2/AGC:On are chosen to cover a large dynamic range). MIR2 is also streaming images. The other instruments, although powered, are having their data streamed from the DHU.

(C) Alignment portion of this sequence begins here with a 7-minute stare at Position 1. The 5 cameras have snapshots taken at 3 points.

(D1, D2) Slewing to the North, then South (through center) to Center. Only NSP1 and VSP data is taken throughout.

(E1, E2) Stare at Position 4 after a N/S slew. Snapshots with the 5 cameras are resumed. NSP1 and VSP data taken throughout.

(F1, F2) Slewing to the East then West(through center) to Center. Only NSP1 and VSP data is taken throughout.

(G1, G2) Stare at Position 7 after a E/W slew. Snapshots with the 5 cameras are resumed. NSP1 and VSP data taken throughout.

Earthmoon-29k Sequence Milestones: Last Updated 2009-03-09

Start Sim	เน	lation					
length:	2	full-length					
slot:	6						
filename:	6	earthmc	on-29k.cmd				
msec N	IVI	4 Msg			min:sec		
	•						
000000000		6 ECHO:	Start Seque	ence	(000:00.00)		
00000050		6 ECHO:	TLM_HSS_RAT	TE :rate 29000	(000:00.05)		
00000100		6 ECHO:	Mode: EARTH	IMOON 29	(000:00.10)		
00000150		6 ECHO:	Mode: VIS		(000:00.15)		
00060950		6 ECHO:	Mode: NIR1		(001:00.95)		
00093350		6 ECHO:	Mode: NIR2		(001:33.35)		
00125750		6 ECHO:	Mode: VSP		(002:05.75)		
00207600		6 ECHO:	Mode: MIR1		(003:27.60)		
00336300		6 ECHO:	Mode: MIR2		(005:36.30)		
00465000		6 ECHO:	Mode: NSP2		(007:45.00)		
00510350		6 ECHO:	Mode: NSP1		(008:30.35)		
00575700		6 ECHO:	Mode: Camer	ra Sleep	(009:35.70)		
01236700		6 ECHO:	Mode: ALIGN	JMENT	(020:36.70)		
01239950	6	ECHO:	Start:	DB1 Earth Point	(020:39.95)		
----------	---	-------	---------	--------------------------	-------------		
01659950	6	ECHO:	Start:	1.5 min Slew North p3	(027:39.95)		
01749950	6	ECHO:	Start:	Pitch North p3	(029:09.95)		
01750950	6	ECHO:	Start:	3_min_Slew_South_p3	(029:10.95)		
01929950	6	ECHO:	Start:	Pitch South p3	(032:09.95)		
01930950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(032:10.95)		
02019950	6	ECHO:	Start:	DB1_Earth_Point	(033:39.95)		
02139950	6	ECHO:	Start:	1.5_min_Slew_East_p3	(035:39.95)		
02229950	6	ECHO:	Start:	Yaw_East_p3	(037:09.95)		
02230950	6	ECHO:	Start:	3_min_Slew_West_p3	(037:10.95)		
02409950	6	ECHO:	Start:	Yaw_West_p3	(040:09.95)		
02410950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(040:10.95)		
02499950	6	ECHO:	Start:	DB1_Earth_Point	(041:39.95)		
02619950	6	ECHO:	Start:	1.5_min_Slew_North_p3	(043:39.95)		
02709950	6	ECHO:	Start:	Pitch_North_p3	(045:09.95)		
02710950	6	ECHO:	Start:	3_min_Slew_South_p3	(045:10.95)		
02889950	6	ECHO:	Start:	Pitch_South_p3	(048:09.95)		
02890950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(048:10.95)		
02979950	6	ECHO:	Start:	DB1_Earth_Point	(049:39.95)		
03099950	6	ECHO:	Start:	1.5_min_Slew_East_p3	(051:39.95)		
03189950	6	ECHO:	Start:	Yaw_East_p3	(053:09.95)		
03190950	6	ECHO:	Start:	3_min_Slew_West_p3	(053:10.95)		
03369950	6	ECHO:	Start:	Yaw_West_p3	(056:09.95)		
03370950	6	ECHO:	Start:	1.5_min_Slew_Earth_Point	(056:10.95)		
03459950	6	ECHO:	Start:	DB1_Earth_Point	(057:39.95)		
03580450	6	ECHO:	End Sec	quence	(059:40.45)		

Earthmoon-29k Observation Statistics: Last Updated 2009-03-09

Slot:	6		
Filename:	earthmo	on-29k.c	cmd
Elapsed Time:	3580550	msec (5	59.68 min)
-	P	DS Data	
Instrument	Counts	Volume	Kbvtes
			1
VIS:	58	58000	
MIR1:	3260	195600	
MIR2:	2559	153540	
NIR1:	24	48000	
NIR2:	60	120000	
NSP1 IF:	9640	964	
NSP1 HS:	439	5268	
NSP1 DM:	100	10	
NSP2 IF:	724	72	
NSP2 HS:	52	624	
NSP2 DM:	100	10	
VSP BM:	241	21690	
VSP SM:	20	600	
TLP:	0	0	
		11293	Mhutos

11893 Mbytes

Earthmoon Higher Rate: Last Updated 2009-03-09

There are two possible rates for Earthmoon, 29k and 60k. Comparison between the two is summarized below. Changes are indicated with bold.

	Earthmoon 29k	Earthmoon 60k
	(3/9/09 Ver.)	(3/9/09 Ver.)
	Mini-Quicklook	~9 minutes (a)
VIS	0.12 Hz, Total Duration: 60 s	0.12 Hz, Total Duration: 60 s
NIR1	0.3 Hz, Setup, 15s, OPR6, 15s	0.3 Hz, Setup, 15s, OPR6, 15s
	Total Duration: ~30s	Total Duration: ~30s
NIR2	0.3 Hz, Setup, 15s, OPR6, 15s	0.3 Hz, Setup, 15s, OPR6, 15s
	Total Duration: ~30s	Total Duration: ~30s
MIR1	0.07Hz, HiGain, 60s, LoGain, 60s	0.07Hz, HiGain, 60s, LoGain, 60s
	Total Duration: 120s	Total Duration: 120s
MIR2	0.07Hz, HiGain, 60s, LoGain, 60s	0.07Hz, HiGain, 60s, LoGain, 60s
	Total Duration: 120s	Total Duration: 120s
NSP1	IF: 72.2Hz, 30s	IF: 72.2Hz, 30s
	DM: 145 Hz, 5s	DM: 145 Hz, 5s
	HS: 1.7Hz, 30s	HS: 1.7Hz, 30s
	Duration: 65s	Duration: 65s
NSP2	IF: 72.2Hz, 10s	IF: 72.2Hz, 10s
(a)	DM: 145 Hz, 5s	DM: 145 Hz, 5s
	HS: 1.7Hz, 30s	HS: 1.7Hz, 30s
	Duration: 45s	Duration: 45s
VSP	0.2 Hz/int=0.1, 0.5, 2.5s, for 30s	0.2 Hz/int=0.1, 0.5, 2.5s, for 30s
	1.3 Hz/int=0.4s, for 20s	1.3 Hz/int=0.4s, for 20s
	Duration: ~82s	Duration: ~82s
TLP	Off	Off
	Camera Sleep (during Large S	lew to Target) ~ 10 minutes
VIS	0.12 Hz for ~2.5 min	0.23 Hz for ~2.5 min
	Gap for ~2.5 min	Gap for ~2.5 min
	0.12 Hz for ~2.5 min	0.23 Hz for ~ 2.5 min
	Gap for ~2.5 min	Gap for ~2.5 min
NIR2	Gap for 2.5 min	0.23 Hz/AGC:ON for ~2.5 min
	0.12 Hz/AGC:ON for 2.5 min	Gap for ~2.5 min
	Gap for 2.5 min	0.23 Hz/AGC:ON for ~ 2.5 min
) (ID)	0.12Hz/AGC:ON for 2.5 min	Gap for ~2.5 min
MIR2	0.07 Hz for 10 min	0.125 Hz for 10 min
LIIG	Alignment (Stare, Slew N-S-Center, Stare, S	Slew E-W-Center, Stare, x2) ~39 minutes
VIS	2 snaps at Position 1,4,7	2 snaps at Position 1,4,7
NIRI	2 snaps each at:	2 snaps each at: $(2 - 2) = 1$
	OPR6 (a) Position 1	OPR6 (a) Position 1
	OPR9 (a) Position 4	OPR9 (a) Position 4
	AGC:ON (a) Position /	AGC: ON @ Position /
NIR2	OPR6 (a) Position 1 OPR0 \odot Position 4	OPR6 (a) Position 1
	OPR9 (a) Position 4	OPR9 @ Position 4
MID 1	AUC.ON (# POSITION /	AUC.ON (<i>W</i> POSITION /
MIRI	2 snaps per Position 1,4,7 separated by 6s	2 snaps per Position 1,4,7 separated by 6s
MIK2	2 snaps per Position 1,4,7 separated by 6s	2 snaps per Position 1,4, / separated by 6s
VSP	U.1 HZ/INT=U.1,U.5,2.5	U.10 HZ/INT= U.1,U.5,2.5
NSPI	IF: SHZ during slews (skip 13)	IF: IUHZ during slews (skip 6)
	(Note there is a 5 Hz IF mode before	(Note there is a 5 Hz IF mode before Position1)
	Position1)	H5: U.85 Hz during stare (skip 2)
NODA	H5: 0.425 HZ during stare (Skip 3)	
INSP2	UII	

Comparison of Earthmoon_60k to Earthmoon_29k: Last Updated 2009-03-09

Earthmoon-60k Observation Pattern: Last Updated 2009-03-09

Statistical international state and the state of the stat	Bant Dity Gart Anni 23 24 25 26	77 20 Standiti Kori 0324 Stati 124 Stateswii 200 Sep	staritti santit kenta Starifis in Siv Sin Kin	dit og Stattan Badal og Att 199 Stattaningsan Hels	Sagnan Neterlitik fan heit Sal 15 of San Ben Heiter	H	i Second prest part 52 S in Sec Sec Joseph 1946	arran Baylal poʻStarran Matadologian Aqui Metala pila Metalari 45 n. San San Ashiris
				description of a log		1.1.1.1.1.1.		
NR2								
MR			2					
MP2	A B BOT		_		- 1 ⁰			
NSP1								
NSP2								
VSP								
TLP								
	In a calculation	and and the	ILL LLLL		lan ad da	dadadada	Halutt	and a state of the

Notes: The pattern above is missing NIR1, MIR1 and NSP2. This is because this sequence was developed on the PL simulator that did not have a complete instrument complement.

Earthmoon-60k Sequence Milestones: Last Updated 2009-03-09

Start Simulation
length: full-length
slot: 6
filename: earthmoon-60k.cmd

msec	NVM	Msg		min:sec
0000000	06	ECHO:	Start Sequence	(000:00.00)
0000005	0 6	ECHO:	TLM_HSS_RATE :rate 60000	(000:00.05)
0000010	0 6	ECHO:	Mode: EARTHMOON 60	(000:00.10)
0000015	0 6	ECHO:	Mode: VIS	(000:00.15)
0006095	0 6	ECHO:	Mode: NIR1	(001:00.95)
0009335	0 6	ECHO:	Mode: NIR2	(001:33.35)
0012575	0 6	ECHO:	Mode: VSP	(002:05.75)
0020760	0 6	ECHO:	Mode: MIR1	(003:27.60)
0033630	0 6	ECHO:	Mode: MIR2	(005:36.30)
0046500	0 6	ECHO:	Mode: NSP2	(007:45.00)
0051035	0 6	ECHO:	Mode: NSP1	(008:30.35)
0057570	0 6	ECHO:	Mode: Camera Sleep	(009:35.70)
0123670	0 6	ECHO:	Mode: ALIGNMENT	(020:36.70)
0123995	0 6	ECHO:	Start: DB1_Earth_Point	(020:39.95)
0165995	0 6	ECHO:	Start: 1.5_min_Slew_North_p3	(027:39.95)
0174995	0 6	ECHO:	Start: Pitch_North_p3	(029:09.95)
0175095	0 6	ECHO:	<pre>Start: 3_min_Slew_South_p3</pre>	(029:10.95)
0192995	0 6	ECHO:	Start: Pitch_South_p3	(032:09.95)
0193095	0 6	ECHO:	Start: 1.5_min_Slew_Earth_Point	(032:10.95)
0201995	0 6	ECHO:	Start: DB1_Earth_Point	(033:39.95)
0213995	0 6	ECHO:	Start: 1.5_min_Slew_East_p3	(035:39.95)
0222995	0 6	ECHO:	Start: Yaw_East_p3	(037:09.95)
0223095	0 6	ECHO:	<pre>Start: 3_min_Slew_West_p3</pre>	(037:10.95)
0240995	0 6	ECHO:	Start: Yaw_West_p3	(040:09.95)
0241095	0 6	ECHO:	Start: 1.5_min_Slew_Earth_Point	(040:10.95)
0249995	0 6	ECHO:	Start: DB1_Earth_Point	(041:39.95)
0261995	0 6	ECHO:	Start: 1.5_min_Slew_North_p3	(043:39.95)
0270995	0 6	ECHO:	Start: Pitch_North_p3	(045:09.95)
0271095	0 6	ECHO:	Start: 3_min_Slew_South_p3	(045:10.95)
0288995	0 6	ECHO:	Start: Pitch_South_p3	(048:09.95)

