Interface Control Document Between the Lunar Prospector Project and the Flight Dynamics Analysis Branch

Final

December 31, 1997

Interface Control Document Between the Lunar Prospector Project and the Flight Dynamics Analysis Branch

Final

December 31, 1997

This document is controlled by the individuals listed below, whose signatures constitute concurrence that the contents represent the latest agreements and understandings among the parties involved.

Approval:

Marcie SmithDateEstLunar Prospector Operations ManagerNASA, Ames Research Center

Estimate % Complete

David Folta Date Flight Dynamics Engineer NASA, Goddard Space Flight Center Estimate % Complete

Alan BinderDateEstLunar Prospector Principle InvestigatorLockheed Martin

Estimate % Complete

Review and Concurrence:

Mark BeckmanDateOrbit Determination AnalystNASA, Goddard Space Flight Center

Estimate % Complete

Ken Galal Date LP Orbit Control Analyst NASA, Ames Research Center Estimate % Complete

David Lozier Date LP Orbit Control Analyst NASA, Ames Research Center Estimate % Complete

Dan Swanson Date Lunar Prospector Dynamics Engr. Lockheed Martin Estimate % Complete

PREFACE

The purpose of this interface control document (ICD) is to provide complete information concerning the products to be transferred between the Lunar Prospector Mission Control Center (MCC) and the Flight Dynamics Analysis Branch (FDAB) of Goddard Space Flight Center (GSFC) in support of the Lunar Prospector mission. The contents of this document are complete to a level sufficient to develop and operate the interface.

This ICD is currently being maintained by the Spacecraft Operations Branch, Ames Research Center (ARC). Questions and proposed changes concerning this document should be addressed to:

Lunar Prospector Mission Operations Manager Spacecraft Operations Branch Code SFE Ames Research Center Moffett Field, CA 94035-1000

TABLE OF CONTENTS

SECTIO	ON 1 INTRODUCTION	8
1.1	Purpose and Scope	8
1.2	Mission Phases	8
1.3	Mission-Specific Characteristics	9
anami		10
SECTIO	JN 2 FACILITIES/SYSTEMS	10
2.1	Interface Overview	10
2.2	Lunar Prospector Mission Control Center	10
2.3	Flight Dynamics Analysis Branch Payload Operations Room	10
2.4	Deep Space Network	11
2.5	Tracking and Data Relay Satellite System	12
SECTIO		12
2 1	Droduct Summary Chart	13
J.1 2 9	Product Summind y Chart	10
5.2	2.2.1 Attitude Moneywar Command Sheet	13
	2.2.1 Attitude Maneuver Command Sheet	1/
	3.2.1.1 Delta-v Spin Axis Pointing	10
	3.2.1.2 Mapping Orbit Spin Axis Pointing	20
	3.2.2 Orbit Maneuver Command Sneet	21
	3.2.2.1 Axial Orbit Maneuver	22
	3.2.2.2 Vector Orbit Maneuver	24
	3.2.3 Orbit Maneuver Reports	27
	3.2.3.1 Orbit Maneuver Planning Package	28
	3.2.3.2 Post-Maneuver Report	29
	3.2.4 Mission Planning Aids	30
	3.2.4.1 Station View Periods	31
	3.2.4.2 Shadow Times	33
	3.2.4.3 Lunar Eclipse Times	35
	3.2.5 Orbit Determination and Prediction Products	37
	3.2.5.1 Definitive Orbit Ephemeris	38
	3.2.5.2 Predicted Orbit Ephemeris	40
	3.2.5.3 Orbit Maneuver Assessment Based on Doppler	
	Residuals	42
	3.2.5.4 Solar-Lunar-Planetary File	43

3.2.6	Tracking Data Products	44
	3.2.6.1 DSN Station Acquisition Data	45
	3.2.6.3 TDRSS Acquisition Data	46
3.3 Produ	ucts Supplied by the LP Project	47
3.3.1	LP Operating Constraints	48
3.3.2	LP Operations Timelines	49
3.3.3	LP Maneuver Conditions	50
3.3.4	Ground Station Schedules	52
Annondiv A	Lunan Drognastan Coordinate System Definitions	E 1
Appendix A	Lunar Prospector Coordinate System Definitions	54
Appendix B	Lunar Prospector Orbit Maneuver Product Delivery	- 0
	Schedule	56
Appendix C	Flight Dynamics Analysis Branch ASCII Ephem Format	59
Appendix D	Key LP Orbit Control/Determination Operating	
	Constraints	67

List of Figures

Figure

2-1	Lunar Prospector Ground System	11
3-1	Attitude Maneuver Command Sheet	19
3-2	Axial Orbit Maneuver Command Sheet	23
3-3	Vector Orbit Maneuver Command Sheet	25
3-4	Sample LP Station View Periods	32
3-5	Sample LP Shadow Times	34
3-6	Sample LP Lunar Eclipse Times	36
3-7	LP Maneuver Conditions Form	51

List of Tables

Table

3-1	Product Summary Chart	15
• -	1 i o a dot o difinital j	

1.0 Introduction

1.1 Purpose and Scope

This interface control document (ICD) defines the complete interface between the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC) Lunar Prospector (LP) Project Office and the Goddard Space Flight Center (GSFC) Flight Dynamics Analysis Branch (FDAB) in support of the Lunar Prospector (LP) mission. This ICD covers products exchanged between the LP Mission Control Center (MCC) located at ARC and the Flight Dynamics Analysis Branch (FDAB) at GSFC. The ICD also includes products provided by the FDAB to other ground elements (e.g. the NASA Jet Propulsion Laboratory) at the direction of the LP Project Office.

1.2 Mission Phases

There are four Lunar Prospector mission phases identified for the purpose of this ICD:

- Prelaunch: Includes all pre-launch activities including spacecraft testing and mission simulations up to launch
- o Transfer Orbit: Includes launch, translunar injection (TLI) and transfer orbit operations up to lunar orbit insertion
- Lunar Orbit Insertion (LOI): Includes lunar orbit insertion operations leading to the nominal 100 km lunar mapping orbit
- o Mapping: Includes science and extended mission operations

This ICD addresses primarily the operational exchange of products between the FDAB and the LP Project during the Transfer Orbit, Lunar Orbit Insertion and Mapping phases of the mission. Prelaunch product deliveries for the purpose of testing/simulations are expected, but are not explicitly covered in this ICD. Where applicable, a pre-launch delivery of a final nominal set of predicted products will be delivered no later than three days prior to launch.

1.3 Mission-Specific Characteristics

The Lunar Prospector spacecraft will be launched from a Lockheed Martin Athena II launch vehicle out of the Eastern Test Range (ETR). Following insertion into a 100 nm circular parking orbit and a long (42 minute) coast, a Star-37FM solid motor will inject the spacecraft into a direct transfer orbit to the moon. The four day (105 hr) cruise to the moon will be followed by a series of LOI maneuvers which will place the spacecraft first into a 12-hour orbit, then a 3.5-hour orbit and finally a 100 km circular polar mapping orbit. The nominal mission life-time is one year, with a possible 6 month extended mission in a 100 km by 10 km lunar orbit.

2.0 Facilities/Systems

2.1 Interface Overview

Figure 2.1 provides an overview of the Lunar Prospector ground system and key interfaces. The Lunar Prospector Mission Control Center (MCC) will be the focal point of LP operations. Command, telemetry, and tracking will be provided by NASA's Deep Space Network (DSN), operated by the Jet Propulsion Laboratory (JPL). Provisions are also being made to obtain TDRS support for telemetry and tracking for the time period immediately following injection into the lunar transfer orbit. Goddard Space Flight Centers' Flight Dynamics Analysis Branch will provide station acquisition data, orbit determination, and orbit maneuver support for the LP mission.

2.2 Lunar Prospector Mission Control Center

The LP MCC will be located at NASA Ames Research Center. A flight operations team (FOT) at the LP MCC will be responsible for mission planning, scheduling, commanding, and data distribution functions in support of the LP mission.

2.3 Flight Dynamics Analysis Branch Payload Operations Room

The FDAB operates a multi-mission Payload Operations Room (POR) at Goddard Space Flight Center which is used for critical mission support. The FDAB will provide orbit maneuver planning and operations support to the LP MCC. The FDAB will also generate acquisition data in support of DSN and TDRS (as required for initial acquisition support) events. Tracking data collected throughout the mission will be used by the FDAB to generate orbit predictions for use in maneuver planning and attitude determination operations, and definitive orbit ephemeris for use in science data processing. The FDAB will also generate a number of mission planning products in support of FOT operations in the MCC.

Figure 2-1: Lunar Prospector Ground System

2.4 Deep Space Network

The DSN will be used by the LP mission for command, telemetry, and tracking (1 mm/sec) support. Continuous support will be provided by the 26 meter antennas at Canberra (DS46), Madrid (DS66) and Goldstone (DS16) during the transfer phase. DSN 34 meter antennas will be used as backups to the 26 meter antennas and for prime support during certain critical operations (e.g. Lunar Orbit Insertion).

2.5 Tracking and Data Relay Satellite

TDRS support for two-way tracking and telemetry will be scheduled for the period immediately following injection into the transfer orbit and lasting until two minutes prior to the nominally scheduled first DSN station contact (i.e. from TLI to approximately TLI + 20 minutes). This support will provide an early status on the s/c health and safety and help establish the need for any emergency orbit correction maneuver prior to spacecraft acquisition by the DSN. Beyond this period, TDRS forward link support will be dropped with the return link (telemetry) maintained through the end of the LP TDRS visibility period (i.e. approximately 25 minutes beyond the start of the first DSN contact). No TDRS support is planned beyond this initial acquisition period.

3.1 Product Summary Chart

Table 3-1 summarizes all products to be transferred between the Flight Dynamics Analysis Branch and other elements of the Lunar Prospector ground system. A detailed description of each product including its associated mission support phase, format, accuracy, delivery schedule, time span, transmission medium and volume estimate is provided in the following sections.

3.2 Products Supplied by the FDAB

The products supplied by the FDAB for Lunar Prospector support have been grouped as follows:

- o Attitude Maneuver Command Sheet Inputs required by the MCC for generating attitude maneuver commands
- o **Orbit Maneuver Command Sheet** Inputs required by the MCC for generating orbit maneuver commands
- o **Orbit Maneuver Reports** Detailed plans for or results of an LP orbit maneuver
- o **Mission Planning Aids** Products for use in the planning and scheduling of LP MCC operations
- o **Orbit Determination and Prediction Products** Orbit ephemerides and Doppler characteristics
- o **Tracking Data Products** Products used in station acquisition operations

Each of these categories of FDAB products is described in the following sections.

