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RADIO INTERFEROMETRY DEPTH SOUNDING: 
PART I-THEORETICAL DlSCUSSlONt 

A. P. ANNAN* 

Radio interferometry is a technique for mea- 
suring in-situ electrical properties and for detect- 
ing subsurface changes in electrical properties of 
geologic regions with very low electrical conduc- 
tivity. Ice-covered terrestrial regions and the 
lunar surface are typical environments where this 
method can be applied. The field strengths about 
a transmitting antenna placed on the surface of 
such an environment exhibit interference maxima 
and minima which are characteristic of the sub- 
surface electrical properties. 

This paper (Part I) examines the theoretical 
wave nature of the electromagnetic fields about 
various types of dipole sources placed on the sur- 
face of a low-loss dielectric half-space and two- 

layer earth. Approximate expressions for the fields 
have been found using both normal mode analysis 
and the saddle-point method of integration. The 
solutions yield a number of important results for 
the radio interferometry depth-sounding method. 
The half-space solutions show that the interface 
modifies the directionality of the antenna. In 
addition, a regular interference pattern is present 
in the surface fields about the source. The intro- 
duction of a subsurface boundary modifies the 
surface fields with the interference pattern show- 
ing a wide range of possible behaviors. These the- 
oretical results provide a basis for interpreting 
the experimental results described in Part II. 

INTRODUCTION 

The stimulus for this work was the interest in 
the measurement of lunar electrical properties in 
situ and the detection of subsurface layering, if 
any, by electromagnetic methods. Unlike most 
regions of the earth’s surface, which are conduc- 
tive largely due to the presence of water, the lunar 
surface is believed to be very dry and, therefore, 
to have a very low electrical conductivity (Strang- 
way, 1969; Ward and Dey, 1971). Extensive ex- 
perimental work on the electrical properties of 
dry geologic materials by Saint-Amant and 
Strangway (1970) indicates that these materials 
are low-loss dielectrics having dielectric constants 
in the range 3 to 15 and loss tangents considerably 
less than 1, in the Mhz frequency range. Analysis 
of the electrical properties of lunar samples by 
Katsube and Collett (1971) indicates that the 

lunar surface material has similar electrical prop- 
erties. 

Since electromagnetic methods commonly used 
in geophysics are designed for conductive earth 
problems, a method of depth sounding in a dom- 
inantly dielectric earth presented a very different 
problem. One possible method of detecting the 
presence of a boundary at depth in a dielectric is 
the radio interferometry technique, first suggested 
by Stern in 1927 (reported by Evans, 1963) as a 
method to measure the thickness of glaciers. The 
only reported application of the technique is the 
work of El-Said (1956), who attempted to sound 
the depth of the water table in the Egyptian des- 
ert. Although he successfully measured some in- 
terference maxima and minima, his method of 
interpretation of the data is open to question in 
light of the present work. 

t Presented at the 39th Annual SEG International Meeting, September 18, 1969. Manuscript received by the 
Editor April 6, 1972; revised manuscript received September 22,1972. 

* University of Toronto, Toronto 181, Ontario, Canada. 
@ 1973 Society of Exploration Geophysicists. All right reserved. 

557 

D
ow

nl
oa

de
d 

12
/1

3/
19

 to
 1

98
.1

20
.2

52
.6

1.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s o
f U

se
 a

t h
ttp

://
lib

ra
ry

.se
g.

or
g/



558 Annan 

The radio interferometry technique is concep- 
tually quite simple. The essential features of the 
method are illustrated in Figure 1. A radio-fre- 
quency source placed on the surface of a dielectric 
earth radiates energy both into the air (or free 
space) above the earth and downward into the 
earth. Any subsurface contrast in electrical prop- 
erties at depth will result in some energy being 
reflected back to the surface. As a result, there 
will be interference maxima and minima in the 
field strengths about the source due to waves 
traveling different paths. The spatial positions of 
the maxima and minima are characteristic of the 

electrical properties of the earth and can be used 
as a method of inferring the earth’s electrical 
properties at depth. 