02890950	6 ECHO:	Start:	1.5 min Slew Earth Point	(048:10.95)
02979950	6 ECHO:	Start:	DB1 Earth Point	(049:39.95)
03099950	6 ECHO:	Start:	1.5 min Slew East p3	(051:39.95)
03189950	6 ECHO:	Start:	Yaw_East_p3	(053:09.95)
03190950	6 ECHO:	Start:	3 min Slew West p3	(053:10.95)
03369950	6 ECHO:	Start:	Yaw West p3	(056:09.95)
03370950	6 ECHO:	Start:	1.5 min Slew Earth Point	(056:10.95)
03459950	6 ECHO:	Start:	DB1 Earth Point	(057:39.95)
03580450	6 ECHO:	End Se	quence	(059:40.45)

Earthmoon-60k Observation Statistics: Last Updated 2009-03-09 Slot: 6

SICC.		0		
Filenar	ne:	earthr	noon-60k.c	cmd
Elapsed	1 Tim	e: 358055	50 msec (5	59.68 min)
-			PDS Data	
Instrur	nent	Counts	Volume	Kbytes
VIS:		94	94000	
MIR1:	:	3260	195600	
MIR2:	:	2592	155520	
NIR1:	:	24	48000	
NIR2:	:	96	192000	
NSP1	IF:	16639	1664	
NSP1	HS:	567	6804	
NSP1	DM:	100	10	
NSP2	IF:	724	72	
NSP2	HS:	52	624	
NSP2	DM:	100	10	
VSP	BM:	397	35730	
VSP	SM:	20	600	
TLP:		0	0	

12084 Mbytes

7.4 CENTAUR SEPARATION SEQUENCE GUIDELINES

Assumptions:

- SC slew rate = 0.5 deg/sec
- Possible cold-ops: T<0 C

Primary Goals:

1. Monitor Centaur separation from SC to measure separation and tumble rates

Requirements:

- 1. Want to image at visible and IR wavelengths as rapidly as possible.
- 2. Telemetry rate < 220 kbps

Instruments and Specifications:

- 1. Visible camera running at maximum allowable rate
- 2. MIR camera (unfiltered) running at maximum allowable rate
- 3. TLP also on looking for flashes from the Centaur

Rate/Spec Summary:

Vis cam: 5 Hz NIR1 cam: off NIR2 cam: off MIR1 cam: off MIR2 cam: sample rate = 5 Hz TLP: 1000 Hz VSP: off NSP1: off NSP2: off

	Specified	Commanded	Observed	Deviations
		(3/08 Functionals)	(Funct./ORT6) [a]	from Spec
VIS	Rate=5 Hz	Rate=0.816 Hz	0.81 Hz	(1)
			Total: 584 (Funct)	
			Total: 632 (ORT6)	
NIR1	Off	Off	Off	
NIR2	Off	Off	Off	
MIR1	Off	Off	Off	
MIR2	Rate=5 Hz	Rate=0.8 Hz	0.81 Hz	(1)
	High Gain	High Gain	Total: 582 (Funct)	
			Total: 697 (ORT6)	
NSP1	Off	Off	Off	
NSP2	Off	Off	Off	
VSP	Off	Off	Off	
TLP	Rate=1000 Hz	Off	Off	(2)

Comparison of Specification to the SEPARATION Sequence: Last Updated: 2009-03-06

Notes:

[a] In actual flight, the cameras will be kept on until the decision is made to turn them off or 1 hour after power up, whichever comes first. Therefore, the total number of VIS and MIR2 images will alter accordingly.

[b] In actual flight, the VIS camera will be powered on immediately after DHU turn on, but before the separation sequence. VIS is set to run with Rate=0.12 Hz (typical VIS rate for DHU at 29k). Once the S/C rate has been set to 246KHZ (DHU at 220k), then separation-220k is initiated.

Notes (Deviation from Specification):

- 1. VIS & MIR2 Cannot fit 5 Hz into the bandwidth.
- 2. The TLP is no longer part (powered) of this sequence. This is to minimize TLP power cycles during mission.

Separation-220k Observation Pattern: Last Updated 2008-04-24

Separation-220k Sequence Milestones: Last Updated 2008-04-24

```
Start Simulation
length: full-length
slot: 5
filename: separation-220k.cmd
```

msec	NVM	Msg			min:sec
00000000) 5	ECHO:	Start	Sequence	(000:00.00)
00000100) 5	ECHO:	Mode:	SEPARATION 220	(000:00.10)
01236250) 5	ECHO:	After	nominal delay	(020:36.25)

Separation-220k Observation Statistics: Last Updated 2008-04-24

Slot:		5		
Filenar	ne:	separa	ation-2201	k.cmd
Elapsed	d Time:	123635	50 msec (2	20.61 min)
			PDS Data	
Instrur	nent	Counts	Volume	Kbytes
VIS:		1012	1012000	
MIR1:	:	0	0	
MIR2:	:	1002	60120	
NIR1:	:	0	0	
NIR2:	:	0	0	
NSP1	IF:	0	0	
NSP1	HS:	0	0	
NSP1	DM:	0	0	
NSP2	IF:	0	0	
NSP2	HS:	0	0	
NSP2	DM:	0	0	
VSP	BM:	0	0	
VSP	SM:	0	0	
TLP:		0	0	
			3016	Mbytes

In actual flight, the cameras will be kept on until the decision is made to turn them off or 1 hour after power up, whichever comes first. Therefore, the total number of VIS and MIR2 images will alter accordingly, as the above simulation is for 20 minutes.

In actual flight, the VIS camera will be powered on immediately after DHU turn on, but before the separation sequence. VIS is set to run with Rate=0.12 Hz (typical VIS rate for DHU at 29k). Once the S/C rate has been set to 246KHZ (DHU at 220k), then separation-220k is initiated. Therefore there are additional VIS images from this early-glimpse period.

Separation Contingency: Last Updated: 2009-03-06

Nominal separation is separation-220k. Rate contingency is separation-58k. Comparison between the baseline and contingency is summarized below.

	Baseline separation-220k	Contingency separation-58k
VIS	Rate=0.816 Hz	Rate= TBR
NIR1	Off	Off
NIR2	Off	Off
MIR1	Off	Off
MIR2	Rate=3 Hz	Rate=TBR
	High Gain	High Gain
NSP1	Off	Off

NSP2	Off	Off
VSP	Off	Off
TLP	Off	Off

Separation Contingency Sequence Milestones: Last Updated: 2009-03-06 <not done yet>

Separation Contingency Observation Statistics: Last Updated: 2009-03-06 <not done yet>

7.5 PREIMPACT AND THE FINAL HOUR OF OPERATIONS

The final hour of the mission contains four mission periods: pre-impact, flash, curtain and crater. These periods are implemented on the DHU via two command sequences, preimpact and impact. The final hour is split into two sequences to facilitate managing anomalies from the ground. Each of these two sequences comes in two versions that differ by bandwidth: preimpact_1000k, preimpact_220k, impact_1000k and impact_220k.

	Specified	Commanded	Observed	Deviations from
	speemed	(CPT)	(CPT/TVAC)	Snec
VIS	None given	Rate=0.816 Hz	0.82 Hz	Spee
VID 1	None given			
NIKI	None given	Rate=0.408 Hz	0.41 HZ	
		OPR 6		
		ENH:ENABLE OFF		
NIR2	None given	Rate=0.408 Hz	0.41 Hz	
		OPR 6		
		ENH:ENABLE OFF		
MIR1	None given	Rate=3 Hz	3.00 Hz	
		High Gain		
MIR2	None given	Rate=3 Hz	3.00 Hz	
		High Gain		
NSP1	None given	Rate=1.7 Hz	IF for 155 s then	
		Hadamard Mode	DM for 60 s then	
			HS @ 1.69 Hz	
NSP2	None given	Rate=1.7 Hz	IF for 155 s then	
		Hadamard Mode	DM for 60 s then	
			HS @ 1.69 Hz	
VSP	None given	Rate=0.2 Hz	0.20 Hz	
		int=0.1, 0.5, 2.5 sec	int=0.1, 0.5, 2.5 sec	
TLP	None given	Rate=1000 Hz	(1000 Hz)	(1)

Comparison	of S	pecification	to the	PREIMPA	ACT Sequence:
------------	------	--------------	--------	---------	----------------------

Notes (Deviations from Specification):

1. For flight, the TLP is powered on 20 minutes before the start of the impact sequence, not at the beginning of the preimpact sequence. This is achieved within the preimpact-1000k and also by a command from the ground (via the ATS). During instrument testing (CPT/TVAC) the TLP was not exercised within a DHU sequence, only powered separately for aliveness check. End2End testing (2009-02-27) is the only pre-flight test run with the entire correct complement.

Preimpact-impact-1000k Observational Pattern: Last Updated 2008-04-24

Notes:

- (A) Instrument initialization and checkout
- (B) Long period of instrument operations in curtain mode
- (C) Flash mode
- (D) Curtain mode
- (E) Crater mode

Impact-1000k Observation Pattern: Last Updated 2008-04-24

This figure gives an overview of the impact observation timeline. The beginning of each phase (flash, curtain, crater and S-S/C impact) is shown. (Impact here means impact of the shepherding spacecraft.) Figures below zoom in on each phase.

Preimpact-impact-1000k Sequence Milestones: Last Updated 2009-02-19

Start Simulation length: full-length slot: 1 filename: preimpact-1000k.cmd

msec	NVM	Msg		min:sec
0000000	0 1	ECHO:	Start Sequence	(000:00.00)
0000005	0 1	ECHO:	ver impact-1000k 2008-11-20	(000:00.05)
0000010	0 1	ECHO:	TLM HSS RATE :rate 1000000	(000:00.10)
0000295	0 1	ECHO:	Mode: PREIMPACT 1000	(000:02.95)
0021795	0 1	ECHO:	MODE: PREIMPACT SLEEP	(003:37.95)
0174735	0 1	ECHO:	TLP Activated	(029:07.35)
0294755	0 2	ECHO:	Stop Other Sequences	(049:07.55)
0294765	0 2	ECHO:	Mode: FLASH 1000	(049:07.65)
0300445	0 2	ECHO:	Start VSP Exposure	(050:04.45)
0300745	0 2	ECHO:	Predicted Centaur impact time	(050:07.45)
0301235	0 2	ECHO:	Mode: CURTAIN 1000	(050:12.35)
0319235	0 2	ECHO:	Mode: CRATER 1000	(053:12.35)
0325235	0 2	ECHO:	Predicted SSC impact time	(054:12.35)
0354915	0 2	ECHO:	Exit IMPACT 1000	(059:09.15

Preimpact-impact-1000k Observation Statistics: Last Updated 2009-02-19

Slot:		\perp		
Filenar	ne:	preimp	act-1000]	k.cmd
Elapsed	d Time:	354925	0 msec (5	59.15 min)
			PDS Data	
Instrur	nent	Counts	Volume	Kbytes
		 2521	2521000	
VI3.		2001	2001000	
MIRI:		10484	629040	
MIR2:	:	10474	628440	
NIR1:	:	1425	2850000	
NIR2:	:	1506	3012000	
NSP1	IF:	15991	1599	
NSP1	HS:	5556	66672	
NSP1	DM:	1202	120	
NSP2	IF:	9863	986	
NSP2	HS:	5666	67992	
NSP2	DM:	1202	120	
VSP	BM:	797	71730	
VSP	SM:	0	0	
TLP:		14450	144	

50518 Mbytes

7.6 IMPACT/FLASH SEQUENCE GUIDELINES

Flash time frame assumptions:

tau(vis flash) ~ 0.2 sec, T = 0.0 to 0.2 sec tau(NIR flash) ~ 2.0 sec, T = 0.0 to 2.0 sec tau(MIR flash) ~ 2.0 sec, T = 0.2 to 4.0 sec

Uncertainty in impact time = +/-1 sec Uncertainty in command time = +/-1 sec Uncertainty in SC clock time = +/-1 sec

Total uncertainty = +/-1.7 sec Need spectrum of flash to fix TLP total power measurements.

Primary Goals:

- 1. Identify the location of the flash
- 2. Capture the visible flash
- 3. Capture the NIR flash
- 4. Capture the MIR flash
- 5. Time resolved measurements of the total power of the flash
- 6. Measure the visible spectrum of the flash
- 7. Measure the NIR spectrum of the flash

Requirements:

Not written out explicitly in Draft A.