Product Name	ICD	Organ	ization	Description	Mission	Accuracy/	Delivery	Time	Transmission	Volume
	Section	From	То		Phase	Completeness	Schedule	Span	Medium	Estimate
Attitude Maneuver Command Sheet										
Delta-V Spin Axis Pointing [AM2]	3.2.1.1	FDAB	LP MCC	+z axis pointing along thrust direction	LOI	.1 deg	4 hrs prior to att. many.	One Maneuver	Fax / voice backup	<10 kbytes
Mapping Orbit Spin Axis Pointing [AM3]	3.2.1.2	FDAB	LP MCC	+z axis pointing normal to Ecliptic plane	Mapping	.1 deg	1 week prior to att. manv.	One Maneuver	Fax / voice backup	<10 kbytes
Orbit Maneuver Command Sheet						As required to achieve and maintain				
Axial Orbit Maneuver [OM1]	3.2.2.1	FDAB	LP MCC	Maneuver start time, duration, direction, and ∆V Magnitude	LOI Mapping	$\begin{array}{l} 100 \text{km} \pm 20 \text{km} \\ 90 \pm .5 \text{ deg inc} \\ \text{lunar orbit} \end{array}$	[Appendix B]	One Maneuver	Fax / voice backup	<10 kbytes
Vector Orbit Maneuver [ом2]	3.2.2.2	FDAB	LP MCC	Maneuver start time, ΔV magnitude, and Thrust direction	Transfer Mapping	"	[Appendix B]	One maneuver	Fax / voice backup	<10 kbytes
Orbit Maneuver Reports										
Orbit Maneuver Planning Package [0R1]	3.2.3.1	FDAB	LP MCC	Burn parameters, pre/post burn conditions	All	Consistent with Ephem Accuracy [0D2]	[Appendix B]	N/A	Fax/e-mail voice backup	<10 kbytes
Post-Maneuver Report [or2]	3.2.3.2	FDAB	LP MCC	Post-maneuver orbit state, thrust correction factors, propellant remaining	All	Consistent with Ephem Accuracy [OD2]	[Appendix B]	N/A	Fax/e-mail voice backup	<100 kbytes
Mission Planning Aids										
Station View Periods [PA1]	3.2.4.1	FDAB	LP MCC	Entry/Exit times of DSN & TDRS contacts	All	1 min	Weekly	4 weeks	Internet: FDAB Web Site	< 500 kbytes
Shadow Times [PA2]	3.2.4.2	FDAB	LP MCC	Earth and Moon shadow entry/exits	All	1 min	Weekly	4 weeks	Internet: FDAB Web Site	< 500 kbytes
Lunar Eclipse Times [PA3]	3.2.4.3	FDAB	LP MCC	Lunar eclipse entry/exits	Mapping	1 min	Weekly	4 weeks	Internet: FDAB Web Site	< 10 kbytes

 Table 3-1: Product Summary Chart (1 of 2)

Product Name	ICD Organization		ization	Description	Mission	Accuracy/	Delivery	Time	Transmissio	Volume
	Section	From	То		Phase	Completeness	Schedule	Span	n Medium	Estimate
Orbit Determination										
and Prediction										
Products	ļ									
Definitive Orbit	3.2.5.1	FDAB	LP	ASCII files of	LOI	1 km (1-σ)	Weekly	1 week	Internet:	1.5
Ephemeris [odi]			MCC	computed LP state vectors	Mapping	(using updated lunar model)			FDAB Web Site	Megabytes
Predicted Orbit	3.2.5.2	FDAB	LP	ASCII files of	All	500 km after 4	Weekly	4 weeks	Internet:	6
Ephemeris [OD2]			MCC	predicted LP state		weeks	Ŭ		FDAB Web	Megabytes
-				vectors					Site	
Doppler Residual	3.2.5.3	FDAB	LP	Prelim. Assessment of	Transfer	Best Available	5 minutes	1		
Information [OD3]			MCC	TLI and LOI burn			following	maneuver	Voice	N/A
							receipt			
Solar-Lunar-Planetary	3.2.5.4	FDAB	LP	Ephemeris for sun,	All	Based on JPL	Updates as	1992-2011	Internet:	3.5
(SLP) File			MCC	moon, planets		DE 200 Ephem	available		FDAB Web	Megabytes
[OD4]									Site	
Tracking Data										
Products										
DSN Station	3.2.6.1	FDAB	JPL/	Earth centered P-files	All	Consistent	Weekly	4 weeks	Nascom	3
Acquisition Data [TD1]			DSN	Moon centered P-files		with Ephem	5			Megabytes
_						Accuracy [OD2]				
TDRS Acquisition	3.2.6.2	FDAB	STGT	IIRV	Transfer	3σ Athena II	Prelaunch	2 hrs	Nascom	<10 kbytes
Data [TD2]						dispersions				
Operations Planning										
Data										
LP Operating	3.3.1	LP	FDAB	Spacecraft constraints	All	N/A	As Available	N/A	Fax / e-mail	<10 kbytes
Constraints [PD1]		MCC		affecting orbit ops						_
LP Operations	3.3.2	LP	FDAB	Nominal Ops time-	All	N/A	As Available	N/A	Fax / e-mail	<100
Timeline [PD2]		MCC		line with updates						kbytes
LP Maneuver	3.3.3	LP	FDAB	Pre/Post maneuver	All	N/A	On -Request	N/A	Fax / e-mail	<10 kbytes
Conditions [PD3]		MCC		s∕c state (e.g. tank						
				temps, pressure,						
				thrust time)						
Ground Station	3.3.4	LP	FDAB	Nominal station	All	N/A	Weekly	1 Week	e-mail / Fax	<10 kbytes
Schedules [PD4]		MCC		schedules & updates						

 Table 3-1: Product Summary Chart (2 of 2)

3.2.1 Attitude Maneuver Command Sheet

The FDAB will provide attitude maneuver command sheets to the LP MCC in support of spin axis reorientation maneuvers. FDAB attitude maneuver command sheets will contain information that will be used by the MCC to calculate and prepare thruster commands to reorient the LP spin axis. Attitude maneuver command sheets will be prepared in support of the following two types of attitude maneuvers:

- 1. establish spin axis pointing during delta-V maneuvers
- 2. establish spin axis pointing during the science mapping orbit

The command sheet for each type of attitude maneuver will contain similar information necessary to reorient the +z axis of the LP spacecraft to the required attitude. Target attitudes will be described in terms of mean of J2000 unit vectors relative to the ecliptic plane as described in Appendix A. Each type of maneuver is described in the following sections.

3.2.1.1 Delta-V Spin Axis Pointing

3.2.1.1.1 Description

Prior to arriving at the moon, the LP spin axis (+z) will need to be reoriented along the antivelocity vector at periselene in preparation for LOI orbit maneuvers. The FDAB will provide an attitude maneuver command sheet identifying the required pointing direction of the LP +z axis in the form of a unit vector in ecliptic mean of J2000 coordinates.

3.2.1.1.2 Mission Phase

The FDAB will provide an attitude maneuver command sheet establishing the +z axis pointing direction required for axial burns using the A1/A2 thrusters during LOI. Under nominal conditions, the target attitude provided will be maintained throughout the entire LOI sequence that results in a 100 km circular lunar orbit. However, in the event of non-nominal LOI burns, updated attitude maneuver command sheets may be required to adjust delta-V pointing prior to each LOI maneuver.

3.2.1.1.3 Format

Figure 3.1 shows a sample format of the attitude maneuver command sheet.

3.2.1.1.4 Accuracy

The delta-V spin axis pointing vector contained in the command sheet will be accurate to within 0.1 deg of the negative velocity vector at periselene.

3.2.1.1.5 Delivery Schedule

Delta-V spin axis pointing command sheets will be delivered according to the schedule in Appendix B.

3.2.1.1.6 Time Span

Nominally, a single attitude maneuver command sheet will be required to establish the delta-V attitude during all LOI orbit maneuvers. Updated command sheets will be delivered as necessary in the event of non-nominal burns.

3.2.1.1.7 Transmission Medium

The attitude maneuver command sheet will be delivered via Fax transmission with voice backup.

3.2.1.1.8 Volume Estimate

The attitude maneuver command sheet volume will not exceed 10 kbytes.

Lunar Prospector ATTITUDE MANEUVER COMMAND SHEET

Maneuver Description:				
Maneuver Type:				
	Delta-V At	ttitude Reor		
	Mapping (Orbit Attitude Ro	eor 🗌 Oth	ier:
Desired +Z Axis Pointing	{	=		
RA =	deg	$\hat{\mathbf{Y}} =$]
Dec =	deg	$\hat{\mathbf{Z}} = $]
Expected Maneuver Start	Fime:] 		(YYMMDD.HHMM)
Coordinate System:	Eclip	ptic, Mean of J2000	Othe	
Sun Angle Conditions:	Pre-Mai	neuver Observed	d Sun Angle:	Deg
	Post-Ma	aneuver Predicte	ed Sun Angle:	Deg
Comments:				
			,	

Figure 3-1: Attitude Maneuver Command Sheet

3.2.1.2 Mapping Orbit Spin Axis Pointing

3.2.1.2.1 Description

Upon completing all LOI orbit maneuvers, the LP spin axis will be reoriented along the normal to the ecliptic plane. The FDAB will provide an attitude maneuver command sheet identifying the required mapping orbit pointing direction of the LP +z axis in the form of a unit vector in ecliptic mean of J2000 coordinates. The initial direction of the +z-axis pointing (i.e. along positive or negative normal to the ecliptic) is chosen to minimize the attitude turn angles from the cruise, LOI and mapping orbit attitudes. For the current baseline trajectory with a north ecliptic cruise pointing attitude and a periselene location in the northern lunar hemisphere, a placement of the +z-axis along the positive normal to the ecliptic is planned. Once in the lunar mapping orbit, it is possible (although not currently planned) that other pointing attitudes (e.g. +z-axis along negative ecliptic orbit normal, or along the positive/negative normal to the moon's orbit plane) may be required.

3.2.1.2.2 Mission Phase

The FDAB will provide the attitude maneuver command sheet establishing the mapping orbit spin axis pointing direction initially at the completion of the transfer phase. Changes to the mapping orbit pointing attitude will be supported as necessary.

3.2.1.2.3 Format

Figure 3.1 shows a sample format of the attitude maneuver command sheet.

3.2.1.2.4 Accuracy

The target mapping orbit spin axis pointing vector contained in the command sheet will be accurate to within 0.1 deg of the normal to the ecliptic plane.

3.2.1.2.5 Delivery Schedule

The FDAB will deliver an attitude maneuver command sheet for establishing the required mapping orbit spin axis pointing no later than 4 hours prior to the last LOI maneuver (a preliminary command sheet will be delivered prelaunch). Thereafter, attitude maneuver command sheets will be delivered one week prior to scheduled reorientation maneuvers.

3.2.1.2.6 Time Span

Each attitude maneuver command sheet will cover a single attitude maneuver.

3.2.1.2.7 Transmission Medium

The attitude maneuver command sheet will be delivered via Fax transmission with voice backup.

3.2.1.2.8 Volume Estimate

The attitude maneuver command sheet volume will not exceed 10 kbytes.

3.2.2 Orbit Maneuver Command Sheet

The FDAB will provide orbit maneuver command sheets to the LP MCC in support of all orbit maneuvers. The FDAB orbit maneuver command sheets will contain information that will be used by the MCC to calculate and prepare thruster commands to carry out LP orbit maneuvers. Two types of orbit maneuvers will be carried out:

- 1. Axial Orbit Maneuvers
- 2. Vector Orbit Maneuvers

LP orbit maneuvers will nominally consist of three mid-course correction maneuvers in the transfer phase, three LOI maneuvers, and regular trim maneuvers (possibly as often as 3 to 5 weeks) in the mapping phase. Upon obtaining an updated lunar potential model, an attempt may be made to establish a quasi-frozen orbit which would decrease the frequency of orbit maintenance maneuvers. The LP propulsion modeling conditions used in preparing orbit maneuver command sheets are described in Reference 5. Axial and Vector orbit maneuver are discussed in the following sections.

3.2.2.1 Axial Orbit Maneuvers

3.2.2.1.1 Description

Axial orbit maneuver command sheets will contain the following key information:

- a. Orbit maneuver start time (GMT): Year, month, day, hour, minute, and second of maneuver start
- b. Estimated orbit maneuver duration in seconds
- c. Delta-v magnitude: Magnitude of velocity change in meter/sec
- d. Selected thrusters
- e. +z axis attitude assumed

Additionally, when the specified target attitude is different from the current spacecraft attitude, a delta-V spin axis pointing command sheet (section 3.2.1.2) will be supplied in order to define the required attitude reorientation maneuver necessary to establish the proper delta-V thrust direction.

3.2.2.1.2 Mission Phase

Axial orbit maneuvers will nominally be performed during the LOI phase and on occasion during the mapping phase (when LP orbit geometry permits).