Instruments and Specifications:

- 1) NIR cam: Satisfies Measurements 1-3
 - a. Integration time set to > 0.2 seconds to capture entire visible flash while still resolving NIR flash. Would want sampling to be continuous: Rate = 1/0.2 sec = 5 Hz.
 - b. No filtering (not looking for water ice).
- 2) MIR cam: Satisfies Measurement 4
 - a. Sample rate must resolve the ~4 second lifetime: Rate > 1/2.0 = 0.5 Hz.
 - b. Both cameras, with filtering, as a water vapor plume may be possible.
- 3) TLP: Satisfies Measurement 5
 - a. Measurement Rate at 1000 Hz
- 4) Vis Spec: Satisfies Measurement 6
 - a. Integration time set to > 0.2 seconds to capture entire vis flash
 - b. Would want sampling to be continuous: Rate = 1/0.2 sec = 5 Hz.
- 5) NIR Spec: Satisfies Measurement 7
 - a. Continuous Nadir measurements in "flash" mode

Rate/Spec Summary:

Vis cam: 0.1 Hz NIR1 cam: 0.1 Hz, integration = 0.2 sec NIR2 cam: 5 Hz, integration = 0.2 sec MIR1 cam: 0.5 Hz, High Gain MIR2 cam: 0.5 Hz, High Gain TLP: 1000 Hz VSP: 5 Hz, integration = 0.2 sec NSP1: No Decimation, Flash mode NSP2: No Decimation, Hadamard mode

Comparison of Specification to the FLASH Mode: Last Upd	dated 2009-03-09
---	------------------

	Specified	Commanded	Observed	Observed	Deviations
		(CPT)	(CPT)	(E2E)	from Spec
VIS	Rate=0.1 Hz	Rate=0 Hz	Disabled	Disabled	(1)
NIR1	Rate=0.1 Hz	Rate=3 Hz	2.98 Hz	2.98 Hz	(2)
	int=0.2 sec	OPR=15 (int=16.24			(3)
		ms)			
		ENH:ENABLE			
		OFF			
NIR2	Rate=5 Hz	Rate=0 Hz	Disabled	Disabled	(1)
	int=0.2 sec				
MIR1	Rate=0.5 Hz	Rate=0.5 Hz	0.50 Hz	0.50 Hz	
	High Gain	High Gain			
MIR2	Rate=0.5 Hz	Rate=0.5 Hz	0.50 Hz	0.50 Hz	
	High Gain	High Gain			
NSP1	Rate=72 Hz	Rate=72 Hz	Flash mode	Flash	
	Flash Mode	Flash Mode		mode	
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	1.69 Hz	
	Hadamard	Hadamard Mode			
	Mode				
VSP	Rate=5 Hz	Rate=Two 4s exp.	2 x 4s	Triplet	(4)
	int=0.2 sec	int=4 sec	exposures	2s,2s,2s	
				exposures	
TLP	Rate=1000 Hz	Rate=1000 Hz	Not Tested	1000 Hz	

Notes:

- 1. Multiplexing the VIS, NIR1 and NIR2 cameras greatly reduces the achievable rates. To get a high rate on NIR1, VIS and NIR2 were stopped during flash. Although NIR2 is more sensitive, NIR1 was chosen to allow a longer integration time before saturating.
- 2. 5 Hz does not fit with appropriate margin in the bandwidth.
- 3. NIR camera does not support 0.2 s integration times with the currently understood interface.
- 4. 5 Hz is not achievable with the DHU's current VSP interface. Decision was made to go for triplet of 2s to cover the expected Centaur-impact time. This was only tested during 2008-12-10 Post Cap and 2009-02-26/27 E2E testing, due to a late delivery of this sequence nuance. All CPT testing prior has two 4s exposures, with a gap in VSP coverage at the beginning of curtain.

Flash Mode Observational Pattern: Last Updated 2008-04-24

Notes:

- A. The VIS/NIR1/NIR2 camera loop stops and NIR1 starts. Note the unavoidable delay in starting NIR1. NSP1 transitions to flash mode.
- B. The tick on the VSP line represents receipt of one 4 second test exposure.
- C. The start of the VSP 4 second exposure positioned to cover the impact flash
- D. The predicted Centaur impact time
- E. The receipt of the VSP packet.
- F. Numbers on the clock line represent minutes. Unnumbered ticks represent seconds. Flash mode is approximately 1 minute long.

7.7 IMPACT/CURTAIN SEQUENCE GUIDELINES

Curtain Design Drivers:

At Time After Impact (TAI) = 10 sec Ejecta cloud optical depth, $\tau = .03$ Ejecta Cloud Radius, R = 1 kmVis Cam dx/pxl = 0.41 km NIR Cam dx/pxl = 0.92 km MIR Cam dx/pxl = 0.83 km Mean (mass weighted) curtain velocity ~125 m/sec At Time After Impact (TAI) = 60 sec Ejecta cloud optical depth, $\tau = .02$ Ejecta Cloud Radius, R = 10 kmVis Cam dx/pxl = 0.41 km NIR Cam dx/pxl = 0.72 km MIR Cam dx/pxl = 0.65 km Mean (mass weighted) curtain velocity ~175 m/sec At Time After Impact (TAI) = 120 sec Ejecta cloud optical depth, $\tau = .004$ Ejecta Cloud Radius, R = 20 kmVis Cam dx/pxl = 0.21 km NIR Cam dx/pxl = 0.48 km MIR Cam dx/pxl = 0.44 km Mean (mass weighted) curtain velocity ~250 m/sec

Primary Goals:

- 1. Monitor eject curtain to determine composition and properties
- 2. Measure curtain evolution to estimate total ejecta mass
- 3. Monitor eject curtain thermal evolution
- 4. Obtain image pairs in with NIR and MIR cameras

Requirements:

- 1. Measure ejecta cloud radiance in the UV/Visible at levels between 0.5 and 5 W m⁻² μ m⁻¹ str⁻¹ (curtain only component) with a contrast ratio of 80 and 8 respectively: VSP integration times should bracket this change in contrast: 0.5 sec with a fact of 4 multiplier gives 0.1<dt<2.5 sec, or a contrast range of 25.
- 2. Measure ejecta cloud radiance in the NIR at levels between 0.25 and 1 W m⁻² μ m⁻¹ str⁻¹ (curtain only component at 1.5 μ m) with a contrast ratio of 20 and 5 respectively: NSP samples should be undecimated to maximize total number of samples. NIR Camera integration times should bracket this change in contrast: 0.02 (TBR) <dt< 0.08 (TBR) sec, or a contrast range of 4.
- 3. Image the expansion of the ejecta curtain without blur: visible images once every 2 seconds, NIR/MIR image pairs once every 4 seconds.
- 4. Resolve the expansion of the ejecta cloud by not allowing ejecta parcels to travel further than ~3 pixels between images

5. Solar viewing NSP (NSP2) kept in view of the sun (+/- 65 degrees) as long as the MGA FOV kept to earth.

Instruments and Specifications:

- 1. NSP 1 Hadamard mode, no decimation
- 2. NSP 2 Hadamard mode, no decimation
- 3. VSP in bracket mode: dt = 0.5 sec, factor = 5
- Visible camera images separated by < 3x(resolution/curtain_velocity) = 3x0.21 km/ 0.25 km/sec = 3x0.8 sec = 2.5 sec (requirement #4 above)
- 5. NIR cameras with time separation between image pairs (one from each camera) < (resolution/curtain_velocity) = 0.44 km/ 0.25 km/sec = 1.8 sec
- 6. NIR camera image pairs separated by < 3x(resolution/curtain_velocity) = 5.4 sec (requirement #4 above)
- 7. MIR cameras with time separation between image pairs (one from each camera) < (resolution/curtain velocity) = 0.48 km/ 0.25 km/sec = 1.9 sec
- MIR camera image pairs (image pair period) separated by < 3x(resolution/curtain_velocity) = 5.7 sec
- 9. TLP, no decimation

Rate/Spec Summary:

Vis cam: 1 Hz NIR1/NIR2 image pair period: 3 Hz NIR1 OPR 8 and 15 (TBR) NIR2 OPR 8 and 15 (TBR) MIR1/MIR2 image pair period: 3 Hz MIR1, High Gain MIR2, High Gain TLP: 1000 Hz VSP: Bracket Mode with tau = 0.5 sec, factor = 5 NSP1: No Decimation, Hadamard mode NSP2: No Decimation, Hadamard mode

Curtain Model Supplementary Figures

Comp	Sussified	Common dad	Observed	Observed	Dervictions from
	Specified	Commanded	Observed	Observed	Deviations from
		(CPT)	(CPT)	(E2E)	Spec
VIS	Rate=1 Hz	Rate=0.816 Hz	0.82 Hz	0.82 Hz	(1)
NIR1	Rate=3 Hz	Rate=0.408 Hz	0.41 Hz	0.41 Hz	(1)
	OPR 8 and OPR	OPR 6			(2)
	15	ENH:ENABLE			
		OFF			
NIR2	Rate=3 Hz	Rate=0.408 Hz	0.41 Hz	0.41 Hz	(1)
	OPR 8 and OPR	OPR 6			(2)
	15	ENH:ENABLE			
		OFF			
MIR1	Rate=3 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	
	High Gain	High Gain			
MIR2	Rate=3 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	
	High Gain	High Gain			
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	1.69 Hz	
	Hadamard Mode	Hadamard Mode			
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.69 Hz	1.69 Hz	
	Hadamard Mode	Hadamard Mode			
VSP	Rate=?	Rate=0.2 Hz	0.20 Hz	0.20 Hz	(3)
	int=0.1, 0.5, 2.5	int=0.1, 0.5, 2.5			
	sec	sec			
TLP	Rate=1000 Hz	Rate=1000 Hz	Not Tested	1000k	(4)

Comparison	of Specification to	the CURTAIN Mode:	Last U	pdated 2009-03-09
------------	---------------------	-------------------	--------	-------------------

Notes:

- 1. VIS at 1Hz + NIR1 at 3Hz + NIR2 at 3 Hz, does not fit within the available bandwidth with suitable margin.
- 2. Sensitivity (exposure time) for NIRs is a placeholder based on radiometric calibration. Desire NIR1 and NIR2 to maintain the same OPR setting to simplify image differencing.
- 3. No specification in rate was given for VSP. The rate of 0.2 Hz is the fastest the DHU can reliably drive the VSP in bracket mode for the above integration times. Note the VSP could go ~30% faster, but the interface between it and the DHU is prone to synchronization errors.
- 4. TLP is powered off at the beginning of Crater.

Curtain Mode Observational Pattern: Last Updated 2008-04-28

Detail showing transition from flash to curtain (clock ticks indicate seconds): Last Updated 2008-04-28

3 4 CLK	Start V	SP Expos	Predicted Centifier Impact to	me 10	1 Modeaβ I I	URTANGIO	14 1	15 1	16 1	17	18 1	19 1	20 1	21 1	22 1	23 1	24 1	25 1	26 1	27 1	28 1	29 1	30 1	31 1	32 1	33 1	34 1	35 1	36 1	37 1	38 1	3
VIS						+ +	1	-+				+	-	-	• •		-	+		-		1	-	-	+	-	+ +		+	+		+
NIR1																								+								
MIR1 MIR2												+++																				+
NSP1						┶┼┿ ╊╉┼			+ +	+ +		+ +	+	+ +	+ +	+ +	+	+ +	+ +	+ +		+ +	+ +		· · ·	+ +	+	+ +	+ + + +	+ +		+
VSP				+																	+											
TLP]	D		E					G											F											
		<u> </u>								1							-															

Detail showing variation in image time stamping:

Notes:

- A. Predicted Centaur impact time
- B. Transition to curtain mode
- C. Transition to crater mode
- D. Predicted Centaur impact time (in the detail view)
- E. Transition to curtain mode, 5 seconds after the predicted impact time to account for prediction and execution errors.
- F. First VSP packet timestamped, 6.325 seconds after the transition to curtain.
- G. This is a bracket mode packet; the first exposure starts at approximately G, 6 seconds after the transition and 11 seconds after the predicted Centaur impact time.
- H. The more important transition of NSP1 from Flash mode back to Hadamard spectrum mode.
- I. Marks a triple cluster of ticks. One of the pair following the triple has moved earlier to join another pair. This is an open action item; the underlying cause isn't clear. We have not decided on a strategy to correct for it or whether to leave it uncorrected.

7.8 IMPACT/CRATER SEQUENCE GUIDELINES

Crater Design Drivers:

Centaur crater diameter ~20 meters Interior crater temperatures 180 seconds after Centaur impact >200 K

Primary Goals:

- 1. Image Centaur impact crater
- 2. Improve identification of impact crater location
- 3. Monitor ejecta cloud with side viewing spectrometer for composition and particle properties

Requirements:

- 1. Image Centaur impact point and surrounding terrain out to a distance of 15 km
- 2. Image crater in the thermal IR:>1 pixels across crater: <20 meter/pixel resolution

Instruments and Specifications:

- 1. MIR camera pixel resolution <20 meters/pixel (meets requirement #1)
- 2. MIR and NIR camera imaging of Centaur impact point at an altitude of 150 km (meets requirement #2)
- 3. NSP2 observations from 150 km to surface in Hadamard mode

Rate/Spec Summary:

Vis cam: 0.25 Hz NIR1 cam: 0.25 Hz NIR2 cam: 0.5 Hz MIR1 cam: 0.25 Hz, High Gain MIR2 cam: 0.5 Hz, High Gain TLP: 1000 Hz VSP: Bracket Mode with tau = 0.2 sec, factor = 2 NSP1: No Decimation, Hadamard mode

Comp	Comparison of Specification to the CRATER filde. East Opdated 2009 05 17											
	Specified	Commanded	Observed	Observed	Deviations from							
		(CPT)	(CPT)	(E2E)	Spec							
VIS	Rate=0.25 Hz	Rate=0 Hz	Rate=0 Hz	Rate=0 Hz	(1)							
NIR1	Rate=0.25Hz	Rate=0 Hz	Rate=0 Hz	Rate=0 Hz	(1)							
	OPR 8 and OPR											
	15											
NIR2	Rate=0.5 Hz	Rate=0.66 Hz	0.67 Hz	0.67 Hz	(1)							
	OPR 8 and OPR	OPR 15			(2)							
	15	ENH:ENABLE										
		OFF										
MIR1	Rate= 0.25 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	(1)							
	High Gain	High Gain										
MIR2	Rate= 0.5 Hz	Rate=3 Hz	3.00 Hz	3.00 Hz	(1)							
	High Gain	High Gain										
NSP1	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	1.70 Hz								
	Hadamard Mode	Hadamard Mode										
NSP2	Rate=1.7 Hz	Rate=1.7 Hz	1.70 Hz	1.70 Hz								
	Hadamard Mode	Hadamard Mode										
VSP	Rate=?	Rate=0.5 Hz	0.50 Hz	0.50 Hz	(3)							
	int=0.1, 0.2, 0.4	int=0.1, 0.5, 2.5										
	sec	sec										
TLP	Rate=1000 Hz	Off	Not Tested	Off	(4)							

Comparison of Specification to the CRATER Mode: Last Updated 2009-03-19

Notes:

- 1. To emphasize the MIR imagery during this phase, they are placed at a max rate, with VIS and NIR1 not used. NIR2 camera can fit in at 0.66 Hz within the model.
- 2. NIR2 set to max sensitivity for this last minute. Currently parameterized as OPR 15 (16.24 ms).
- 3. No specification in rate was given for VSP. The rate of 0.52 Hz is the fastest the DHU can reliably drive the VSP in bracket mode for the above integration times.
- 4. TLP is powered off within CRATER to save bandwidth.

Crater Mode Observational Pattern: Last Updated 2008-04-28

Notes for the timeline:

- A. Start of crater mode
- B. Shepherding spacecraft impact

C. Dropped image (image decompression error)

D. Transition delay between VSP modes

Crater Model Supplementary Figures:

Preimpact-Impact Contingency: Last Updated: 2009-03-09

Nominal preimpact-impact is preimpact-impact-1000k. Rate contingency is preimpact-impact-220k. Comparison between the baseline and contingency is summarized below.

	Baseline preimpact-1000k	Contingency preimpact-220k
VIS	0.82 Hz	0.119 Hz
NIR1	0.41 Hz	0.119 Hz
NIR2	0.41 Hz	0.119 Hz
MIR1	3.00 Hz	0.15 Hz
MIR2	3.00 Hz	0.15 Hz
NSP1	IF for 155 s then	IF for 155 s then
	DM for 60 s then	DM for 60 s then
	HS @ 1.72 Hz	HS @ 1.72 Hz
NSP2	IF for 155 s then	IF for 155 s then
	DM for 60 s then	DM for 60 s then
	HS @ 1.72 Hz	HS @ 1.72 Hz
VSP	0.20 Hz, 100ms, 500ms, 2500ms	0.20 Hz, 100ms, 500ms, 2500ms
TLP	1000 Hz [21 min before FLASH]	1000 Hz [21 min before FLASH]
	Baseline impact-1000k	Contingency impact-220k
	FLASH	FLASH
VIS	Disabled	Disabled
NIR1	2.98 Hz, OPR15	0.5 Hz , OPR15
NIR2	Disabled	Disabled
MIR1	0.50 Hz, Hi Gain	0.10 Hz, Hi Gain
MIR2	0.50 Hz, Hi Gain	0.10 Hz, Hi Gain
NSP1	Flash mode	Flash Mode
NSP2	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
VSP	Triplet 2s,2s,2s exposures	Triplet 2s,2s,2s exposures
TLP	1000 Hz	1000 Hz
	CURTAIN	CURTAIN
VIS	0.82 Hz	0.119 Hz
NIR1	0.41 Hz, OPR 6	0.119 Hz , OPR 6
NIR2	0.41 Hz, OPR 6	0.119 Hz, OPR 6
MIR1	3.00 Hz, Hi Gain	0.15 Hz, Hi Gain
MIR2	3.00 Hz, Hi Gain	0.15 Hz, Hi Gain
NSP1	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
NSP2	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
VSP	0.20 Hz, 100ms, 500ms, 2500ms	0.20 Hz, 100ms, 500ms, 2500ms
TLP	1000k	
	CRATER	CRATER
VIS	Disabled	Disabled
NIR1	Disabled	Disabled
NIR2	0.67 Hz, OPR15	0.1 Hz , OPR15
MIR1	3.00 Hz, Hi Gain	0.6 Hz , Hi Gain
MIR2	3.00 Hz, Hi Gain	0.6 Hz , Hi Gain
NSP1	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
NSP2	Hadamard mode, 1.72 Hz	Hadamard mode, 1.72 Hz
VSP	0.50 Hz, 100ms,200ms,400ms	0.50 Hz, 100ms,200ms,400ms
TLP	Off	

Preimpact-Impact-220k Sequence Milestones: Last Updated: 2009-03-09

Start Simulation length: full-length slot: 7 filename: preimpact-220k.cmd

msec	NVM	Msg		min:sec
00000000) 7	ECHO:	Start Sequence	(000:00.00)
0000050) 7	ECHO:	ver impact-220k 2008-11-20	(000:00.05)
00000100) 7	ECHO:	TLM HSS RATE :rate 220000	(000:00.10)
00002950) 7	ECHO:	Mode: PREIMPACT 220	(000:02.95)
00217950) 7	ECHO:	MODE: PREIMPACT SLEEP	(003:37.95)
01747350) 7	ECHO:	TLP Activated	(029:07.35)
02947550) 8	ECHO:	Stop Other Sequences	(049:07.55)
02947650) 8	ECHO:	Mode: FLASH 220	(049:07.65)
03004450) 8	ECHO:	Start VSP Exposure	(050:04.45)
03007450) 8	ECHO:	Predicted Centaur impact time	(050:07.45)
03012350) 8	ECHO:	Mode: CURTAIN 220	(050:12.35)
03192350) 8	ECHO:	Mode: CRATER 220	(053:12.35)
03252350) 8	ECHO:	Predicted SSC impact time	(054:12.35)
03549150) 8	ECHO:	Exit IMPACT 220	(059:09.15)

Preimpact-Impact-220k Observation Statistics: Last Updated: 2009-03-09

Slot:		/		
Filenam	ne:	preimpa	ct-220k	.cmd
Elapsed	l Time:	: 3549250	msec (59.15 min)
		P	DS Data	
Instrum	nent	Counts	Volume	Kbytes
VIS:		396	396000	
MIR1:		694	41640	
MIR2:		695	41700	
NIR1:		423	846000	
NIR2:		432	864000	
NSP1	IF:	15991	1599	
NSP1	HS:	5556	66672	
NSP1	DM:	1202	120	
NSP2	IF:	9863	986	
NSP2	HS:	5666	67992	
NSP2	DM:	1202	120	
VSP	BM:	797	71730	
VSP	SM:	0	0	
TLP:		14450	144	
			FOOD	Martas

5093 Mbytes

7.9 FAULT GUIDELINES

Primary Goals:

1. Provide for key science mode observation in case of inability to command.

Requirements:

- 1. Must be able to run without ground intervention
- 2. Must power all instruments (incl. TLP) and ensure TADA is open

Instruments and Specifications:

1. Same as for Curtain-1000k

Rate/Spec Summary:

1. Same as for Curtain-1000k

Fault-1000k Observational Pattern:

<Not generated. Equivalent to the Curtain portion of the sequence except for the startup transient.>

Fault-1000k Sequence Milestones: Last Updated: 2009-03-09

Start Simulation length: full-length slot: 0 filename: fault-1000k.cmd msec NVM Msq min:sec _____ 00000000 0 ECHO: Start Sequence (000:00.00)00010100 0 ECHO: Mode: FAULT 1000 (000:10.10)00600000 0 ECHO: Activate the TLP (010:00.00)00610100 0 ECHO: Activate TADA (010:10.10)00621250 0 ECHO: Exit FAULT 1000 (010:21.25)_____

8 POST-CONTACT STATUS REPORTS

After each payload activation, the payload team will be responsible for generating a summary of the payload performance for the mission status briefing. Raw inputs to this summary will be the command sequence checklist and the following telemetry reports:

- 1. Payload Environment Report, which includes
 - a. R6 temperatures
 - b. Payload internal temperatures
 - c. Payload voltage and current
 - d. S/C payload telemetry stats
- 2. Payload operations report, which includes
 - a. Timeline charts
 - b. Downlink margin (expected & actual)
 - c. NIR OPR settings reported
 - d. NIR commanding error counts
 - e. Clock synchronization performance
 - f. Anomaly list

9 REMAINING WORK

All prelaunch tuning of the payload command sequences has been finished. If analysis of on-orbit instrument performance indicates that instrument settings should be adjusted for impact observations, then the sequences may be changed slightly and reloaded.

10 INSTRUMENT COMMAND SEQUENCES AS RUN

This section contains plots and statistics for each data collection period.

QUICKLOOK

Summary: No problems

Data Collection Plot:

42	Stede Sect. No. 1990 OK 29 TRUCK HOSE AFTE TRATE 25000	Mode: NIR 145	46	ILOOF.NIR2	48	49	Mode: VSI50	51 <u>e</u>	Start VSP E	ante 1153	54	<u>5</u> 5	Note: gg82	57	58	Hoo SHISP1	9 ii 1	1	Mode: NSP2	Edt
CLK					'												1			
VIS																				
NIR1		*****	*****																	
NIR2				*****																
MIR1																				
MIR2																				
NSP1																				
NSP2	2																			
VSP																				
TLP																				
Log																				
													-111			-				
Marks																				
_	-																			

Timestamps of sequence milestones:

```
2428185096 ccsds_downlink_command(): echoing "Start Sequence"
2428185149 ccsds_downlink_command(): echoing "TLM_HSS_RATE :rate 29000"
2428185199 ccsds_downlink_command(): echoing "Mode: QUICKLOOK 29"
2428185249 ccsds_downlink_command(): echoing "Mode: NIR1"
2428306101 ccsds_downlink_command(): echoing "Mode: NIR1"
2428458953 ccsds_downlink_command(): echoing "Mode: NIR2"
2428611806 ccsds_downlink_command(): echoing "Mode: VSP"
2428731608 ccsds_downlink_command(): echoing "Start VSP Exposure"
2428741708 ccsds_downlink_command(): echoing "Start VSP Exposure"
2428795159 ccsds_downlink_command(): echoing "Mode: MIR1"
242884862 ccsds_downlink_command(): echoing "Mode: MIR1"
2428984862 ccsds_downlink_command(): echoing "Mode: NSP1"
2429174565 ccsds_downlink_command(): echoing "Mode: NSP1"
2429329917 ccsds_downlink_command(): echoing "Mode: NSP2"
```