3.2.2.1.3 Format

Figure 3.2 shows a sample format of the LP axial orbit maneuver command sheet.

3.2.2.1.4 Accuracy

The accuracy of information contained in an orbit maneuver command sheet will be consistent with orbit prediction accuracies (see Section 3.2.5.2.4), and as necessary to achieve the required lunar mapping orbit conditions: $100 \text{ km} \pm 20 \text{ km}$ altitude and $90 \pm .5 \text{ deg}$ inclination.

3.2.2.1.5 Delivery Schedule

The FDAB will deliver axial orbit maneuver command sheets according the schedule in Appendix B.

3.2.2.1.6 Time Span

Each axial orbit maneuver command sheet will cover a single orbit maneuver.

3.2.2.1.7 Transmission Medium

Orbit maneuver command sheets will be delivered via Fax transmission with voice backup.

3.2.2.1.8 Volume Estimate

The orbit maneuver command sheet volume will not exceed 10 kbytes.

Lunar Prospector AXIAL ORBIT MANEUVER COMMAND SHEET

Maneuver Description:						
Delta - V Magnitude: $ \Delta V = $ (Meters/Seconds)						
S/C +Z Spin Axis Attitude (Ecliptic, Mean of J2000):						
PA - Command Shoot Attached						
RA = deg Attitude Maneuver Command Sheet Attached						
Axial Maneuver Parameters:						
A.) GMT Start Time: (YYMMDD.HHMMSS)						
B.) Estimated Maneuver Duration: (Seconds)						
C.) Thrusters Selected:						
A1/A2 (-z face)						
A3/A4 (+z face)						
Comments:						
Prepared By: QA By: Approved By: Approved By: (ARC FDE) Signature Date (ARC MM) Signature Date						

Figure 3-2: Axial Orbit Maneuver Command Sheet

3.2.2.2 Vector Orbit Maneuvers

3.2.2.2.1 Description

Vector orbit maneuver command sheets will consist of two parts, an impulsive burn sheet and a finite burn sheet. The command sheets will contain the following key information:

Impulsive Burn Sheet (page 1):

- a. Start time of Impulsive orbit maneuver time: Year, month, day, hour, minute, and second of impulsive vector maneuver
- b. Delta-v magnitude: Magnitude of velocity change in meters/sec
- c. Delta-V thrust direction: Delta-V thrust unit vector in ecliptic mean of J2000 coordinates

Finite Burn Sheet (page 2):

- d. Axial burn component start time, duration, DV magnitude and thruster selection
- e. Tangential burn component start time, duration, DV magnitude, and thrust direction

3.2.2.2.2 Mission Phase

Vector orbit maneuvers will be performed during the transfer and mapping orbit phases.

3.2.2.2.3 Format

Figure 3.3 shows a sample format of the vector orbit maneuver command sheet.

3.2.2.2.4 Accuracy

The accuracy of information contained in an orbit maneuver command sheet will be consistent with orbit prediction accuracies (see Section 3.2.5.2.4), and as necessary to achieve the required lunar mapping orbit conditions: $100 \text{ km} \pm 20 \text{ km}$ altitude and $90 \pm .5 \text{ deg}$ inclination.

3.2.2.2.5 Delivery Schedule

The FDAB will deliver vector orbit maneuver command sheets according the schedule in Appendix B.

3.2.2.2.6 Time Span

Each vector orbit maneuver command sheet will cover a single orbit maneuver.

3.2.2.2.7 Transmission Medium

Orbit maneuver command sheets will be delivered via Fax transmission with voice backup.

3.2.2.2.8 Volume Estimate

The command sheet volume will not exceed 10 kbytes.

Maneuver Description:
Ideal/Impulsive Vector Maneuver Parameters:
A.) Vector Maneuver Start GMT: (YYMMDD.HHMMSS) +/sec
B.) Delta-V Magnitude: (Meters/Seconds)
C.) Delta-V Thrust Direction:
RA = deg [Ecliptic mean of J2000 coordinates]
Dec = deg
Comments:
Prepared By: QA By: Approved By: Approved By: (GSFC FDE) Signature Date (ARC FDE) Signature Date (ARC MM) Signature Date

Lunar Prospector VECTOR ORBIT MANEUVER COMMAND SHEET

Figure 3-3: Vector Orbit Maneuver Command Sheet (1 of 2)

	Lunar Prospe	ctor		
S/C +z Spin Axis Attitu	NEUVER COMMAN	N <u>D SHEET</u> f J2000):	RA = $Dec =$	CORMATION
Axial Component:A.)GMT Start Time:			(YYMMDD.HHMM:	SS) +/sec
B.) Estimated Axial Ma	neuver Duration:			(Seconds)
C.) Thrusters Selected:				
A1/A	A2 (-z face) A4 (+z face)			
D.) Delta-V Magnitude:	·		(Meters/Second	ls)
Tangential Component:				
A.) GMT Start Time:			(YYMMDD.HHMM	(SS) +/sec
B.) Estimated Tangential [Note: nominal pulse width = .8	Maneuver Duration	:		(Seconds)
C.) Delta-V Magnitude:			(Meters/Second	IS)
C.) Delta-V Magnitude: D.) Tangential Thrust Dir	rection:		(Meters/Second	(S)
C.) Delta-V Magnitude: D.) Tangential Thrust Dir RA =	rection: deg Appro	oximate Sun	(Meters/Second	(S)
C.) Delta-V Magnitude: D.) Tangential Thrust Dir RA = Dec =	rection: deg Appro deg	oximate Sun Estim	(Meters/Second	(S)

Figure 3-3: Vector Orbit Maneuver Command Sheet (2 of 2)

3.2.3 Orbit Maneuver Reports

The FDAB will provide the LP MCC with two orbit maneuver reports to be used in planning and analyzing the effects of LP orbit maneuvers:

- 1. Orbit Maneuver Planning Package
- 2. Post-Maneuver Report

Orbit maneuver reports will be prepared in close consultation with the MCC and will require coordination regarding the type, timing, characteristics and observed results of each orbit maneuver (Section 3.3.3).

3.2.3.1 Orbit Maneuver Planning Package

3.2.3.1.1 Description

Prior to each orbit maneuver, the FDAB will provide the LP MCC with an orbit maneuver planning package containing preliminary information concerning an upcoming maneuver.

3.2.3.1.2 Mission Phase

Orbit maneuver planning packages will be provided for all orbit maneuvers in the transfer, LOI and mapping orbit phases.

3.2.3.1.3 Format

The orbit maneuver planning package will contain the following information:

- o preliminary orbit/attitude maneuver command sheets
- o estimated pre-maneuver and post-maneuver orbit state vectors
- o estimates of propellant used and propellant remaining
- o estimate of post-burn tank pressure
- o primary and backup ground station coverage

In addition to the above items, the planning package will also include a set of applicable mission planning aids covering the post-maneuver period as described in section 3.2.4.

3.2.3.1.4 Accuracy

The accuracy of information contained in the orbit maneuver planning package will be consistent with orbit prediction accuracies (see Section 3.2.5.2.4), and as necessary to achieve the required lunar mapping orbit conditions: $100 \text{ km} \pm 20 \text{ km}$ altitude and $90 \pm .5 \text{ deg}$ inclination.

3.2.3.1.5 Delivery Schedule

The FDAB will deliver the orbit maneuver planning package according the schedule in Appendix B.

3.2.3.1.6 Time Span

The orbit maneuver planning package will cover a single orbit maneuver. Predicted postmaneuver planning aids associated with the package will extend through periselene in the transfer orbit, and for 48 hrs during LOI and mapping orbit maneuvers.

3.2.3.1.7 Transmission Medium

The orbit maneuver planning package will be delivered as fax or e-mail.

3.2.3.1.8 Volume Estimate

Information contained in the orbit maneuver planning package will not exceed 100 kbytes.

3.2.3.2 Post-Maneuver Report

3.2.3.2.1 Description

following each orbit maneuver, the FDAB will provide the LP MCC with a post-maneuver report which summarizes and evaluates the results of a recently executed orbit maneuver. The FDAB will use post-maneuver tracking data along with observed maneuver conditions (e.g. computed attitude, actual maneuver start/stop times, etc.) to analyze the results of the burn. The FDAB will also compute a thrust calibration scale factor to be used in improving the modeling of subsequent maneuvers.

3.2.3.2.2 Mission Phase

Post-maneuver reports will be provided for all orbit maneuvers in the transfer, LOI and mapping orbit phases.

3.2.3.2.3 Format

The post-maneuver report will contain the following information:

- o summary of maneuver results
- o computed post-burn orbit vector
- o estimates of propellant used and propellant remaining
- o estimate of post-burn tank pressure
- o predicted maneuver ΔV
- o actual maneuver ΔV
- o estimate of the thrust calibration factor

3.2.3.2.4 Accuracy

The accuracy of information contained in the post-maneuver report will be consistent with orbit determination accuracy (see Section 3.2.5.1)

3.2.3.2.5 Delivery Schedule

The FDAB will deliver the post-maneuver report according the schedule in Appendix B.

3.2.3.2.6 Time Span

The post-maneuver report will cover a single orbit maneuver.

3.2.3.2.7 Transmission Medium

The post-maneuver report will be delivered as a hardcopy, fax or e-mail.

3.2.3.2.8 Volume Estimate

Information contained in the post-maneuver report will not exceed 100 kbytes.

3.2.4 Mission Planning Aids

The FDAB will provide the LP MCC with the following mission planning aids in support of operations planning and scheduling activities:

- 1. Station View Periods
- 2. Shadow Times
- 3. Lunar Eclipse Times

These products will be provided as individual ASCII files and as a merged time ordered ASCII file made available to the LP MCC as ASCII files on the Flight Dynamics Lunar Prospector product Web site: *http://fdd.gsfc.nasa.gov/LP*

3.2.4.1 Station View Periods

3.2.4.1.1 Description

The FDAB will provide LP station view periods consisting of acquisition of signal (AOS) and loss of signal (LOS) times for all stations supporting the LP mission. The station views will consist of line-of-site predictions taking into account station locations and antenna masks, and the predicted position of the LP spacecraft. The MCC will use this information to schedule real-time station contacts with the spacecraft for command, telemetry, and tracking operations.

3.2.4.1.2 Mission Phase

The FDAB will provide station views for all phases of the LP mission.

3.2.4.1.3 Format

Figure 3.4 shows a sample format of FDAB station view period data.

3.2.4.1.4 Accuracy

Station view periods accuracy will be consistent with predicted ephemeris accuracy as defined in Section 3.2.5.2 .

3.2.4.1.5 Delivery Schedule

During the mapping orbit phase, station view period files will be updated on the FDAB LP web site by midnight Eastern time of each Tuesday. Appendix B provides a schedule of station view period file delivery in support of orbit maneuvers during the transfer, LOI and mapping phases.

3.2.4.1.6 Time Span

The duration of the station view period files will be identical to that of the predicted ephemeris (as defined in Section 3.2.5.2).

3.2.4.1.7 Transmission Medium

Station view period files will be available for electronic down-link through the Flight Dynamics Lunar Prospector product Web site (URL: *http://fdd.gsfc.nasa.gov/LP*).

3.2.4.1.8 Volume Estimate

LP station view period files will not exceed 500 kbytes.