age							NSP1-		+	NSP2-		+	VSP		+	
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
t Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
irt Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 HSS RATE :rate 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le: QUICKLOOK 29"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le: VIS"	15	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le: NIR1"	46	0	46	0	0	0	0	0	0	0	0	0	0	0	0	0
le: NIR2"	46	0	0	46	0	0	0	0	0	0	0	0	0	0	0	0
le: VSP"	0	0	0	0	0	0	0	0	0	0	0	0	65	42	11	0
irt VSP Exposure"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
irt VSP Exposure"	0	0	0	0	0	0	0	0	0	0	0	0	11	1	5	0
le: MIR1"	0	0	0	0	260	0	0	0	0	0	0	0	1	0	0	0
le: MIR2"	0	0	0	0	0	260	0	0	0	0	0	0	0	0	0	0
le: NSP1"	0	0	0	0	0	0	203	2167	709	0	1	0	0	0	0	0
le: NSP2"	0	0	0	0	0	0	0	0	0	101	721	689	0	0	0	0
t QUICKLOOK 29"	107	15	46	46	260	260	203	2167	709	101	722	689	78	43	16	0
	age t Sequence" irt Sequence" [HSS RATE :rate 2 le: QUICKLOOK 29" le: VIS" le: NIR1" le: NIR2" le: VSP Exposure" irt VSP Exposure" le: MIR1" le: MIR1" le: MIR2" le: NSP2" t QUICKLOOK 29"	age VCB t Sequence" 0 IHSS_RATE:rate 2 0 le: QUICKLOK 29" 0 le: VITS" 15 le: NIR1" 46 le: VSP" 0 virt VSP Exposure" 0 virt VSP Exposure" 0 le: MIR1" 0 le: NSP1" 0 le: NSP2" 0 le: NSP2" 0 le: NSP2" 10	age VCB VIS t Sequence" 0 0 trst Sequence" 0 0 IHSS_RATE :rate 2 0 0 le: QUTCKLOK 29" 0 0 le: VIS" 15 15 le: NIR1" 46 0 le: VSP" 0 0 urt VSP Exposure" 0 0 le: MIR1" 0 0 le: MIR2" 0 0 le: SSP1" 0 0 le: NSP1" 0 0 le: NSP1" 0 0	age VCB VIS NIR1 t Sequence" 0 0 0 IrtS sequence" 0 0 0 Issgard Issgard 15 15 0 Iss INT2" 46 0 0 0 Ist VSP" 0 0 0 0 Ist VSP Exposure" 0 0 0 0 Ist MIR1" 0 0 0 0 Ist MIR2" 0 0 0 0 Ist NSP1" 0 0 0 0 Ist NSP2" 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	age VCB VIS NIR1 NIR2 MIR1 t Sequence" 0 0 0 0 r:t Sequence" 0 0 0 0 0 I:tS SRATE :rate 2 0 0 0 0 0 le:QUICKLOK 29" 0 0 0 0 0 0 0 le:VIS" 15 15 0 0 0 0 0 le:NTR2" 46 0 46 0 0 0 0 le:VSP Xposure" 0 0 0 0 0 0 le:VSP <exposure"< td=""> 0 0 0 0 0 0 0 le:MIR1" 0 0 0 0 0 0 0 le:MIR1" 0 0 0 0 0 0 0 le:NSP1" 0 0 0 0</exposure"<>	age VCB VIS NIR1 NIR2 MIR1 MIR2 t. Sequence" 0 0 0 0 0 0 0 r.rt Sequence" 0 0 0 0 0 0 0 0 i.rt Sequence" 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NSP1 age NTR1 NTR2 MIR1 MIR1 HS1 IF1 t. Sequence" 0	age NIR1 NIR2 MIR1 MIR1 HS1 HS1	nage NSP1+ NSP1	nage NSP1+ NSP1 NSP1	age NSP1+ NSP1+ NSP2+ t Sequence" 0	age NEP1 NSP1+ NSP2+ VSP t. Sequence" 0	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

STARFIELD

Summary: No problems

Data Collection Plot:

Timestamps of sequence milestones:

2648655059 ccsds_downlink_command(): echoing "Start Sequence" 2648655110 ccsds_downlink_command(): echoing "TIM_HSS_RATE :rate 220000" 2648655160 ccsds_downlink_command(): echoing "Mode: STARFIELD-220" 2648688661 ccsds_downlink_command(): echoing "Turn on MIR2" 2648693011 ccsds_downlink_command(): echoing "Turn on VSP" 2648825363 ccsds_downlink_command(): echoing "Activate TADA" 2649487624 ccsds_downlink_command(): echoing "NIR2 Enhancement ON" 2650087784 ccsds_downlink_command(): echoing "NIR2 Enhancement OFF"

timestamp message								+	NSP2-		+	VSP		+	
VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	2	0	20	0	0	0	0	0	0	0	0	0	0
66	0	0	66	0	1320	0	0	0	0	0	0	19	14	0	0
331	0	0	331	0	6620	0	0	0	0	0	0	83	83	0	0
299	0	0	299	0	5994	0	0	0	0	0	0	75	75	0	0
714	0	0	714	0	13954	0	0	0	0	0	0	178	172	0	0
	VCB 0 0 16 2 66 331 299 714	VCB VIS 0 0 0 0 16 0 2 0 66 0 331 0 299 0 714 0	VCB VIS NIR1 0 0 0 0 0 0 0 0 0 16 0 0 66 0 0 331 0 0 299 0 0 714 0 0	$\begin{array}{cccccc} VCB & VIS & NIR1 & NIR2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{cccccccc} VCB & VIS & NIR1 & NIR2 & MIR1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$	$\begin{array}{cccccccc} VCB & VIS & NIR1 & NIR2 & MIR1 & MIR2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

SWINGBY

Summary: Successfully collected data for instrument calibration; bandwidth oversubscription observed.

Data Collection Plot:

17 18 CLK 1	1292377727222222222222222222222222222222	9%)g	na nuesi	n de la tarres En glimbres	5 19 19 19 19 19 19 19 19 19 19 19 19 19	LIND_SH	ulinb see e (Im5 2)	u (Imb 2) 5 Lind Siew (Ir
VIS NID4								
NIR1 NIR2		-	++					•
MIR1								
MIR2							•	
NSP1			_					
NOF2 VSP				-				_
TLP			_					
Log								
	the second se	1°' '00			 			
Marks								

Timestamps of sequence milestones:

2721957170	ccsds_downlink_comman	nd(): echoin	g "Start Sequence"
2721957221	ccsds_downlink_comman	nd(): echoin	g "TLM_HSS_RATE :rate 1000000"
2721957271	ccsds downlink comman	nd(): echoin	g "Mode: SWINGBY 1000 AUTOGAIN"
2721959176	ccsds downlink comman	nd(): echoin	g "Mode: CURTAIN 1000 AUTOGAIN"
2723799149	ccsds_downlink_comman	nd(): echoin	g "Swingby-1000k-ground ran off the end"
2723857102	ccsds_downlink_comman	nd(): echoin	g "Stop Other Sequences"
2723857205	ccsds downlink comman	nd(): echoin	g "Mode: Limb1 out"
2723887206	ccsds_downlink_comman	nd(): echoin	g "Limb_Slew (limb 1)"
2723977207	ccsds_downlink_comman	nd(): echoin	g "Limb_Slew (limb 1)"
2724067208	ccsds_downlink_comman	nd(): echoin	g "Limb_Slew (limb 1)"
2724157210	ccsds_downlink_comman	nd(): echoin	g "5_minute_slew to limb 2"
2724487215	ccsds_downlink_comman	nd(): echoin	g "Limb_Slew (limb 2)"
2724577216	ccsds downlink comman	nd(): echoin	g "Limb Slew (limb 2)"
2724667218	ccsds_downlink_comman	nd(): echoin	g "Limb_Slew (limb 2)"

timestamp message							NSP1-		+	NS	P2		+	VSP		+	
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS	2 :	IF2	DM2	CNT	SM	BM	TLP
000000565 Start Sequence"	0	0	0	0	0	0	0	0	0		0	0	0	1	0	0	0
2721957735 Start Sequence"	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
2721957786 TLM HSS RATE :rate 1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
2721957836 Mode: SWINGBY 1000 A	0	0	0	0	0	0	0	0	0		0	1	0	1	0	0	0
2721959741 Mode: CURTAIN 1000 A	870	331	294	245	110157	106839	311	8	0	0	3118		0	0 91	5	0 90	8 0
2723799714 Swingby-1000k-ground	92	46	23	23	3463	3489	99	0	0		98	0	0	29	0	29	0
2723857667 Stop Other Sequences	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
2723857770 Mode: Limb1 out"	99	99	0	0	80	81	3	2048	0		2	0	0	15	0	15	0
2723887771 Limb Slew (limb 1)"	277	273	2	2	40	40	0	6503	0		0	0	0	45	0	45	0
2723977772 Limb Slew (limb 1)"	278	274	2	2	40	40	0	6510	0		0	0	0	45	0	45	0
2724067773 Limb Slew (limb 1)"	279	275	2	2	40	40	0	6518	0		0	0	0	45	0	45	0
2724157775 5 minute slew to lim	1098	1098	0	0	0	0	0	23865	0		0	0	0	165	0	165	0
2724487780 Limb Slew (limb 2)"	278	274	2	2	40	40	0	6511	0		0	0	0	45	0	45	0
2724577781 Limb Slew (limb 2)"	278	274	2	2	40	40	0	6510	0		0	0	0	45	0	45	0
2724667783 Limb_Slew (limb 2)"	3549	2944	327	278	113900	110609	322	0 5846	5	0	3218		1	0 135	1	0 134	2 0

EARTHLOOK1

Summary: No problems

Data Collection Plot:

Timestamps of sequence milestones:

1830889765	<pre>ccsds downlink command():</pre>	echoing	"Start Sequence"
1830889816	<pre>ccsds_downlink_command():</pre>	echoing	"TLM_HSS_RATE :rate 29000"
1830889866	ccsds_downlink_command():	echoing	"Mode: EARTHLOOK 29"
1830889916	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: VIS"
1830910716	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: NIR1"
1830943116	ccsds_downlink_command():	echoing	"Mode: NIR2"
1830975517	ccsds_downlink_command():	echoing	"Mode: VSP"
1831057368	ccsds_downlink_command():	echoing	"Mode: MIR1"
1831186070	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: MIR2"
1831314771	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: NSP2"
1831360122	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: NSP1"
1831425473	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: Camera Sleep"
1832086532	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: ALIGNMENT"
1832089782	<pre>ccsds_downlink_command():</pre>	echoing	"Start: DB1_Earth_Point"
1832509788	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_North_p3"
1832599790	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Pitch_North_p3"
1832600790	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 3_min_Slew_South_m3"
1832779792	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Pitch_South_m3"
1832780792	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_Earth_Point"
1832869793	<pre>ccsds_downlink_command():</pre>	echoing	"Start: DB1_Earth_Point"
1832989795	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_East_p3"
1833079797	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Yaw_East_p3"
1833080797	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 3_min_Slew_West_m3"
1833259799	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Yaw_West_m3"
1833260799	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_Earth_Point"
1833348725	<pre>ccsds_downlink_command():</pre>	echoing	"Start: DB1_Earth_Point"
1833469802	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_North_p3"
1833559804	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Pitch_North_p3"
1833560804	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 3_min_Slew_South_m3"
1833739806	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Pitch_South_m3"
1833740806	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_Earth_Point"
1833829808	<pre>ccsds_downlink_command():</pre>	echoing	"Start: DB1_Earth_Point"
1833949809	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_East_p3"
1834039811	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Yaw_East_p3"
1834040811	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 3_min_Slew_West_m3"
1834219813	<pre>ccsds_downlink_command():</pre>	echoing	"Start: Yaw_West_m3"
1834220813	<pre>ccsds_downlink_command():</pre>	echoing	"Start: 1.5_min_Slew_Earth_Point"
1834309815	<pre>ccsds_downlink_command():</pre>	echoing	"Start: DB1_Earth_Point"

timestamp message		NSP1-		+	NSP2-		+	VSP		+						
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
000000565 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1830890330 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1830890381 TLM HSS RATE :rate 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1830890431 Mode: EARTHLOOK 29"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1830890481 Mode: VIS"	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1830911281 Mode: NIR1"	9	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0

1830943681 Mode: NIR2"	9	0	1	8	0	0	0	0	0	0	0	0	0	0	0	0
1830976082 Mode: VSP"	2	0	0	2	0	0	0	0	0	0	0	0	38	20	5	0
1831057933 Mode: MIR1"	0	0	0	0	180	0	0	0	0	0	0	0	0	0	0	0
1831186635 Mode: MIR2"	0	0	0	0	0	180	0	0	0	0	0	0	0	0	0	0
1831315336 Mode: NSP2"	0	0	0	0	0	0	0	0	0	50	721	667	0	0	0	0
1831360687 Mode: NSP1"	0	0	0	0	0	0	50	2167	664	2	0	0	0	0	0	0
1831426038 Mode: Camer	a Sleep" 64	0	32	32	820	0	0	0	0	22	0	0	0	0	0	0
1832087097 Mode: ALIGN	MENT" 0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0
1832090347 Start: DB1	Earth Poi 15	6	5	4	120	120	177	3	0	14	0	0	42	0	42	0
1832510353 Start: 1.5	min Slew 0	0	0	0	0	0	1	459	0	3	0	0	9	0	9	0
1832600355 Start: Pitc	h North p 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1832601355 Start: 3 mi	n Slew So 0	0	0	0	0	0	0	925	0	6	0	0	18	0	18	0
1832780357 Start: Pitc	h South m 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1832781357 Start: 1.5	min Slew 0	0	0	0	0	0	0	461	0	3	0	0	9	0	9	0
1832870358 Start: DB1	Earth Poi 6	2	2	2	40	40	50	2	0	4	0	0	12	0	12	0
1832990360 Start: 1.5	min Slew 0	0	0	0	0	0	1	462	0	3	0	0	9	0	9	0
1833080362 Start: Yaw	East p3" 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1833081362 Start: 3 mi	n Slew We 0	0	0	0	0	0	0	925	0	6	0	0	18	0	18	0
1833260364 Start: Yaw	West m3" 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1833261364 Start: 1.5	min Slew 0	0	0	0	0	0	0	459	0	3	0	0	9	0	9	0
1833349290 Start: DB1	Earth Poi 6	2	2	2	40	40	50	2	0	4	0	0	12	0	12	0
1833470367 Start: 1.5	min Slew 0	0	0	0	0	0	1	462	0	3	0	0	9	0	9	0
1833560369 Start: Pitc	h North p 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1833561369 Start: 3 mi	n Slew So 0	0	0	0	0	0	0	925	0	6	0	0	18	0	18	0
1833740371 Start: Pitc	h South m 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1833741371 Start: 1.5	min Slew 0	0	0	0	0	0	0	459	0	3	0	0	9	0	9	0
1833830373 Start: DB1	Earth Poi 6	2	2	2	40	40	51	3	0	4	0	0	12	0	12	0
1833950374 Start: 1.5	min Slew 0	0	0	0	0	0	0	461	0	3	0	0	9	0	9	0
1834040376 Start: Yaw	East p3" 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1834041376 Start: 3 mi	n Slew We 0	0	0	0	0	0	0	925	0	6	0	0	18	0	18	0
1834220378 Start: Yaw	West m3" 0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
1834221378 Start: 1.5	min Slew 0	0	0	0	0	0	0	461	0	3	0	0	9	0	9	0
1834310380 Start: DB1	Earth Poi 119	14	53	52	1240	420	381	9614	664	148	721	667	261	20	227	0
-	_															

MIRLOOK

Summary: No problems

Data Collection Plot:

Timestamps of sequence milestones:

3162890840	<pre>ccsds downlink command():</pre>	echoing	"Start Sequence"
3162890892	<pre>ccsds downlink command():</pre>	echoing	"TLM HSS RATE :rate 29000"
3162890942	<pre>ccsds downlink command():</pre>	echoing	"Mode: MIRLOOK 29"
3162890992	<pre>ccsds downlink command():</pre>	echoing	"Mode: NSP2"
3162936342	ccsds downlink command():	echoing	"Mode: VIS"
3162957142	ccsds downlink command():	echoing	"Mode: NIR1"
3162989543	ccsds downlink command():	echoing	"Mode: NIR2"
3163021943	ccsds downlink command():	echoing	"Mode: VSP"
3163103794	ccsds downlink command():	echoing	"Mode: MIR1"
3163232496	<pre>ccsds downlink command():</pre>	echoing	"Mode: MIR2"
3163361198	ccsds downlink command():	echoing	"Mode: NSP1"
3163490850	<pre>ccsds downlink command():</pre>	echoing	"Begin Stare 1"
3163490900	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 3"
3163520900	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 3"
3163550901	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 5"
3163580901	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 5"
3163610821	ccsds downlink command():	echoing	"NIR1 at 7"
3163640902	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 7"
3163670902	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 9"
3163700903	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 9"
3163730903	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 11"
3163760904	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 11"
3163795904	ccsds downlink command():	echoing	"NIR1 at 4"
3163825905	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 4"
3163855905	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 6"
3163885905	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 6"
3163915906	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 8"
3163945906	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 8"
3163975907	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 10"
3164005907	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 10"
3164035908	<pre>ccsds downlink command():</pre>	echoing	"NIR1 at 12"
3164065908	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 12"
3164721867	<pre>ccsds_downlink_command():</pre>	echoing	"Begin Stare 2"
3164721917	ccsds_downlink_command():	echoing	"NIR1 at 3"
3164751918	ccsds_downlink_command():	echoing	"NIR2 at 3"
3164781918	ccsds downlink command():	echoing	"NIR1 at 5"
3164811919	<pre>ccsds downlink command():</pre>	echoing	"NIR2 at 5"
3164841919	ccsds_downlink_command():	echoing	"NIR1 at 7"
3164871920	ccsds_downlink_command():	echoing	"NIR2 at 7"
3164901920	ccsds_downlink_command():	echoing	"NIR1 at 9"
3164930876	ccsds_downlink_command():	echoing	"NIR2 at 9"
3164961921	<pre>ccsds_downlink_command():</pre>	echoing	"NIR1 at 11"
3164991921	<pre>ccsds_downlink_command():</pre>	echoing	"NIR2 at 11"
3165026922	<pre>ccsds_downlink_command():</pre>	echoing	"NIR1 at 4"
3165056927	<pre>ccsds_downlink_command():</pre>	echoing	"NIR2 at 4"
3165086928	<pre>ccsds_downlink_command():</pre>	echoing	"NIR1 at 6"

```
3165116928 ccsds_downlink_command(): echoing "NIR2 at 6"
3165146929 ccsds_downlink_command(): echoing "NIR1 at 8"
3165176929 ccsds_downlink_command(): echoing "NIR2 at 8"
3165206929 ccsds_downlink_command(): echoing "NIR1 at 10"
3165236930 ccsds_downlink_command(): echoing "NIR2 at 10"
3165266930 ccsds_downlink_command(): echoing "NIR1 at 12"
3165296931 ccsds_downlink_command(): echoing "NIR2 at 12"
```

timestamp message							NSP1-		+	NSP2-		+	VSP		+	
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
000000564 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
3162891404 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3162891456 TLM HSS RATE :rate 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3162891506 Mode: MTRLOOK 29"	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
3162891556 Mode: NSP2"	0	0	0	0	0	0	0	0	0	50	721	695	0	0	0	0
3162936906 Mode: VIS"	2	2	0	0	0	0	0	0	0	1	0	0	0	0	0	Ő
3162957706 Mode: NID1"	8	0	ŝ	0	0	0	0	ñ	ő	2	0	0	ñ	0	ñ	0
2162000107 Mode: NIR1	0	0	2	7	0	0	0	0	0	2	0	0	0	0	0	0
21(202250107 Mode. NIK2	2	0	2	2	0	0	0	0	0	2	0	0	20	20	5	0
3163022307 Mode: VSP	2	0	0	2	100	0	0	0	0	5	0	0	20	20	5	0
3163104358 Mode: MIRI"	0	0	0	0	180	100	0	0	0	9	0	0	0	0	0	0
3163233060 Mode: MIR2"	0	0	0	0	0	180	0	0	0	8	0	0	0	0	0	0
3163361762 Mode: NSP1"	0	0	0	0	0	4	62	2211	703	9	0	0	0	0	0	0
3163491414 Begin Stare 1"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3163491464 NIR1 at 3"	3	0	3	0	20	16	6	0	0	2	0	0	2	0	2	0
3163521464 NIR2 at 3"	3	0	0	3	20	20	7	0	0	2	0	0	1	0	1	0
3163551465 NIR1 at 5"	3	0	3	0	0	20	6	0	0	2	0	0	1	0	1	0
3163581465 NIR2 at 5"	3	0	0	3	20	5	7	0	0	2	0	0	1	0	1	0
3163611385 NIR1 at 7"	3	0	3	0	20	15	6	0	0	1	0	0	1	0	1	0
3163641466 NIR2 at 7"	3	0	0	3	20	20	6	0	0	2	0	0	1	0	1	0
3163671466 NTR1 at 9"	3	0	3	0	0	20	7	0	0	2	0	0	1	0	1	0
3163701467 NTB2 at 9"	3	0	0	3	20	0	6	0	0	2	0	õ	1	0	1	õ
3163731467 NTR1 at 11"	3	0	3	0	20	20	7	0	0	3	0	0	1	0	1	Ő
3163761468 NTR2 at 11"	ž	0	0	3	20	20	7	42	0	2	0	0	2	Ő	2	0
3163796468 NTP1 at 4"	ž	0	š	0	17	20	5		ő	2	0	0	0	0	0	0
2162026460 NTD2 -+ 4"	2	0	0	2		20	7	0	0	2	0	0	1	0	1	0
2162056460 NTD1 -+ 6"	2	0	2	0	20	20	ć	0	0	1	0	0	1	0	1	0
2162006469 NTD2 -+ C"	2	0		2	20	20	0	0	0	÷	0	0	1	0	1	0
2162016470 NIR2 at 0"	2	0	2	2	20	20	0	0	0	2	0	0	1	0	1	0
3163916470 NIRI at 8"	2	0	2	0	20	20		0	0	2	0	0	1	0	1	0
3163946470 NIR2 at 8"	3	0	0	3	0	10	6	0	0	2	0	0	1	0	1	0
3163976471 NIRI at 10"	3	0	3	0	20	4	/	0	0	2	0	0	1	0	1	0
3164006471 NIR2 at 10"	2	0	0	2	20	20	6	0	0	2	0	0	1	0	1	0
3164036472 NIRI at 12"	3	0	2	1	1	20	6	0	0	2	0	0	1	0	1	0
3164066472 NIR2 at 12"	7	3	1	3	339	320	139	0	0	43	0	0	22	0	22	0
3164722431 Begin Stare 2"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3164722481 NIR1 at 3"	3	0	3	0	20	20	6	0	0	2	0	0	1	0	1	0
3164752482 NIR2 at 3"	3	0	0	3	0	20	7	0	0	2	0	0	1	0	1	0
3164782482 NIR1 at 5"	3	0	3	0	20	5	6	0	0	2	0	0	1	0	1	0
3164812483 NIR2 at 5"	3	0	0	3	20	15	7	0	0	2	0	0	1	0	1	0
3164842483 NIR1 at 7"	3	0	3	0	20	20	6	0	0	2	0	0	1	0	1	0
3164872484 NIR2 at 7"	3	0	0	3	0	20	6	0	0	2	0	0	1	0	1	0
3164902484 NIR1 at 9"	3	0	3	0	20	1	7	0	0	2	0	0	1	0	1	0
3164931440 NIR2 at 9"	3	0	0	3	20	19	7	0	0	2	0	0	1	0	1	0
3164962485 NIR1 at 11"	2	0	2	0	16	20	5	0	0	2	0	0	1	0	1	0
3164992485 NIR2 at 11"	3	0	1	2	20	18	7	40	0	2	0	0	1	0	1	0
3165027486 NIR1 at 4"	4	0	3	1	4	22	6	3	0	2	0	0	1	0	1	0
3165057491 NIR2 at 4"	3	0	0	3	20	0	6	0	0	2	0	0	1	0	1	0
3165087492 NIR1 at 6"	3	0	3	0	20	20	7	0	0	2	0	0	1	0	1	0
3165117492 NTR2 at 6"	3	0	0	3	14	20	6	0	0	2	0	0	1	0	0	0
3165147493 NTR1 at 8"	3	0	3	0	6	20	6	0	0	2	0	õ	0	0	0	õ
3165177493 NTB2 at 8"	3	n	n n	3	20		7	ñ	n	2	0	0	ñ	ñ	õ	ů.
3165207493 NTB1 at 10"	ž	0	3 3	0	20	20	7	ő	0	2	0	0	ő	Ő	ő	0
3165237494 NTR2 at 10"	3	0	C C	3	0	20	, F	0	0	2	0	0	n n	0 0	õ	0
3165267404 NTD1 at 12"	2	0	2	0	17	10	c o	0	0	1	0	0	0	0	0	0
3165207405 NTD2 at 12"	142	5	70	67	1080	109/	0	2294	702	202	722	695	95	20	60	0
STORESHADD NIKE OF IT	142	5	/0	0/	T000	1024	443	2230	105	203	122	050	20	20	00	U

EARTHLOOK2

Summary: No problems

Data Collection Plot:

Timestamps of sequence milestones:

1669653476	ccsds_downlink_command():	:	echoing	"Start Sequence"
1669653528	ccsds downlink command():	:	echoing	"TLM HSS RATE :rate 29000"
1669653578	ccsds_downlink_command():	:	echoing	"Mode: MIRLOOK 29"
1669653628	ccsds_downlink_command():	:	echoing	"Mode: NSP2"
1669698979	ccsds downlink command():	:	echoing	"Mode: VIS"
1669719779	ccsds downlink command():	:	echoing	"Mode: NIR1"
1669752179	ccsds downlink command():	:	echoing	"Mode: NIR2"
1669784580	ccsds downlink command():	:	echoing	"Mode: VSP"
1669866431	ccsds downlink command():	:	echoing	"Mode: MIR1"
1669995079	ccsds downlink command():	:	echoing	"Mode: MIR2"
1670123834	ccsds downlink command():	:	echoing	"Mode: NSP1"
1670253486	ccsds downlink command():	:	echoing	"Begin Stare 1"
1670253536	ccsds downlink command():	:	echoing	"NIR1 at 3"
1670283536	ccsds downlink command():	:	echoing	"NIR2 at 3"
1670313537	ccsds downlink command():	:	echoing	"NIR1 at 5"
1670343537	ccsds downlink command():	:	echoing	"NIR2 at 5"
1670373538	ccsds downlink command():	:	echoing	"NIR1 at 7"
1670403538	ccsds downlink command():	:	echoing	"NIR2 at 7"
1670433538	ccsds downlink command():	:	echoing	"NIR1 at 9"
1670463539	ccsds downlink command():	:	echoing	"NIR2 at 9"
1670493539	ccsds downlink command():	:	echoing	"NIR1 at 11"
1670523540	ccsds downlink command():	:	echoing	"NIR2 at 11"
1670558540	ccsds downlink command():	:	echoing	"NIR1 at 4"
1670588540	ccsds downlink command():	:	echoing	"NIR2 at 4"
1670618541	ccsds downlink command():	:	echoing	"NIR1 at 6"
1670648541	ccsds downlink command():	:	echoing	"NIR2 at 6"
1670678542	ccsds downlink command():	:	echoing	"NIR1 at 8"
1670708542	ccsds downlink command():	:	echoing	"NIR2 at 8"
1670738542	ccsds downlink command():	:	echoing	"NIR1 at 10"
1670768543	ccsds downlink command():	:	echoing	"NIR2 at 10"
1670798543	ccsds downlink command():	:	echoing	"NIR1 at 12"
1670828544	ccsds downlink command():	:	echoing	"NIR2 at 12"
1671484503	ccsds downlink command():	:	echoing	"Begin Stare 2"
1671484553	ccsds downlink command():	:	echoing	"NIR1 at 3"
1671514553	ccsds downlink command():	:	echoing	"NIR2 at 3"
1671544554	ccsds downlink command():	:	echoing	"NIR1 at 5"
1671574554	ccsds downlink command():	:	echoing	"NIR2 at 5"
1671604555	ccsds downlink command():	:	echoing	"NIR1 at 7"
1671634555	ccsds downlink command():	:	echoing	"NIR2 at 7"
1671664555	ccsds downlink command():	:	echoing	"NIR1 at 9"
1671694556	ccsds downlink command():	:	echoing	"NIR2 at 9"
1671724556	ccsds downlink command():	:	echoing	"NIR1 at 11"
1671754557	ccsds downlink command():	:	echoing	"NIR2 at 11"
1671789557	ccsds downlink command():	:	echoing	"NIR1 at 4"
1671819558	ccsds downlink command():	:	echoing	"NIR2 at 4"
1671849558	ccsds downlink command():	:	echoing	"NIR1 at 6"
			-	

```
1671879558 ccsds_downlink_command(): echoing "NIR2 at 6"
1671909559 ccsds_downlink_command(): echoing "NIR1 at 8"
1671939559 ccsds_downlink_command(): echoing "NIR2 at 8"
1671969560 ccsds_downlink_command(): echoing "NIR1 at 10"
1671999560 ccsds_downlink_command(): echoing "NIR2 at 10"
1672029561 ccsds_downlink_command(): echoing "NIR1 at 12"
1672059561 ccsds_downlink_command(): echoing "NIR2 at 12"
```

timestamp message							NSP1-		+	NSP2-		+	VSP		+	
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
000000565 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1669654041 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1669654093 TLM HSS BATE :rate 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1669654143 Mode: MTRLOOK 29"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ő	õ
1669654193 Mode: NSP2"	0	0	0	0	0	0	0	0	0	50	722	677	0	0	0	0
1669699544 Mode: VIS"	2	2	0	0	0	0	0	ő	ő	1	0	0,,,	0	0	ñ	0
1669720344 Mode: NID1"	10	0	10	0	0	0	0	0	0	2	0	0	0	0	0	0
1660752744 Mode: NIR1	10	0	10	0	0	0	0	0	0	2	0	0	0	0	0	0
1009732744 Mode. NIK2	0	0	0	0	0	0	0	0	0	2	0	0	20	20	<i>c</i>	0
1669/85145 Mode: VSP	4	0	0	4	100	0	0	0	0	5	0	0	29	20	0	0
1009800990 Mode: MIKI"	0	0	0	0	180	0	0	0	0	9	0	0	0	0	0	0
1669995644 Mode: MIR2"	0	0	0	0	0	180	0	0	0	8	0	0	0	0	0	0
16/0124399 Mode: NSP1"	0	0	0	0	0	7	62	2211	727	9	0	0	0	0	0	0
1670254051 Begin Stare 1"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1670254101 NIR1 at 3"	3	0	3	0	20	13	7	0	0	2	0	0	2	0	2	0
1670284101 NIR2 at 3"	3	0	0	3	20	20	6	0	0	2	0	0	1	0	1	0
1670314102 NIR1 at 5"	3	0	3	0	0	20	6	0	0	2	0	0	1	0	1	0
1670344102 NIR2 at 5"	3	0	0	3	20	4	7	0	0	2	0	0	1	0	1	0
1670374103 NIR1 at 7"	3	0	3	0	20	16	6	0	0	1	0	0	1	0	1	0
1670404103 NIR2 at 7"	3	0	0	3	20	20	6	0	0	2	0	0	1	0	1	0
1670434103 NIR1 at 9"	3	0	3	0	0	20	7	0	0	2	0	0	1	0	1	0
1670464104 NIR2 at 9"	3	0	0	3	20	2	6	0	0	2	0	0	1	0	1	0
1670494104 NIR1 at 11"	3	0	3	0	20	18	6	0	0	2	0	0	1	0	1	0
1670524105 NIR2 at 11"	3	0	0	3	20	20	7	38	0	3	0	0	1	0	1	0
1670559105 NTR1 at 4"	3	0	3	0	19	20	6	4	0	2	0	0	1	0	1	0
1670589105 NTB2 at 4"	3	0	0	3	1	20	7	0	0	2	0	0	1	0	1	õ
1670619106 NTR1 at 6"	3	0	3	0	20		6	0	0	1	0	0	1	0	1	0
1670649106 NTB2 at 6"	3	0	0	3	20	20	6	0	0	2	0	Ő	1	0	1	0
1670679107 NTR1 at 8"	3	0	3	0	10	20	7	0	0	2	0	0	1	0	1	0
1670700107 NIRI at 0	2	0	0	2	1	20	ć	0	0	2	0	0	1	0	1	0
1670709107 NIR2 at 8"	2	0	2	2	20	20	0	0	0	2	0	0	1	0	1	0
1670760100 NIRI at 10"	2	0	2	2	20	20	0	0	0	2	0	0	1	0	1	0
1670769106 NIR2 at 10"	2	0	0	2	20	20		0	0	2	0	0	1	0	1	0
1670000100 NIRI at 12"	3	0	3	0	19	20	1 2 0	0	0	2	0	0	1	0	1	0
1670829109 NIR2 at 12"	6	3	0	3	321	320	139	0	0	43	0	0	22	0	22	0
16/1485068 Begin Stare 2"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1671485118 NIRI at 3"	3	0	3	0	20	20	6	0	0	2	0	0	1	0	1	0
1671515118 NIR2 at 3"	3	0	0	3	0	20	1	0	0	2	0	0	1	0	1	0
1671545119 NIR1 at 5"	3	0	3	0	20	3	6	0	0	2	0	0	1	0	1	0
1671575119 NIR2 at 5"	3	0	0	3	20	17	6	0	0	2	0	0	1	0	1	0
1671605120 NIR1 at 7"	3	0	3	0	20	20	7	0	0	2	0	0	1	0	1	0
1671635120 NIR2 at 7"	3	0	0	3	0	20	6	0	0	2	0	0	1	0	1	0
1671665120 NIR1 at 9"	3	0	3	0	20	5	7	0	0	2	0	0	1	0	1	0
1671695121 NIR2 at 9"	3	0	0	3	20	15	6	0	0	2	0	0	1	0	1	0
1671725121 NIR1 at 11"	3	0	3	0	20	20	6	0	0	2	0	0	1	0	1	0
1671755122 NIR2 at 11"	3	0	0	3	17	20	7	43	0	2	0	0	1	0	1	0
1671790122 NIR1 at 4"	3	0	3	0	3	18	6	0	0	2	0	0	1	0	1	0
1671820123 NIR2 at 4"	3	0	0	3	20	2	6	0	0	2	0	0	1	0	1	0
1671850123 NIR1 at 6"	3	0	3	0	20	20	7	0	0	2	0	0	1	0	1	0
1671880123 NTB2 at 6"	3	ņ	n.	3	17	20	6	ņ	ņ	2	0	n.	1	ñ	1	0
1671910124 NTR1 at 8"	3	C C	2	0		20	6	C C	C C	2	0	0 0	1	0	1	n
1671940124 NTP2 at 8"	2	0	0	3	20	20	7	0	0	2	0	0	1	0	1	0
1671970125 NTD1 at 10"	2	0	2	0	20	20	ć	0	0	2	0	0	1	0	1	0
1672000125 NIRI dt 10	2	0	5	2	20	20	0	0	0	2	0	0	1	0	1	0
1072000123 NIR2 at 10"	3	0	0	3	± /	20		0	0	2	0	0	1	0	1	0
10/2000126 NIKI at 12"	3	0	3	0	1000	20	6	0	0	1	700	0	1 0 1	0	1	0
1672060126 NIR2 at 12"	142	5	70	67	T080	TT00	443	2296	727	203	722	677	101	20	67	U

SEPARATION

Summary: This sequence was reworked during the flight to incorporate MOS' experience managing changes in the downlink bandwidth during maneuvers. Control of the camera sampling rates after the s/c had turned to face the Centaur was shifted to the ground and run from there. Otherwise, the sequence was the same as had been planned.

Data Collection Plot:

51	STED SEC	References Sintesten:	Finished gettip	54	55	56	Mode: SEP 5720	58	59	2.0	1	2	3	4	5	6	7	8	9
CLK		-		,			1	1	,		1			1			,		
VIS																			
NIR1																			
NIR2																			
MIR1																			
MIR2																			
NSP1																			
NSP2																			
VSP																			
TLP																			
Log																			
			***************************************					.01				ar dinti oʻlinti		Incident Addition	lat dent		and the first	lin al li	
Marks																			

Timestamps of sequence milestones:

3425598488	ccsds d	downlink	command():	echoing	"Start Sequence"
3425598522	ccsds c	downlink	command():	echoing	"TLM HSS RATE :rate 29000"
3425598572	ccsds_c	downlink	command():	echoing	"Mode: SEP A 29"
3425634023	ccsds_c	downlink	command():	echoing	"Mode: NIR2"

timestamp message	-	-		-			NSP1-		+	NSP2-		+	VSP+			
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
000000565 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
3425599053 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3425599087 TLM HSS RATE :rate 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3425599137 Mode: SEP A 29"	0	0	0	0	55	0	0	0	0	0	0	0	0	0	0	0
3425634588 Mode: NIR2"	0	0	0	0	55	0	0	0	0	0	0	0	1	0	0	0
PREIMPACT IMPACT

Summary: Described in the next section

Data Collection Plot:

Timestamps of sequence milestones:

3457395479	ccsds downlink command():	echoing	"Start Sequence"
3457395530	<pre>ccsds downlink command():</pre>	echoing	"ver impact-1000k 2009-10-01"
3457395580	<pre>ccsds downlink command():</pre>	echoing	"TLM HSS RATE :rate 1000000"
3457398430	<pre>ccsds_downlink_command():</pre>	echoing	"Mode: PREIMPACT 1000"
3457613454	<pre>ccsds_downlink_command():</pre>	echoing	"MODE: PREIMPACT SLEEP"
3459143360	<pre>ccsds_downlink_command():</pre>	echoing	"TLP Activated"
3460341442	<pre>ccsds_downlink_command():</pre>	echoing	"Stop Other Sequences"
3460342546	ccsds downlink command():	echoing	"Mode: FLASH 1000"
3460399424	<pre>ccsds downlink command():</pre>	echoing	"Start VSP Exposure"
3460402424	<pre>ccsds downlink command():</pre>	echoing	"Predicted Centaur impact time"
3460407324	<pre>ccsds downlink command():</pre>	echoing	"Mode: CURTAIN 1000"
3460587424	<pre>ccsds downlink command():</pre>	echoing	"Mode: CRATER 1000"
3460647432	ccsds downlink command():	echoing	"Predicted SSC impact time"

Data collected during sequence phases

timestamp	message
-----------	---------

crinescamp message							TIOLT			11012			VOI			
	VCB	VIS	NIR1	NIR2	MIR1	MIR2	HS1	IF1	DM1	HS2	IF2	DM2	CNT	SM	BM	TLP
000000564 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
3457396043 Start Sequence"	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3457396094 ver impact-1000k 200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3457396144 TLM HSS RATE :rate 1	0	0	0	0	0	0	0	36	0	0	18	0	1	0	0	0
3457398994 Mode: PREIMPACT 1000	306	151	77	78	8545	8415	0	11229	12333	0	11237	12312	44	0	37	0
3457614018 MODE: PREIMPACT SLEE	2306	1138	584	584	56656	29905	2404	0	86	2404	0	107	284	0	284	0
3459143924 TLP Activated"	1964	980	490	494	25920	7340	2033	0	0	2033	0	0	240	0	240	1061400
3460342006 Stop Other Sequences	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3460343110 Mode: FLASH 1000"	134	0	134	0	580	560	2	4045	0	96	0	0	5	0	3	56900
3460399988 Start VSP Exposure"	9	0	9	0	40	20	0	217	0	5	0	0	0	0	0	3000
3460402988 Predicted Centaur im	14	0	14	0	40	60	0	347	0	8	0	0	1	0	1	4800
3460407888 Mode: CURTAIN 1000"	242	103	71	68	4820	3820	304	49	0	306	0	0	21	1	13	173300
3460587988 Mode: CRATER 1000"	40	0	0	40	3540	3450	101	0	0	101	0	0	30	0	23	700
3460647996 Predicted SSC impact	5015	2372	1379	1264	100141	53570	4844	15923	3 12419	4953	3 11255	12419	627	1	601	1300100

11 THE FINAL HOUR

The PREIMPACT and IMPACT data collection periods covered the final hour of the LCROSS mission. The plan for these periods was flexible and included commands from the ground. There were also several ways in which what happened differed from the plan. This section describes what occurred and why. It is a simplified version the final entry in the LCROSS Flight Director's blog. This version focuses on issues that impact the quality of the data submitted to the Planetary Data System performance and eliminates other material. This account covers why some of the pictures were fuzzy and

some were white and why ground commands were sent during the last minutes of the flight. The original, full account is here: <u>http://blogs.nasa.gov/cm/blog/lcrossfdblog</u>.