GMT TIME	NUM SHADOW	EVENT	STATUS	DURATION	ELEVATION	AZIMUTH	ARG LAT
YYYYMMDD.HHMMSS	BODY	TYPE		(MN)	(DEG)	(DEG)	(DEG)
19980106.024818	1	DS24	AOS		6.00	263.60	39.04
19980106.025031	4	DS16	AOS		12.71	263.14	43.20
19980106.041551	1	DS24	MAXEL		68.85	254.93	90.13
19980106.041551	4	DS16	MAXEL		68.85	254.92	90.13
19980106.062314	5	DS46	AOS		-0.01	48.96	103.82
19980106.071709	2	DS42	AOS		7.09	42.41	106.77
19980106.111228	5	DS46	MAXEL		25.05	357.33	114.20
19980106.111228	2	DS42	MAXEL		25.06	357.33	114.20
19980106.111512	1	DS24	LOS	506.90	6.01	295.80	114.25
19980106.113602	4	DS16	LOS	525.51	2.57	298.24	114.69
19980106.145737	3	DS61	AOS		7.69	65.22	118.04
19980106.150336	6	DS66	AOS		8.68	66.07	118.13
19980106.151600	2	DS42	LOS	478.85	4.65	308.48	118.29
19980106.154638	5	DS46	LOS	563.39	-0.01	303.89	118.69
19980106.214645	3	DS61	MAXEL		73.35	179.38	122.33
19980106.214645	б	DS66	MAXEL		73.34	179.38	122.33
19980106.223617	4	DS16	AOS		3.62	64.15	122.73
19980106.224934	1	DS24	AOS		6.01	65.90	122.83
19980107.042748	3	DS61	LOS	810.18	7.91	292.85	125.12
19980107.043202	б	DS66	LOS	808.44	7.18	293.47	125.14
19980107.052848	4	DS16	MAXEL		77.78	179.55	125.48
19980107.052848	1	DS24	MAXEL		77.78	179.55	125.48
19980107.070813	5	DS46	AOS		-0.01	59.61	126.04
19980107.080555	2	DS42	AOS		9.59	50.69	126.35
19980107.115402	5	DS46	MAXEL		30.39	359.51	127.50
19980107.115403	2	DS42	MAXEL		30.40	359.51	127.50
19980107.120438	1	DS24	LOS	795.07	6.01	292.79	127.55
19980107.122155	4	DS16	LOS	825.63	2.82	295.09	127.63
19980107.152956	3	DS61	AOS		6.21	66.70	128.50
19980107.153818	б	DS66	AOS		7.66	67.96	128.54
19980107.155758	2	DS42	LOS	472.05	7.04	305.57	128.63
19980107.163936	5	DS46	LOS	571.38	-0.01	299.18	128.81
19980107.221212	3	DS61	MAXEL		71.30	179.69	130.23
19980107.221213	б	DS66	MAXEL		71.30	179.69	130.23
19980107.230428	4	DS16	AOS		3.80	66.45	130.45
19980107.231620	1	DS24	AOS		6.01	68.06	130.50
19980108.044801	3	DS61	LOS	798.08	6.97	291.66	131.85
19980108.044822	б	DS66	LOS	790.06	6.91	291.71	131.85
19980108.054658	4	DS16	MAXEL		76.05	179.77	132.09
19980108.054658	1	DS24	MAXEL		76.05	179.76	132.09
19980108.071630	5	DS46	AOS		0.00	62.19	132.47
19980108.081415	2	DS42	AOS		9.94	53.23	132.70
19980108.120733	5	DS46	MAXEL		32.29	359.73	133.69
19980108.120736	2	DS42	MAXEL		32.29	359.72	133.69
19980108.121601	1	DS24	LOS	779.69	6.00	291.12	133.72
19980108.123344	4	DS16	LOS	809.28	2.67	293.53	133.80
19980108.154629	3	DS61	AOS		6.21	68.40	134.68
19980108.155111	6	DS66	AOS		7.04	69.11	134.69
19980108.161710	2	DS42	LOS	482.93	7.25	303.44	134.81
19980108.165845	5	DS46	LOS	582.25	-0.01	297.07	135.01
19980108.222249	3	DS61	MAXEL		70.02	179.76	136.62
19980108.222249	6	DS66	MAXEL		70.01	179.76	136.62
19980108.231825	4	DS16	AOS		3.94	68.03	136.93

Figure 3-4: Sample FDAB Station View Period Data

3.2.4.2 Shadow Times

3.2.4.2.1 Description

The FDAB will provide predictions of times when the LP spacecraft is in the shadow of the Earth (early in the transfer phase) and moon (during the LOI and mapping phase). Both penumbra and umbra entry and exit times are provided.

3.2.4.2.2 Mission Phase

The FDAB will provide shadow predictions for all phases of the LP mission.

3.2.4.2.3 Format

Figure 3.5 shows a sample format of FDAB shadow predictions.

3.2.4.2.4 Accuracy

Shadow entry and exit time accuracy will be consistent with predicted ephemeris accuracy as defined in Section 3.2.5.2 .

3.2.4.2.5 Delivery Schedule

During the mapping orbit phase, LP shadow files will be updated on the FDAB LP web site by midnight Eastern time of each Tuesday. Appendix B provides a schedule of LP shadow file delivery in support of orbit maneuvers during the transfer, LOI and mapping phases.

3.2.4.2.6 Time span

The duration of shadow predictions will be identical to that of the predicted ephemeris (as defined in Section 3.2.5.2).

3.2.4.2.7 Transmission Medium

LP shadow predictions will be available for electronic down-link through the Flight Dynamics Lunar Prospector product Web site (URL: *http://fdd.gsfc.nasa.gov/LP*).

3.2.4.2.8 Volume Estimate

LP shadow prediction files will not exceed 500 kbytes.

EVENT SUMMARY DATA

GMT TIME	NUM	SHADOW	EVENT	STATUS	DURATION	ELEVATION	AZIMUTH	ARG
YYYYMMDD.HHMMSS		BODY	TYPE		(MN)	(DEG)	(DEG)	(DEG)
19980114.000000	1	MOON	PENUMBRA	ENTER				
19980114.000000	2	MOON	UMBRA	ENTER				
19980114.001200	2	MOON	UMBRA	EXIT	12.00			
19980114.001234	1	MOON	PENUMBRA	EXIT	12.57			
19980114.014223	1	MOON	PENUMBRA	ENTER				
19980114.014257	2	MOON	UMBRA	ENTER				
19980114.020956	2	MOON	UMBRA	EXIT	26.98			
19980114.021029	1	MOON	PENUMBRA	EXIT	28.10			
19980114.034013	1	MOON	PENUMBRA	ENTER				
19980114.034047	2	MOON	UMBRA	ENTER				
19980114.040752	2	MOON	UMBRA	EXIT	27.08			
19980114.040825	1	MOON	PENUMBRA	EXIT	28.20			
19980114.053804	1	MOON	PENUMBRA	ENTER				
19980114.053837	2	MOON	UMBRA	ENTER				
19980114.060548	2	MOON	UMBRA	EXIT	27.18			
19980114.060621	1	MOON	PENUMBRA	EXIT	28.28			
19980114.073554	1	MOON	PENUMBRA	ENTER				
19980114.073628	2	MOON	UMBRA	ENTER				
19980114.080344	2	MOON	UMBRA	EXIT	27.27			
19980114.080418	1	MOON	PENUMBRA	EXIT	28.40			
19980114.093345	1	MOON	PENUMBRA	ENTER				
19980114.093419	2	MOON	UMBRA	ENTER				
19980114.100141	2	MOON	UMBRA	EXIT	27.37			
19980114.100214	1	MOON	PENUMBRA	EXIT	28.48			
19980114.113137	1	MOON	PENUMBRA	ENTER				
19980114.113210	2	MOON	UMBRA	ENTER				
19980114.115938	2	MOON	UMBRA	EXIT	27.47			
19980114.120011	1	MOON	PENUMBRA	EXIT	28.57			
19980114.132929	1	MOON	PENUMBRA	ENTER				
19980114.133002	2	MOON	UMBRA	ENTER				
19980114.135735	2	MOON	UMBRA	EXIT	27.55			
19980114.135808	1	MOON	PENUMBRA	EXIT	28.65			
19980114.152721	1	MOON	PENUMBRA	ENTER				
19980114.152754	2	MOON	UMBRA	ENTER				
19980114.155533	2	MOON	UMBRA	EXIT	27.65			
19980114 155606	1	MOON	DENIIMBRA	EXIT	28 75			
19980114 172514	1	MOON		FNTFR	20.75			
19980114 172546	2	MOON	IMBRA	FNTFR				
19980114 175331	2	MOON		FYTT	27 75			
19980114 175403	1	MOON		FYTT	28 82			
19980114 192206	1	MOON		ENTED	20.02			
19980114 192300	1 2	MOON		ENTER				
19980114 195120	2 2	MOOM		ENIER	27 82			
19980114 195201	2 1	MOON	DENIIMERA	EXLL	28 92			
	-	TO OTA						

Figure 3-5: Sample FDAB Shadow Predictions

PAGE 1

3.2.4.3 Lunar Eclipse Times

3.2.4.3.1 Description

The FDAB will provide predictions of times during the mapping orbit when the LP spacecraft is in the shadow of the Earth as a result of a lunar eclipse. The opportunity for a lunar eclipse occurs every six months when the lunar orbit line of nodes lines up with the sun. Both penumbra and umbra entry and exit times are provided. For LP launch dates occurring after the September 1997, a total (umbra) lunar eclipse will not occur until July 28, 1999.

3.2.4.3.2 Mission Phase

The FDAB will provide shadow predictions pre-launch and during the mapping phase of the LP mission.

3.2.4.3.3 Format

Figure 3.6 shows a sample format of FDAB lunar eclipse predictions. Eclipse entrance/exit times as shown in Figure 3-6a will be delivered on a weekly basis and should indicate "No Data" if no lunar eclipses are predicted. For periods when lunar eclipses are predicted, an additional eclipse report will be generated (Figure 3-6b) indicating the percent shadowing expected throughout the eclipse.

3.2.4.3.4 Accuracy

Lunar eclipse time accuracy will be consistent with predicted ephemeris accuracy as defined in Section 3.2.5.2 .

3.2.4.3.5 Delivery Schedule

During the mapping orbit phase, LP lunar eclipse will be updated on the FDAB LP web site by midnight Eastern time of each Tuesday. Appendix B provides a schedule of LP lunar eclipse file delivery in support of orbit maneuvers during the transfer, LOI and mapping phases.

3.2.4.3.6 Time span

The duration of LP lunar eclipse predictions will be identical to that of the predicted ephemeris (as defined in Section 3.2.5.2).

3.2.4.3.7 Transmission Medium

LP lunar eclipse predictions will be available for electronic down-link through the Flight Dynamics Lunar Prospector product Web site (URL: *http://fdd.gsfc.nasa.gov/LP*).

3.2.4.3.8 Volume Estimate

LP lunar eclipse prediction files will not exceed 10 kbytes.
EVENT SUMMARY DATA

GMT TIME	NUM	SHADOW	EVENT	STATUS	DURATION	ELEVATION	AZIMUTH	ARG
LAT								
YYYYMMDD.HHMMSS		BODY	TYPE		(MN)	(DEG)	(DEG)	(DEG)
19980313.030746	1	EARTH	PENUMBRA	ENTER				
19980313.040025	1	EARTH	PENUMBRA	EXIT	52.65			
19980313.044545	1	EARTH	PENUMBRA	ENTER				
19980313.053738	1	EARTH	PENUMBRA	EXIT	51.88			

Figure 3-6a: Sample FDAB Lunar Eclipse Predictions (Entrance/Exit Time)

1FDF 13 SHADOW SUMMARY

CREATED (YYMMDD.HHMM) 971226.1100

UTC

COMMENT: LP Eclipses EPHEM: ecl0398a.EPH

UTC TIME (YYMMDD.HHMMSS)	SHADOW BODY	EVENT TYPE	STATUS	DURATION (MIN)	PERCENT DARKNESS	LATITUDE (DEG)	LONGITUDE (DEG)	HEIGHT (KM)
980313.003858	MOON	PENUMBRA	ENTER			4.844	351.369	399121.185
980313.003926	MOON	UMBRA	ENTER			4.840	351.251	399138.208
980313.004000	MOON	UMBRA			100.000	4.836	351.104	399158.689
980313.005000	MOON	UMBRA			100.000	4.727	348.573	399398.275
980313.010000	MOON	UMBRA			100.000	4.577	346.088	399384.504
980313.011000	MOON	UMBRA			100.000	4.420	343.666	399124.871
980313.011006	MOON	UMBRA	EXIT	30.678		4.419	343.641	399121.117
980313.011034	MOON	PENUMBRA	EXIT	31.610		4.412	343.530	399103.936
980313.023651	MOON	PENUMBRA	ENTER			4.542	322.746	399211.264
980313.023719	MOON	UMBRA	ENTER			4.539	322.627	399227.738
980313.024000	MOON	UMBRA			100.000	4.516	321.944	399314.287
980313.025000	MOON	UMBRA			100.000	4.396	319.420	399494.613
980313.030000	MOON	UMBRA			100.000	4.241	316.948	399424.273
980313.030745	EARTH	PENUMBRA	ENTER			4.120	315.076	399209.528
980313.030754	MOON	UMBRA	EXIT	30.585		4.118	315.040	399204.169
980313.030822	MOON	PENUMBRA	EXIT	31.520		4.111	314.928	399187.379
980313.031000	EARTH	PENUMBRA			2.937	4.088	314.540	399126.287
980313.032000	EARTH	PENUMBRA			30.401	3.970	312.192	398686.461
980313.033000	EARTH	PENUMBRA			49.543	3.914	309.880	398229.614
980313.034000	EARTH	PENUMBRA			43.703	3.929	307.574	397885.035
980313.035000	EARTH	PENUMBRA			19.546	4.003	305.238	397750.442
980313.040000	EARTH	PENUMBRA			0.152	4.108	302.848	397864.665
980313.040025	EARTH	PENUMBRA	EXIT	52.662		4.113	302.748	397874.527
980313.043445	MOON	PENUMBRA	ENTER			4.239	294.120	399297.127
980313.043513	MOON	UMBRA	ENTER			4.236	294.001	399313.102

END OF DATA

Figure 3-6b: Sample FDAB Lunar Eclipse Predictions (Percent Shadow)

3.2.5 Orbit Determination and Prediction Products

The FDAB will provide the LP MCC with the following orbit determination/prediction products in support of attitude determination and science data processing operations:

- 1. Definitive Orbit Ephemeris
- 2. Predicted Orbit Ephemeris
- 3. Orbit Maneuver Assessment Based on Doppler Residuals
- 4. Solar-Lunar-Planetary File

These products will be made available to the LP MCC as files placed on the Flight Dynamics Web sites. With the exception of the SLP file, all data will be in the form of ASCII files. SLP files are available as binary files for use on UNIX, DOS or DEC platforms.

3.2.5.1 Definitive Orbit Ephemeris

3.2.5.1.1 Description

The FDAB will use tracking data collected from ground stations to compute an LP definitive orbit ephemeris. Weekly deliveries of LP definitive orbit ephemeris will form a continuous history of LP position and velocity in the mapping orbit for use in science data processing by LP science investigators. Following the availability of an updated lunar potential model (within the first or second month of the mission), the FDAB will likely be required to begin using the new model as well as re-generate the LP definitive orbit determination history. LP definitive orbit ephemeris files will contain spacecraft position and velocity vectors in moon-centered, Earth equator, mean-of-J2000 coordinates. A definitive ephemeris will also be provided which covers the transfer orbit (in Earth-centered coordinates) and LOI phases of the mission, on a best available accuracy basis.

3.2.5.1.2 Mission Phase

LP definitive orbit ephemeris will be delivered during the mapping orbit phase only, upon completion of all LOI maneuvers.

3.2.5.1.3 Format

Appendix C provides a sample format of an FDAB definitive orbit ephemeris file, an item by item description of the ASCII ephem contents and a mapping of each parameter to its corresponding location in the standard binary GSFC ephem (this is provided as a cross reference since the standard binary ephem is documented better --- see reference 3 for additional information).

3.2.5.1.4 Accuracy

Final LP definitive orbit ephemeris files (processed with the updated lunar potential model) will be accurate to within +/-1 km (1 sigma) in position and +/-1 m/sec in velocity (1 sigma). Prior to the receipt of the updated lunar potential model, definitive ephemeris position accuracy is expected to be within 5 km 1 sigma.

3.2.5.1.5 Delivery Schedule

LP definitive orbit ephemeris files will be updated weekly on the FDAB LP product web site by midnight Eastern time of each Tuesday. Appendix B provides a delivery schedule of definitive orbit ephemeris file following orbit maneuvers in the mapping phase.

3.2.5.1.6 Time Span

LP definitive orbit ephemeris files will cover a 1-week period.

3.2.5.1.7 Transmission Medium

LP definitive orbit ephemeris files will be available for electronic down-link through the Flight Dynamics Lunar Prospector product Web site (URL: *http://fdd.gsfc.nasa.gov/LP*).

3.2.5.1.8 Volume Estimate

LP weekly definitive orbit ephemeris files will not exceed 2 Mbytes.

3.2.5.2 Predicted Orbit Ephemeris

3.2.5.2.1 Description

The FDAB will generate predicted LP ephemeris files to be used internally for product generation and maneuver planning and for use by the LP MCC for attitude determination. The predicted LP ephemeris will consist of an ASCII file of spacecraft position and velocity vectors in Earth equator, mean-of-J2000 coordinates. During the transfer orbit period FDAB predicted ephemeris files will contain Earth-centered vectors. For operations during the LOI and mapping orbit phase, the FDAB will generate moon-centered predicted ephemeris files. Three types of predicted ephemers will be generated:

3.2.5.2.1.1 Post Maneuver Definitive Prediction

Following orbit maneuvers, the FDAB will computed an updated orbit state based on tracking data. The post-maneuver state will be propagated out for several days and will be used to update acquisition data and planning products and to plan for follow-on maneuvers. This predicted ephemeris will not model any maneuvers planned in the future.

3.2.5.2.1.2 Pre-Maneuver Planning Ephemeris

Prior to an orbit maneuver, a predicted ephemeris which models the effects of the planned maneuver will be generated. During the mapping phases, this ephemeris will begin at the expected end conditions of a maneuver and extend out for 48 hours. During the transfer orbit phase, the ephemeris will be extended to periselene.

3.2.5.2.1.3 Special Ephems

Two special pre-maneuver predicted ephemeris will be generated in support of LP:

LOI Finite Burn Ephem: For each of the three LOI maneuvers, an ephemeris which begins 3 hours prior to the maneuver and contains finite burn modeling of the burn will be generated. This ephem will extend out approximately 48 hrs beyond the end of each LOI maneuver.

Post-TCM #2 Entire LOI Sequence Ephem: Two and one half days following TLI, the FDAB will generate a predicted ephemeris which extends from the post-TCM#2 burnout state through LOI #3 + 3 days. All three LOI maneuvers will be modeled as finite burns.

3.2.5.2.2 Mission Phase

LP predicted orbit ephemeris will be delivered during all phases of the LP mission.

3.2.5.2.3 Format

Appendix C provides a sample format of an FDAB definitive orbit ephemeris file, an item by item description of the ASCII ephem contents and a mapping of each parameter to it's corresponding location in the standard binary GSFC ephem (this is provided as a cross

reference since the standard binary ephem is documented better --- see reference 3 for additional information).

3.2.5.2.4 Accuracy

Initially, the position uncertainty associated with LP predicted orbit ephemeris in the mapping orbit is expected to be as follows (primarily in the along track direction):

130 km after 1 week of propagation330 km after 2 weeks of propagation420 km after 3 weeks of propagation500 km after 4 weeks of propagation

Orbit prediction accuracy should improve with the availability of the new lunar gravity model, after the first one or two months of the mission.

3.2.5.2.5 Delivery Schedule

During the mapping phase, LP predicted orbit ephemeris files will be updated weekly on the FDAB LP product web site by midnight Eastern time of each Tuesday. Appendix B provides a delivery schedule for predicted orbit ephemeris files during the mapping phase.

3.2.5.2.6 Time Span

3.2.5.2.6.1 Post-Maneuver Definitive Prediction

LP post-maneuver definitive states will be propagated out to periselene during the transfer orbit. The post-TCM #3 definitive state will be propagated 12 hours beyond periselene (in a hyperbolic orbit). During the LOI phase, post-maneuver definitive solutions will extend out for 2 days.

3.2.5.2.6.2 Pre-Maneuver Planning Ephemeris

LP pre-maneuver predicted orbit ephemeris files will extend to periselene during the transfer phase. During LOI and in the mapping orbit, pre-maneuver planning ephems will extend out for 2 days past the planned orbit maneuver.

3.2.5.2.6.3 Special Ephems

See section 3.2.5.2.1.3

3.2.5.2.7 Transmission Medium

LP predicted orbit ephemeris files will be available for electronic down-link through the Flight Dynamics Lunar Prospector product Web site (URL: *http://fdd.gsfc.nasa.gov/LP*).

3.2.5.2.8 Volume Estimate

During the mapping orbit phase, LP 4-week predicted orbit ephemeris files will not exceed 8 Mbytes.

3.2.5.3 Orbit Maneuver Assessment Based on Doppler Residuals

3.2.5.3.1 Description

In order to provide a near-real-time assessment of the performance of critical orbit maneuvers (i.e., TLI, transfer orbit TCM and LOI burns), the FDAB will use Doppler data residual information to estimate the over/under performance of the burn. Based on the information provided by FDAB, the LP MCC will determine if an emergency orbit maneuver is required (Reference 5).

3.2.5.3.2 Mission Phase

LP Doppler residual information will be provided only during the transfer orbit and LOI phases of the mission.

3.2.5.3.3 Format

Information provided by the FDAB will consist of the magnitude of the estimated maneuver over/under burn, and the uncertainty associated with this estimate.

3.2.5.3.4 Accuracy

The expected uncertainty of maneuver performance estimates provided by FDAB is on the order of +/-5 m/s for the TLI burn assessment, and +/-15% for LOI burns.

3.2.5.3.5 Delivery Schedule

For critical orbit maneuvers identified, an FDAB assessment of the maneuver over/under burn condition will be delivered approximately 5 minutes following receipt of Doppler data.

3.2.5.3.6 Time Span

Orbit maneuver assessments based on Doppler residuals will nominally be based on just a few minutes of tracking data.

3.2.5.3.7 Transmission Medium

Preliminary orbit maneuver assessments will communicated to the LP MCC over established voice lines.

3.2.5.3.8 Volume Estimate

N/A

3.2.5.4 Solar-Lunar-Planetary File

3.2.5.4.1 Description

The FDAB creates solar-lunar-planetary (SLP) files containing ephemerides for the sun, moon and planets which are derived from JPL DE 118 and DE 200 ephemerides. The SLP files are located on the Flight Dynamics Product Center (FDPC) web site in formats suitable for a number of different platforms (PC, UNIX, DEC) and in several coordinate systems (mean of B1950, true of date B1950, mean of J2000, true of date J2000).

3.2.5.4.2 Mission Phase

SLP files will be available throughout all phases of the LP mission.

3.2.5.4.3 Format

A description of the FDAB SLP file format is available on the FDPC located on the World Wide Web (URL: *http://fdd.gsfc.nasa.gov/FDD_products.html*).

3.2.5.4.4 Accuracy

The accuracy of the FDAB SLP file will be consistent with that of the JPL DE 118 and DE 200 ephemeris data.

3.2.5.4.5 Delivery Schedule

Nominally, FDAB SLP files will only need to be downloaded once by the MCC prior to the LP launch. The SLP files at the FDPC may be updated periodically, based on the availability of new models from JPL. The FDAB will notify the MCC when such updates occur.