Available Bandwidth

Data from all nine instruments shared 1 mbit/s of a 1.096 mbit/s telemetry channel. This was the maximum data rate available for the LCROSS mission, and it was used only during the lunar swingby on June 22nd and during the impact on October 9th. Instrument calibration activities used a variety of lower data rates.

The Observation Plan

The two components of the LCROSS mission, the Centaur and the Shepherding Spacecraft (S-S/C), separated about 10 hours before they reached the moon. At the moment the Centaur impacted, the S-S/C was still 600 kilometers above the surface. Falling at 2.5 kilometers per second, the S-S/C reached the surface 4 minutes later.

The diagram below shows the plan for observing from the S-S/C, starting one minute before Centaur impact. The diagram plots the intended schedule of instrument observations against time: each row represents one of the instruments (instrument abbreviations appear below each row of data), and each tick mark along a row represents one observation, either an image or a spectrum. Over some intervals, the observations are spaced so closely that the plot looks like a solid bar.

Figure 1 The LCROSS impact observation plan: These timelines indicate when each image and spectra was planned to occur during the final four minutes of the mission.

The last four minutes were divided into three periods, called FLASH, CURTAIN and CRATER. Each period focused on a different aspect of the expected impact event and emphasized data collection from different instruments.

FLASH started one minute before the Centaur impact and focused on the very short burst of light generated by the Centaur impact itself. Starting from the top of the diagram, the plan was to stop both the Visible Light Camera (VIS) and the Near-Infrared Camera #2 (NIR2). This allocated downlink bandwidth to NIR1 images which had the best chance of catching the location of the impact flash. These three cameras shared a common input to our payload computer, called the Data Handling Unit (DHU), and could not be used simultaneously. By stopping VIS and NIR2, we could run NIR1 at a faster rate (see the segment labeled 'A'), increasing the odds that it would image the flash. The planned sequence also increased the NIR1 exposure time to capture the flash signature even if it was very faint. This would produce a badly overexposed image of the illuminated lunar surface, but we did not expect to overexpose the shadowed regions and believed the impact flash would be visible against the dark background. Shifting between cameras like this accounts for the periods where one camera image would stop updating for a while.

The FLASH strategy for the spectrometers was also designed around an expectation of a dim, short duration flash event. Near Infrared Spectrometer #1 (NSP1), the main water-detection instrument, was put into a high-speed, low resolution mode called 'Flash Mode'. This is represented by the yellow bar. The Visible and Ultraviolet light Spectrometer (VSP) was commanded to take long exposures, and Total Luminescence Photometer (TLP) was powered early enough to reach equilibrium and be at its most sensitive for the flash event.

The second phase, CURTAIN, started just after the Centaur impact and ran for three minutes. Its purpose was to take spectra and images of the expanding vapor and dust clouds thrown up by the impact. CURTAIN was the most important period and also the simplest. All instruments ran in their default modes, as follows. The DHU shifted between the three analog cameras in a stuttering pattern - VIS, VIS, NIR1, NIR2 - repeating. Both thermal cameras monitored the plume shape and temperature. The two downward-facing spectrometers (NSP1 and VSP) looked for water and other chemicals. The side-looking spectrometer (NSP2) also looked for water and other compounds, but from sunlight scattered or absorbed by the dust and vapor cloud. The TLP continued to take data during this period, but it's primarily function was during FLASH.

The goal of CRATER, the final period, was to image the crater made by the Centaur impact to get its precise location and, more importantly, its size. The primary instruments in this period were the two thermal cameras, MIR1 and MIR2. Their sample rates were increased relative to those for CURTAIN. To image the crater in a second frequency band, NIR2, the more sensitive near infrared camera, was commanded to its most sensitive setting. NIR1 and VIS would not be used during this period because neither was sensitive enough to see anything in the permanently shadowed area. All

spectrometers would continue running to look for light reflected off of any plume or vapor cloud. At the end of this phase, the S-S/C would fall below the rim of Cabeus Crater, cutting off radio transmission to Earth, and then impact the surface a couple of seconds later.

There were three keys to making this plan work:

- 1. Downlink Bandwidth: the data collected had to fit within the 1 megabit radio downlink. A lot of testing before launch to work out a data collection plan that was further confirmed and refined based on on-orbit performance. We gave priority to data from the most important instrument, the near-infrared spectrometers, to provide robustness to the design.
- 2. Camera Exposure: The flight team planned for the possibility that camera exposure settings would need to be adjusted during the descent to reflect the changing scene brightness. Defaults were pre-programmed based on the latest lighting models for impact morning.
- 3. Command Timing: The instrument command sequences governing FLASH, CURTAIN and CRATER periods changed instrument configuration and sampling rates frequently as needed to focus on different aspects of the impact event. There were many constraints governing the design of these sequences, and they were necessarily somewhat brittle to lags in command execution.

What actually happened?

LCROSS collected a very rich and interesting data set that met the science objectives. However, there were challenges in all three areas – bandwidth, exposure settings and command timing. Although all ultimately proved minor, it was, in some ways, a close call. This diagram shows what data was actually collected during the final four minutes of the mission.

Figure 2 Actual data collection performance of the lcross payload: These timelines indicate when the images and spectra were taken on the morning of the impact. The pattern gives clues about the performance of the hardware and software systems that collected the data.

First, the rows representing the spectrometers, NSP1, NSP2 and VSP, look almost exactly as they should. Except for one problem with the Visible and Ultraviolet light spectrometer (VSP), which I describe later, the plan for collecting spectra worked perfectly. This is very good, because the spectra carried most of the information LCROSS was trying to collect.

As for the cameras, several differences from the plan jump out. The most obvious is that the timing of observations along some timelines is irregular with many observations missing, e.g., the visible camera pointed to by note E. This occurred with all five cameras (the first five timelines) but not with the spectrometers (the next three timelines).

Scene Complexity and Bandwidth Limitations

The irregularity of observations occurred because we underestimated the complexity of the lunar scene during ground testing. We had done much of our testing with a large reproduction of the moon's north pole in front of the cameras, and data from this testing was used to allocate downlink bandwidth to the instruments and to margin. However, this reproduction and its lighting didn't mimic the high contrast and detail of the real scene sufficiently. Scene complexity and contrast mattered because the images were highly compressed and changes in the moon scene changed the sizes of the compressed images by a factor of 4. We first observed this behavior during the lunar swingby LCROSS performed during the first week of its mission. Turning on the instruments during the swingby was intended as a learning experience, and it proved critically important. It provided the best operational practice we got for the impact as well as data to calibrate the instruments.

After the lunar swingby in June, we changed the thermal camera sampling rates in the instrument command sequences for the final hour. Unfortunately, the compression problem turned out to be about 20% worse during the final hour of the mission than during the lunar swingby. This forced the flight team to change the thermal camera rates again in real-time. In the NASA TV impact video sequence, the Science Team can be heard requesting a change of MIR1 rates to 1 Hz, and MIR2 to 0.1 Hz. (See note F in the figure. The rate for thermal camera #1 (MIR1) changes just before this note and changes for MIR2 just after it.

The bandwidth problem could have been avoided if in addition to changing camera sampling rates in the command sequences, the stuttering pattern for the analog cameras mentioned above had also been changed to eliminate one VIS image during each repetition. Collecting a single VIS image during each repetition rather than two would have made no difference to the quality of the data collected, particularly since the two images were closely spaced. However, the ground instrument simulator did not have the full set of instruments, which made it impossible to adequately test this change on the ground. Testing this change on orbit was discussed but dropped due to the anomaly LCROSS experienced on 8/22/2009.

One other problem caused by the complex lunar scene was damaged images. After compression, some of the visible camera images were still too large to fit within a single data packet for transmission to Earth. Here's an example of the kind of damaged image that resulted. The shadowed area should be completely dark, but instead contains wispy bright areas. These compression-artifacts are intimately linked to the scene and need to be taken out with image post-processing.

Figure 3 Example of damage to downlinked images due to clipping in the telemetry packet formatting software.

What caused these compression artifacts? The software for compressing these images had been written some years before to clip the compressed form of images to ensure they

always fit within a single data packet (maximum size 65536 bytes). The DHU used a wavelet-based compression algorithm, and clipping the compressed images removed some information needed to recreate the image accurately. An alternative would have been to split the images across multiple packets and reassemble them on the ground. This certainly could have been done in principle, but doing so would have introduced significant changes right at the heart of software that the project had planned to reuse without change after its successful use on previous projects.

Changing NIR Exposure Settings

Most of the commanding done from the ground was to adjust the exposure times of the near infrared cameras as the scene changed. The other cameras either controlled themselves (VIS) or had only one appropriate setting (the thermal cameras, MIR1 and MIR2). We controlled the exposure setting for the near infrared cameras explicitly because we were trying to image a relatively dim flash and ejecta curtain close to bright mountain peaks.

Near the beginning of the FLASH period, the flight team discovered the exposure setting wasn't correct. To image the dim centaur impact flash, the sunlit peaks were deliberately overexposed. In this case, the sunlit areas electronically bled into nearby parts of the image. That occurs when electrons in overexposed pixels move across the image detector to other pixels. In this case, the shadowed area of Cabeus crater was completely covered, obscuring our view of the impact. That was why the only image that was updating just before the Centaur impact was white. This level of bleeding didn't occur earlier in the mission, or in almost any of the ground testing. However, a search of the data archive did find that it occurred once, a year before launch, in one flashlight test in a darkened room. We did not fully understand the implications of that test.

Once the flight team noticed the problem, a command was sent to adjust the exposure setting, but the command arrived about two seconds after the Centaur impact. Therefore, NIR1 failed to capture the location of the impact flash. However, the thermal cameras, MIR1 and MIR2 did image the impact location.

We intentionally caused the same bleeding problem later, during the CRATER period, but we had better success (see above figure at the segment labeled 'B'). Initially, the NIR2 camera images were badly overexposed for the same reason as during FLASH (hence the white images that appear in the NASA TV video just after entry to DV Mode). The flight team made the call to reduce the exposure time slightly, from the exposure setting called "OPR 15" to "OPR 10". As the lit peaks slid out of the field of view, this change produced excellent images of the very dark crater floor, including the image that gave us our best estimate of the Centaur crater location and size. These images go all the way down to 2 seconds before S-S/C impact where the craft was 5 kilometers above the surface, although the centaur impact crater leaves the field of view before that. The crater floor of Cabeus was indeed brighter than any of the predictions, at least in the near infrared.

Figure 4 This image sequence was captured just before the end of the mission and shows the NIR2 camera going from badly overexposed to acceptably exposed as the lit peaks surrounding Cabeus leave the field of view.

The right side of Figure 5 shows one of these NIR2 images overlaid with a MIR1 image. This allows the centaur impact crater to be reliably identified in the NIR2 imagery which ultimately has turned out to be the best source data for computing the coordinates of the centaur impact crater.

The left figure below shows aligned images from NIR2 and MIR1, taken before the Centaur impact. The right figure shows aligned images from these cameras taken just before the S-S/C impacted and showing the Centaur impact crater (see inset). These images don't align perfectly because they were taken about a second and 2.5 kilometers apart.

Figure 5 The right image shows the Centaur impact crater in both near-infrared and mid-infrared images. The left images overlays images taken before the impact by the same two cameras.

Unintentionally Long Exposure Times

The commanding side of the automatic sequence ran almost perfectly. However, there was one problem with the Visible and Ultraviolet Spectrometer during the CURTAIN period. Because the DHU was at its maximum data throughput capacity during the first part of CURTAIN, one command to change exposure time was delayed and sent during a period when the instrument wasn't listening. That command was ignored. This occurred at time D in Figure 2 and resulted in capturing fewer spectra with longer-than-planned exposure times. The effect of this on the VSP calibrated dataset is fewer spectra with longer integration times and lower signal-to-noise ratios.