3.2.5.4.6 Time Span

The SLP file will cover a 20 year period (currently 1992-2011).

3.2.5.4.7 Transmission Medium

FDAB SLP files will be available for electronic down-link through the FDPC located on the World Wide Web (URL: *http://fdd.gsfc.nasa.gov/FDD_products.html*).

3.2.5.4.8 Volume Estimate

FDAB SLP files have a volume of approximately 3.5 Megabytes.

3.2.6 Tracking Data Products

The FDAB will provide the LP MCC with the following tracking data products in support of station acquisition data functions:

- 1. DSN Station Acquisition Data
- 2. TDRS Acquisition Data

These products, consisting of LP predicted position data, will be transmitted electronically over Nascom lines to the respective sites.

3.2.6.1 DSN Station Acquisition Data

3.2.6.1.1 Description

The FDAB will generate predicted LP station acquisition data for the DSN sites (Canberra, Goldstone, Madrid). Acquisition data in the form of "p-files" (as defined in Appendix A of Reference 1) will be transmitted by FDAB to JPL in support of LP station events. During the transfer orbit phase, p-files will initially contain data in *Earth* centered, Earth equator, inertial mean of J2000 coordinates. P-files covering LOI and the mapping orbit will contain data in *moon* centered, Earth equator, inertial mean of J2000 coordinates. As a backup to the p-files, traditional Improved Inter-Range Vectors (I²RVs) (also known as Inter-Center Vectors, ICVs to JPL) will also be provided in support of the first post-TLI station acquisition and in support LOI #1.

3.2.6.1.2 Mission Phase

LP DSN station acquisition data in the form of p-files will be delivered during all phases of the LP mission.

3.2.6.1.3 Format

Appendix A of Reference 1 shows a sample format of a p-file.

3.2.6.1.4 Accuracy

The accuracy of information contained in LP DSN station acquisition data will be consistent with orbit prediction accuracy (see Section 3.2.5.2.4),

3.2.6.1.5 Delivery Schedule

During the mapping phase of the mission, LP DSN station acquisition data will be transmitted weekly each Tuesday by COB, Eastern time. Appendix B provides a nominal schedule of LP DSN station acquisition data delivery during the transfer orbit and LOI phases of the mission.

3.2.6.1.6 Time Span

The coverage span of p-file and ICVs will be consistent with the predicted ephemeris file used to generate it. See section 3.2.5.2.6.

3.2.6.1.7 Transmission Medium

LP DSN station acquisition data in the form of p-files will be transmitted using File Transfer Protocol (FTP) over Nascom . ICVs will be transmitted in real-time over Nascom.

3.2.6.1.8 Volume Estimate

LP 4-week p-file transmissions will be on the order of 3 Mbytes.

3.2.6.2 TDRS Acquisition Data

3.2.6.2.1 Description

The FDAB will generate predicted LP TDRS acquisition data for the time period immediately following TLI. While LP does not fly a TDRS transponder, an attempt will be made to receive two-way Doppler and telemetry data in order to get an early assessment of TLI performance and spacecraft health. No TDRS support is planned beyond the first few hours of the mission. TDRS acquisition data will be in the form of an I²RV in Earth centered, Earth equator, true of date rotating coordinates.

3.2.6.2.2 Mission Phase

LP TDRS acquisition data will be required only during the early transfer phase.

3.2.6.2.3 Format

Appendix B of Reference 1 shows a sample format of an FDAB IIRV file.

3.2.6.2.4 Accuracy

LP TDRS acquisition data accuracy will be based on a propagation of the nominal LP TLI injection vector.

3.2.6.2.5 Delivery Schedule

LP TDRS acquisition data will be transmitted to the Second TDRS Ground Terminal (STGT) 24 hours prior to launch.

3.2.6.2.6 Time Span

Pre-launch LP TDRS acquisition data will likely consist of a single vector.

3.2.6.2.7 Transmission Medium

LP TDRS acquisition data will be transmitted over Nascom to the STGT.

3.2.6.2.8 Volume Estimate

LP TDRS acquisition data transmissions will be on the order of 10 kbytes.

3.3 Products Supplied by the LP MCC

The products supplied by the LP MCC to the FDAB for Lunar Prospector support are as follows:

- 1. LP Operational Constraints
- 2. LP Operations Timeline
- 3. LP Maneuver Conditions
- 4. Station Schedules
- 5. LMLV-2 Separation Vector

This data will be used by the FDAB in planning maneuvers, generating products and monitoring LP operational activity.

3.3.1 LP Operational Constraints

3.3.1.1 Description

The LP Project will define all LP operational constraints that affect orbit, attitude and communications/tracking operations. This information is required by the FDAB pre-launch for transfer orbit design and planning purposes. Any changes to operational constraints once on orbit will also be related to the FDAB should they occur. A full list of spacecraft operating constraints is contained in Reference 4. Key constraints affecting orbit control and determination are listed in Appendix D.

3.3.1.2 Mission Phase

LP operational constraints will be provided prelaunch and updated as necessary throughout the mission.

3.3.1.3 Format

LP operational constraints will be documented in Reference 4 and updated via Project analysis reports and memoranda.

3.3.1.4 Accuracy

N/A

3.3.1.5 Delivery Schedule

Notification of LP operational constraints will be provided as they occur.

3.3.1.6 Time Span

N/A

3.3.1.7 Transmission Medium

On orbit, the LP project will notify the FDAB of changes by e-mail or faxed change pages to Reference 4.

3.3.1.8 Volume Estimate

N/A

3.3.2 LP Operational Timeline

3.3.2.1 Description

The LP Project will establish an operational timeline of key activities from launch through the LOI phase. The LP timeline will contain inputs from FDAB concerning orbit maneuver times and station coverage and will include other key spacecraft activities that might impact FDAB maneuver planning (e.g. attitude maneuvers, boom deployments, etc.). During the mission, the FDAB will rely on the timeline and information concerning any required updates to the timeline, for scheduling operations and shift personnel.

3.3.2.2 Mission Phase

The LP operational timeline will be delivered pre-launch with updates throughout the transfer and LOI phases.

3.3.2.3 Format

The LP operational timeline will include a description of key events and associated times in GMT.

3.3.2.4 Accuracy

N/A

3.3.2.5 Delivery Schedule

A draft timeline will be delivered 3 months before launch. During the transfer and LOI phases, updates will be provided as necessary.

3.3.2.6 Time Span

The LP operational timeline will be cover key events in the transfer and LOI phases.

3.3.2.7 Transmission Medium

Following launch, the LP project will notify the FDAB of changes to the timeline by e-mail or faxed change pages.

3.3.2.8 Volume Estimate

The timeline volume will not exceed 500 kbytes.

3.3.3 LP Maneuver Conditions

3.3.3.1 Description

The LP Project will provide the FDAB with all requested information concerning the preand post-maneuver state of the spacecraft. This information will include tank temperatures and pressures, observed average inertial attitude during the maneuver, estimated nutation angle, thrusters used, actual maneuver start/stop times, and any anomalies observed during the maneuver.

3.3.3.2 Mission Phase

LP maneuver conditions will be supplied by the LP MCC on request for all maneuvers throughout the mission.

3.3.3.3 Format

Figure 3.7 provides a sample form to be used in documenting LP maneuver conditions.

3.3.3.4 Accuracy

N/A

3.3.3.5 Delivery Schedule

LP pre- and post-maneuver conditions will be supplied as scheduled in the timeline, or on request.

3.3.3.6 Time Span

LP maneuver conditions will cover a single orbit maneuver.

3.3.3.7 Transmission Medium

LP maneuver conditions forms will be transmitted to FDAB via fax with voice backup.

3.3.3.8 Volume Estimate

The volume of LP maneuver condition forms will be on the order of 10 kbytes.

LP MCC Pre-Maneuver Conditions Form									
1. Estimated Maneuver Start Time: YYMMDD.HHMMSS									
2. Pre-Maneuver Percent Propellant Remaining: Percent									
3. Pre-Maneuver Propellant Mass: kg									
4. Pre-Maneuver Tank Pressure: Psia									
5. Pre-Maneuver Tank Temperature: deg C									
6. Pre-Maneuver S/C Attitude: Ra deg									
s/c +z axis pointing in Ecliptic mean of J2000 Coordinates Ded deg									
7. Pre-Maneuver S/C Spin Rate: Rpm									
8. Comments:									
Completed by: Date/GMT: LP Dynamics Engineer									

Figure 3-7: LP Maneuver Condition Form

3.3.4 Station Schedules

3.3.4.1 Description

The LP Project will provide the FDAB with copies of all scheduled LP station events. The FDAB will use this information to support acquisition data generation and tracking data receipt operations. The source of LP scheduling information will be the JPL scheduling web site which may also be accessed directly [*http://dsn.jpl.nasa.gov:80/nss/sch/query.html*].

3.3.4.2 Mission Phase

The LP station schedules will be supplied to FDAB during all phases of the LP mission.

3.3.4.3 Format

Station schedules will consist of a list of scheduled stations and the predicted times in GMT of the events.

3.3.4.4 Accuracy

N/A

3.3.4.5 Delivery Schedule

LP station schedules will be delivered to FDAB on a weekly basis each Thursday by COB pacific time.

3.3.4.6 Time Span

LP station schedules will cover a 1 week period.

3.3.4.7 Transmission Medium

LP station schedules will be transmitted to FDAB via e-mail with fax backup.

3.3.4.8 Volume Estimate

The volume of LP station schedules will be on the order of 10 kbytes.

References

- 1. DSN Document 820-13, TRK-2-29A, Appendix A: P-File (EXPORT) (Spacecraft Ephemeris File)
- 2. Draft LMLV ICD between LMM&SC and LM Astronautics for the launch of the Lunar Prospector Payload on an LMLV-2 Launch Vehicle, Lockheed-Martin Corp., 4/96
- 3. Flight Dynamics Division (FDD) Generic Data Product Formats Interface Control Document, 553-FDD-91/028, June 1991
- 4. LP Command/Constraints Document, ARC/LP-103, 12/97
- 5. Lunar Prospector January 6, 1998 Trajectory Profile, LPKG023, NASA/ARC, 10/23/97

Ecliptic Mean of J2000 Coordinate Definition

Ecliptic Mean of J2000 Coordinate Definition

The nominal Lunar Prospector reference attitude coordinate frame is Ecliptic, mean of J2000. The spacecraft attitude will be nominally be expressed in terms of right ascension and declination of the spin axis attitude measured relative to this reference frame, as shown in Figure A-1.

Figure A-1: LP Attitude Reference Frame

Appendix B

Lunar Prospector Orbit Maneuver Product Delivery Schedule

								R	equ	ired	Pro	duc	ts							
Time From Maneuver	Cruise Spin Axis Pointing Cmd.	Sheet Delta-V Spin Axis Pointing Cmd.	Sheet Mapping Orbit Spin Axis Point.	Cmd. Axial Orbit Manvr. Command Sheet	Vector orbit Manvr. Command	onco Orbit Maneuver Planning Package	Post-Maneuver Report	Station View Periods	Shadow Times	Lunar Eclipse Times	Definitive Orbit Ephemeris	Predicted Orbit Ephemeris	Doppler Residual Information	SLP File	DSN Station Acquisition Data	TDRS Acquisition Data	LP Operating Constraints	LP Operations Timeline	LP Maneuver Conditions	Ground Station Schedules
	AM1	AM2	AM3	OM1	OM2	OR1	OR2	PA1	PA2	PA3	OD1	OD2	OD3	OD4	TD1	TD2	PD1	PD2	PD3	PD4
Trajectory Correction Maneuver #1																				
M - 2 hrs																			*	
M - 1 hr					*															
M – 0.5 hr								*				*			*					
M + 7 hrs							(P)	*	*			*			*				*	
M + 16 hrs							*	*	*			*								
Trajectory C	Corre	ction	Mane	euver	#2															
M - 6 hrs																			*	
M – 3 hrs					*	*														
M - 2 hrs								*	*			*			*					
M + 8 hrs							(P)	*	*			*			*				*	
M + 18 hrs							*					*								
Trajectory C	Corre	ction	Mane	euver	#3															
M - 6 hrs									Ī										*	
M – 3 hrs					*	*														
M - 2 hrs								*	*			*			*					
M + 12 hrs							(P)	*	*			*			*				*	
M + 18 hrs							*					*								

Appendix B: Lunar Prospector Orbit Maneuver Product Delivery Schedule

]						R	equ	equired Products											
Time From Maneuver	Cruise Spin Axis Pointing Cmd.	Sheet Delta-V Spin Axis Pointing Cmd.	Sheet Mapping Orbit Spin Axis Point.	Command Sheet	Vector orbit Manvr. Command	Orbit Maneuver Planning Package	Post-Maneuver Report	Station View Periods	Shadow Times	Lunar Eclipse Times	Definitive Orbit Ephemeris	Predicted Orbit Ephemeris	Doppler Residual Information	SLP File	DSN Station Acquisition Data	TDRS Acquisition Data	LP Operating Constraints	LP Operations Timeline	LP Maneuver Conditions	Ground Station Schedules
	AM1	AM2	AM3	OM1	OM2	OR1	OR2	PA1	PA2	PA3	OD1	OD2	OD3	OD4	TD1	TD2	PD1	PD2	PD3	PD4
LOI Maneu	ver #1		<u> </u>	1	1			<u> </u>	ļ			1	<u> </u>		<u> </u>		<u> </u>			1
M - 6 hrs																			*	
M - 3 hrs					*	*		*	*			*			*				ate	
M + 7 hrs							(P)	*	*			*			*				*	
M + 18 hrs							*		1			*							*	
LOI Maneuv	ver #2	2	1	1	1	r	1	r	<u> </u>		1	1	1	1	1	1	1	1	1	1
M – 3 hrs					*	*		*	*			*			*					
M + 4 hrs							(P)	*	*			*			*				*	
M + 18 hrs							*					*							*	
LOI Maneu	ver #3	3									1	1	•	•	•	1	•	1	1	
M – 3 hrs					*	*		*	*			*			*					
M + 3 hrs							(P)	*	*			*			*				*	
M + 24 hrs							*	*	*			*			*					
Mapping Orbit Vector Burns																				
M - 1 week					(P)	*		*	*	*										*
M - 1 day					*	*		*	*	*		*			*			*	*	
M - 4 hrs																			*	
M + 4 hrs							(P)	*	*			*			*				*	
M + 1 day							*	*	*	*	*	*			*					

FDAB Lunar Prospector Acquisition Data Delivery Schedule

L-30 days:	Latest Nominal Pfiles and Vectors (if significantly different from prior delivery)
L- 3 days:	Latest Nominal Pfiles and Vectors (Friday Jan 2) (if significantly different from prior delivery)
Launch Day:	Updated TLI burnout vector if launch slipped to the backup launch date.
L+ 3.5 hours:	An improved estimate of the post-TLI definitive state (may help DSS 24 stay on track).
L+ 5 hours:	A predicted post-TCM #1 orbit vector to provide Canberra sites with planned post-maneuver conditions (for support of AOS @ L+6.5 hrs)
L+ 12.5 hours:	Improved post TCM#1 definitive state vector
TCM #2 - 2 hrs:	A predicted post TCM#2 state vector.
TCM #2 + 8 hrs:	A definitive post TCM#2 state vector.
L + 2.5 days:	 Updated definitive post TCM#2 state vector. Special nominal LOI #1 through LOI #3 p-file
TCM #3 - 2 hrs:	A predicted post TCM#3 state vector.
TCM #3 + 12 hrs:	A definitive post TCM#3 state vector.
LOI#1 - 3 hrs:	Predicted post LOI#1 state vector.
LOI#1 + 7 hrs:	A definitive post LOI#1 state vector.
LOI#2 - 3 hrs:	Predicted post LOI#2 state vector.
LOI#2 + 4 hrs :	A definitive post LOI#2 state vector.
LOI#3 - 3 hrs:	Predicted post LOI#3 state vector.
LOI#3 + 3 hrs	Post-LOI #3 definitive state vector
LOI#3 + 1 day:	Post-LOI #3 definitive state vector

Mapping Orbit Maneuver Delivery Schedule

M – 1 day: Predicted post Maneuver state vector

M + **4** hrs: Post-Maneuver definitive state vector

M + **1 day**: Post-Maneuver definitive state vector

Notes:

- 1. Parallel acquisition data in the form of ICVs will be provided for the first post-TLI acquisition (pre-launch nominal), post-TCM #3 definitive (through periselene + 12 hrs in hyperbolic orbit) and predicted post- LOI #1.
- 2. With the exception of the L+2.5 day special p-file and the TCM #3 + 12 hour set of products, all p-files during the transfer orbit will be propagated out to periselene; the special p-file at L+2.5 day will be propagated through LOI #3 + 3 days; the TCM #3 + 12 hour acquisition data will extend out to 12 hours beyond periselene with no LOI burn modeled.
- 3. All solutions labeled as "definitive" will not model any maneuvers that are planned to occur in the future.
- 4. Except for the L+2.5 special p-file and the predicted LOI p-files, all solutions labeled as "predicted" will begin with the predicted burn-out condition of the upcoming burn and will not model any maneuvers that are planned to occur in the future.
- 5. Predicted post LOI#1, 2, and 3 p-files will each extend out for 2 days
- 6. The post-LOI #3 + 3 hr definitive p-file will be 2 days long, while the LOI #3 + 1 day definitive p-file will be 4 weeks long.
- 7. For all LOI maneuvers, the predicted post-LOI p-file will begin at least 3 hour prior to the start of the maneuver and will include a finite burn maneuver model.
- 8. In the event of a launch slip within the 4 minute Athena II launch window, the FDD will not update acquisition data for the DSN. Instead, JPL will adjust the time of the nominal LP injection vector in Earth rotating coordinates by the corresponding delay in the time of launch.
- 9. For all maneuvers, in the event of an off-nominal burn (this probably needs to be quantified, e.g. greater than 10 or 20% hot/cold), a post-burn definitive state vector will be computed and p-files sent to JPL as soon as possible.
- 10. In the mapping phase, 4-week p-file deliveries will be made weekly by midnight on Tuesday Eastern time.

Flight Dynamics Analysis Branch ASCII Ephemeris Format

Flight Dynamics Analysis Branch ASCII Ephemeris Format

This Appendix provides a sample format and an item-by-item description of the Flight Dynamics Analysis Branch ASCII Ephemeris File. Figure C-1 contains a sample format of the ASCII ephem. Table C-1 describes each item in the ephem in the order it appears in the file, provides a sample of the content of each item, and provides a reference byte number that relates each item to a description of the corresponding standard binary FDAB ephem found in reference 3.

Note that certain ephem header items may contain slightly different data values depending on the software used to generate the ephemeris (this applies only to predicted ephems for use by the MCC and outreach and not to definitive ephems). Ephem item numbers for parameters of the ASCII ephem file that appear differently depending on whether GTDS or Swingby is used have been highlighted in Table C-1. For those fields, a sample of the Swingby parameter output is provided (in brackets) for comparison with GTDS sample output (no brackets).

EPHEMERIS FILE INFORMATION:

```
SATELLITE ID NUMBER = 9701231
RUN TITLE =
                 GTDS EPHEM
                                            PROGRAM
TAPE IDENTIFIER = GTDS
EPHEMERIS START TIME (YYMMDD.) = 971110.000000000000000
EPHEMERIS START TIME (SEC OF DAY) = 0.0000000000000000
EPHEMERIS END TIME (YYMMDD.) = 971208.000000000000000

        EPHEMERIS END TIME (SEC OF DAY)
        =
        0.0000000000000000

        EPHEMERIS DELTA-T (SECONDS)
        =
        60.000000000000000

ORBIT THEORY (COWELL OR BROUWER) = COWELL
INTEGRATION STEP (2=FIXED) = 1
COORDINATE SYSTEM
                          = 2000
                         = 4
COORD. SYSTEM INDICATOR
YYMMDD OF FILE CREATION = 960522.0
HHMMSS.SSS OF FILE CREATION = 103502.540
INITIAL CONDITION INFORMATION:
ELEMENT EPOCH (MM/DD/YY HH:MM:SS.SSS) = 11/10/97 0: 0: 0.000
INITIAL CARTESIAN ELEMENTS :
                               X (KM) = 1837.805016481795
                               Y (KM) =
                                              1.472059524027177
                               Z (KM) =
                                            6.240228097916514
                          VX (KM/SEC) =
                                         -0.4503771458298482E-02
                          VY (KM/SEC) =
                                           -0.6774321496919897
                          VZ (KM/SEC) =
                                           1.486291536496388
                             A (KM) =
                                             1837.999999999991
INITIAL KEPLERIAN ELEMENTS :
                                   E =
                                             0.100000001124601E-03
                              I (DEG) =
                                         114.5024778271466
                           RAAN (DEG) =
                                             0.1345633798985469
                             AP (DEG) =
                                             0.1137799872744821
                             MA (DEG) =
                                             0.100000002640287
INITIAL BROUWER MEAN ELEMENTS : A (KM) =
                                             1837.584134710013
                                   E =
                                             0.8642387559830815E-02
                              I (DEG) =
                                             114.5073844065443
                           RAAN (DEG) =
                                             0.1357509087898923
                             AP (DEG) =
                                            269.8544298148346
                                              90.35970836388816
                             MA (DEG) =
CENTRAL BODY INDICATOR (1=EARTH)
                                        =
                                               2.0
DRAG PERTURBATION (0=YES,1=NO)
                                    =
                                             1.0
SOLAR RADIATION PERTURBATION (0=YES,1=NO) =
                                               0.0
SUN POINT MASS PERTURBATION (0=YES,1=NO) =
                                               0.0
MOON POINT MASS PERTURBATION (0=YES,1=NO) =
                                               0.0
```

Figure C-1: Sample Lunar Prospector Ephemeris (1 of 2)

	SPACECRAFT AREASPACECRAFT MASSDRAG COEFFICIENTSOLAR REFLECTIVATMOSPHERIC DENSRHO1 = 0.0RHO2 = 0.0RHO3 = 0.0RHO4 = 0.5	(M**2) (KG) F ITY COEFFICIENT SITY MODEL 000000000000000000000000000000000000	= 2.000 = 357.0 = 2.000 = 1.500 = E+00 E+00 E+00				
	OTHER INFORMATIO	ОИ: 					
	ECCENTRIC ANOMAL TRUE ANOMALY AT ANOMALISTIC PER: GREENWICH HOUR A INITIAL GREENWICH FINAL GREENWICH GEOCENTRIC SUN A YYMMDD OF EARLIA HHMMSS.SSS OF EA YYMMDD OF LATES HHMMSS.SSS OF LA LEAP SECOND DUR:	LY AT EPOCH (DEG EPOCH (DEG) IOD (MINUTES) ANGLE AT EPOCH (CH HOUR ANGLE (R HOUR ANGLE (RAD POSITION AT EPOC EST MEASUREMENT ARLIEST MEASUREM MEASUREMENT ATEST MEASUREMENT ING EPHEM (2=YES	$ \begin{array}{c} F_{1} & = & 0 \\ & = & 0 \\ F_{2} & = & 0 \\ F_{3} & F_{3} & F_{3} \\ F_{4} & F_{4} \\ F_{4$	0.100010001259075 0.100020002754240 117.848721436193 0.8585408859626749 0.8585408859626749 1.340215238311000 -100128435.8 -100384157.9 -43524563.63 0.0 0.000 0.000 0.000	7 3 5 9 9 3373314 9028773 3150572		
	EPHEMERIS:						
Г	TIME FROM EPOCH (SEC)	X (KM)	Y (KM)	Z (KM)	XDOT (KM/	S) YDOT (KM/S)	ZDOT (KM/S)
-	0.000000000000000000000000000000000000	0.18378050164818E+04 0.18349214288006E+04 0.18268188285428E+04 0.18135201542262E+04 0.17950634973545E+04 0.17715017149061E+04 0.17429019287102E+04 0.17093453080645E+04	0.14720595240272 -0.39156904874524 -0.79674547468697 -0.11996500118039 -0.15991318260470 -0.19940525832216 -0.23832887299078 -0.27657326981260	2:+01 0.62402280979165E- 2:02 0.95366701281257E- 2:+02 0.18422207820547E- 2:+03 0.27255326458196E- 2:+03 0.36010869061182E- 2:+03 0.36010869061182E- 2:+03 0.53189902712958E- 2:+03 0.518990278442E- 2:+03 0.61564552667938E-	+01 -0.4503771458296 +02 -0.9159414786553 +03 -0.1784288321412 +03 -0.2647543754850 +03 -0.3503205453017 +03 -0.4348856678022 +03 -0.5182150076908 +03 -0.6000744610158	39E-02 -0.67743214969199E+0 35E-01 -0.67654416442813E+0 29E+00 -0.67372188982322E+0 00E+00 -0.66897342391912E+0 77E+00 -0.66231636104583B+0 20E+00 -0.65377404577352E+0 31E+00 -0.64337209732020E+0 30E+00 -0.63113845124870E+0	0 0.14862915364964E+01 0 0.14838863240472E+01 0 0.14772562236576E+01 0 0.14664175725593E+01 0 0.14514045567895E+01 0 0.14322647626097E+01 0 0.13818340092789E+01
	•	•	•	•	•	•	•
	•	•	•	•	•	•	•

Figure C-1: Sample Lunar Prospector Ephemeris (2 of 2)

Table C-1: ASCII Ephem File Contents(7/21/97)

Header Item #	Label	Binary Ephem Ref. Byte #	Description	Sample Valid LP Contents
1	Satellite ID	9-16	Seven Digit Satellite ID	TBD
2	Run Title	97-152	Program used to generate ephem (Header)	GTDS Ephem Program [or Swingby]
3	Tape Identifier	89-96	Program used to generate ephem (Source ID)	GTDS [or blank]
4	Date of Ephemeris Start Time	25-32	Year, month and day of month of ephemeris start time specified as YYMMDD.0000	981207.0000000000000000
5	Sec of Day of Ephemeris Start Time	41-48	Seconds of day count of ephemeris start time specified as SSSSS.SSS	0.000000000000000
6	Date of Ephemeris End Time	49-56	Year, month and day of month of ephemeris end time specified as YYMMDD.0000	990104.00000000000000000
7	Sec of Day of Ephemeris End Time	65-72	Seconds of day count of ephemeris end time specified as SSSSS.SSS	0.0000000000000000
8	Step Size	73-80	Time interval between ephemeris points in seconds	60.000000000000000
9	Propagator Type	225-232	Propagator used to generate ephemeris (Cowell or Brouwer)	Cowell [or Swingby]
10	Integration Step	1617-1620	Output Interval Type indicator 1 = fixed step 2 = variable step	1
11	Coordinate System Indicator	217-220	INER = True of Reference MEAN = B1950	2000

#1 (EBCDIC ID)	2000 = J2000	
----------------	--------------	--

Header Item #	Label	Binary Ephem Ref. Byte #	Description	Sample Valid LP Contents
12	Coordinate System Indicator #2 (Integer ID)	221-224	2 = Mean of 1950 3 = True of Reference 4 = J2000	4
13	Ephem Creation Date	1585-1592	Ephem creation date specified as YYMMDD	981207.0 [or 0.0]
14	Ephem Creation Time	1593-1600	Ephem creation time specified as HHMMSS.SSS	073014.370 [or 0.0]
15	Epoch Date/Time of Ephem Solution	345-392	Date and epoch time of ephem solution specified as MM/DD/YY HH:MM:SS.SSS	12/07/98 0: 0: 0.0
16	Cartesian Epoch Elements	521	Cartesian position (km) and velocity (km/s) of epoch solution	(see Figure 3-10 of ICD)
17	Keplerian Epoch Elements	393	Keplerian elements [semi-major axis (km), eccentricity, inclination (deg), right ascension of ascending node (deg), argument of perigee (deg), and mean anomaly (deg)] of epoch solution	(see Figure 3-10 of ICD)
18	Brouwer Mean Epoch Elements	161-208	Brouwer-Lydane mean elements for epoch solution [same parameters and units as in item 17]	(elements as in Figure 3-10 of ICD) [or zeros]
19	Central Body Indicator	153-160	Central body used in propagation: 1 = Earth [during transfer orbit] 2 = Moon [during mapping orbit]	 (during transfer orbit) (during mapping orbit)
20	Drag Perturbation Indicator	329-336	Atmospheric drag perturbation modeling indicator: 0 = modeled	1.0

1 = not modeled

Header Item #	Label	Binary Ephem Ref. Byte #	Description	Sample Valid LP Contents
21	Solar Radiation Perturbation Indicator	313-320	Solar radiation perturbation modeling indicator: 0 = modeled 1 = not modeled	0.0
22	Sun Point Mass Perturbation Indicator	321-328	Sun gravitation perturbation modeling indicator: 0 = modeled 1 = not modeled	0.0
23	Moon Point Mass Perturbation Indicator	305-312	Moon gravitation perturbation modeling indicator: 0 = modeled 1 = not modeled	0.0
24	Spacecraft Area	273-280	Cross-Sectional area of spacecraft in square meters	1.75
25	Spacecraft Mass	281-288	Mass of spacecraft in kilograms	299
26	Drag Coefficient	249-256	Drag Coefficient, C _{DZ}	2.0 [very large negative number]
27	Solar Reflectivity Coefficient	257-264	Spacecraft solar reflectivity coefficient, C_R	1.2 [very small positive number]
28	Atmospheric Density Model	265-272	Type of atmospheric density model used: HAR-PRIE = Harris-Priester JACCHIA = Jachhia blank = none used	blank
29	RHO1	729-736	Variation in drag coefficient	0.0
30	RHO2	737-744	Time variation in atmospheric density	0.0
31	RHO3	745-752	Diurnal variation in atmospheric density	0.0
32	RHO4	753-760	Angle between the sun-line and the	0.5 [0.0]

			apex of the diurnal atmospheric bulge	
33	Eccentric	465-472	Eccentric anomaly in degrees of epoch	value as in Figure 3-10 of ICD
	Anomaly @ Epoch		solution	[or zeros]

Header Item #	Label	Binary Ephem Ref. Byte #	Description	Sample Valid LP Contents
34	True Anomaly at	441-448	True anomaly in degrees of epoch	value as in Figure 3-10 of ICD
	Epoch		solution	[or zeros]
35	Anomalistic	473-480	Anomalistic period in minutes of	value as in Figure 3-10 of ICD
	Period at Epoch		epoch solution	[or zeros]
36	Greenwich Hour	1569-1576	Greenwich hour angle in radians of	value as in Figure 3-10 of ICD
	Angle at Epoch		epoch solution	[or zeros]
37	Initial Greenwich	1601-1608	Greenwich hour angle in radians at	value as in Figure 3-10 of ICD
	Hour Angle		ephem start time	[or zeros]
38	Final Greenwich	1609-1616	Greenwich hour angle in radians at	value as in Figure 3-10 of ICD
	Hour Angle		ephem end time	[or zeros]
39	Geocentric Sun	1025-1048	Sun Cartesian position in kilometers	value as in Figure 3-10 of ICD
	Position at Epoch		at solution epoch	[or zeros]
40	Date of Earliest	1649-1656	Date of earliest tracking data span	value as in Figure 3-10 of ICD
	Measurement		used in OD solution (YYMMDD.0)	[or zeros]
41	Time of Earliest	1657-1664	Time of earliest tracking data span	value as in Figure 3-10 of ICD
	Measurement		used in OD solution (HHMMSS.SSS)	[or zeros]
42	Date of Latest	1665-1672	Date of last tracking data span used in	value as in Figure 3-10 of ICD
	Measurement		OD solution (YYMMDD.0)	[or zeros]
43	Time of Latest	1673-1680	Time of last tracking data span used	value as in Figure 3-10 of ICD
	Measurement		in OD solution (HHMMSS.SSS)	[or zeros]
44	Leap Second	1621-1624	Indicator for leap second occurrence	
	Indicator		within ephemeris span:	1 or 2
			1 = no leap second occurred	[or zero]
			2 = leap second occurred	
Data	Ephemeris State		State vectors consisting of:	
Field	Vectors		o Time from Epoch in seconds	

o Cartesian spacecraft position vector	(see Figure 3-10 of ICD)
in kilometers	
o Cartesian spacecraft velocity vector	
in kilometers/sec	
Key Orbit Maneuver Control/Determination Operating Constraints

Key Orbit Maneuver Control/Determination Operating Constraints

- 1. Orbit maneuvers using A3/A4 thrusters shall be limited to (100 0.14 * P) seconds in duration (where P is pressure in psi), due to possible damage to LP antennas located along the +z axis [2.7.3].
- 2. The LP power subsystem is designed for a maximum shadow/eclipse duration of 47 minutes. Shadows/Eclipses lasting longer than the nominal will result in a battery depth of discharge outside nominal operating limits.
- 3. Depending on the current spin rate, the sun azimuth firing angle required, and the thruster pulse width selected, vector maneuvers may require two revolutions per pulse vs. a single revolution per pulse. For the nominal pulse width of 0.833 seconds, and a spin rate of 12 rpm, sun azimuth firing angles less than 30 deg or greater than 330 deg require two revolutions per pulse.
- 4. Dual station coverage should be maintained at LOI #1 unless the cost to do so is greater than 10 m/s. As a minimum, the dual coverage period should extend up to 1 hour before LOI #1 to allow transmission of a 1 hour time delay LOI #1 command from redundant stations [2.7.13].
- 5. Orbit maneuvers in intermediate LOI orbits to trim inclination or periselene radius should be performed only if doing so will save a minimum of 10 m/s over correcting the orbit in the mapping orbit.
- 6. The nominal mapping orbit attitude is normal to the ecliptic plane for maximum solar array output, and for an Earth aspect angle between the 85 and 95 degrees --- within the limits of the medium gain antenna [2.4.2].
- 7. For vector maneuvers, the axial component will nominally executed first since tangential burns may induce attitude disturbances.
- 8. Nominally, all commands will be spaced 10 minutes apart. Therefor the minimum time between axial and tangential burns will be 10 minutes. [2.1.5]
- 9. In the mapping orbit, axial and tangential maneuvers will nominally occur one orbit apart, in order to allow burn placement closer to the line of apsides.
- 10. Nominally, during the mapping orbit, the following orbit limits will be maintained [1.2]:
 - Inclination: $90 \text{ deg} \pm 0.5 \text{ deg}$
 - Altitude: $100 \text{ km} \pm 20 \text{ km}$
- 11. If possible, all orbit maneuvers should be done in sunlight and in view of a station [2.2.8].
- 12. The Earth look angle (angle from +z axis to Earth) should always be kept below 148 deg (nominal omni antenna operating limit is 130 deg, but coverage is expected for larger angles) [2.4.1].
- 13. The sun look angle (angle from +z axis to sun) should always be kept between 66 degrees and 114 degrees for adequate power margin [2.6.3]
- 14. While in the mapping orbit, periselene raising maneuvers will nominally be performed prior to aposelene lowering, mostly as a matter of consistency [2.7.9].