The problem chosen for study in the theoretical 
work was that of the wave nature of the fields 
about various point-dipole sources placed on the 
surface of a two-layer earth. The mathematical 
solution to this type of boundary-value problem 
is found in numerous references. The general 
problem of electromagnetic waves in stratified 
media is extensively covered by Wait (1970), 
Brekhovskikh (1960), Budden (1961), Norton 
(1937), and Ott (1941, 1943). Although the solu- 

Transmitter Receiver 
Air 

Dielectric 

(4 

Transmittei-receiver separation 

(b) 
FIG. 1. (a) Transmitter-receiver configuration for radio interferometry, showing a direct wave and a reflected 

wave. (b) Schematic sketch of typical field-strength maxima and minima as the transmitter-receiver separation 
increases. 
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Radio Interferometry: Part I 559 

tion to the boundary-value problem can be found 
analytically, the integral expressions for fields 
cannot be evaluated exactly. In the radiation 
zone, approximate solutions to the integrals can 
be obtained by use of the theory of complex vari- 
ables and special methods of contour integration. 
The preceding references, plus numerous others, 
discuss these techniques in detail. Since much of 
the detailed work in the mathematical develop- 
ment of these solutions is contained in the above 
references, the discussion of the solutions that fol- 
low will be primarily aimed at the radio inter- 
ferometry application rather than the mathemati- 
cal manipulations required to obtain them. 

THEORETICAL BOUNDARY-VALUE PROBLEM 

Although the various solutions of the boundary- 
value problem for horizontal and vertical electric 
and magnetic dipole sources over a two-layer 
earth appear in the literature, a complete and 
consistent tabulation of the solutions does not. 
Therefore, the boundary-value problem is out- 
lined here, and a unified notation is used to ex- 
press the solutions. This consistent notation is of 
considerable help in later discussions of the solu- 
tions. 

The geometry and coordinate systems used in 
the boundary-value problem are shown in Figure 
2. A point-dipole source is located at a height h 
on the z-axis above a two-layer earth, where the 
earth’s surface is in the x-y-plane at z = 0, and the 
subsurface boundary is at z= -d. The region 
z>O is taken as air or free space. The region 
-d <z <0 is a low-loss dielectric slab, and the 
region z < -d is a half-space of arbitrary electrical 
properties. These regions are denoted 0, 1, and 2, 
respectively. K, and M, are the complex dielectric 
constant and relative permeability of each region, 
respectively. For consideration of vertical dipole 
sources, the dipole moments are taken aligned 
with the z-axis; for the horizontal dipole sources, 
the dipole moments are taken aligned parallel to 
the x-axis. 

The solutions are most conveniently written 
and discussed using the electric and magnetic 
Hertz vector potential notation. On the assump- 
tion of a time dependence ePiwt and linear consti- 
tutive equations in Maxwell’s equations, one ob- 
tains the following expressions for the electric and 
magnetic fields in terms of the Hertz vectors. For 
electric dipole sources, the electric Hertz vector 
satisfies the Helmholtz equation, 

L 

1 Sourct 2 = h--~----~---~--_____ 
I 

X 7 , 

/- Region 1 
Kl, Ml 

Z = -d\ 

Region 0 
KO=MO=l 

Region 2 
K2, M2 

FIG. 2. Geometry of the boundary-value problem for a two-layer earth, showing notation used. D
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560 

vm + k?rI = - ; 1 (1) 

with the electric and magnetic fields defined by 

and 

E = Kzn + vv .I& (2) 

H = - iwKe,,V X n (3) 

where k is the propagation constant. wd/KMeopo 
and eo, ~0 denote the permittivity and permeabil- 
ity of free space throughout. P is the electric di- 
pole moment density distribution. Similarly, for 
magnetic dipole sources, the results for the mag- 
netic Hertz vector are 

and 

V2n + K2n = - M, (4) 

H = K2n + vv *II, (3) 

E = iwM/.o,v X II, (6) 

where M is the magnetic dipole moment density 
distribution. 

The dipole sources are taken as “unit” point 
dipole sources located in the region 220. The 
electric dipole moment density distribution is 

P = 4xei$(R)ej, (7) 

where ej is a unit vector in the z-direction for 
a vertical electric dipole source and in the 
x-direction for the horizontal dipole source. 6(R) 
is the three-dimensional delta function, and 
R= [~2+y~+(z-k)2]1’2. Similarly for the mag- 
netic dipole sources, 

M = 4&(R)ej. (8) 

In the following discussions, no distinction be- 
tween the electric and magnetic Hertz vectors is 
made. When we refer to electric dipole sources, 
the electric Hertz vector is implied; for magnetic 
dipole sources, the magnetic Hertz vector is im- 
plied. In addition, the free-space wavelength is 
taken as the scaling parameter for all length mea- 
surements. In other words, a distance, denoted p, 
is in free-space wavelengths, and the true length 
is Wp, where W is the free-space wavelength: 

2* 
w= 

W(EOMO) 1’2 . 
(9) 

This choice of scaling parameter makes all the 
following integral solutions dimensionless. 

As shown by Sommerfeld (1909) for a half- 
space earth, and extended to a multilayered earth 
by Wait (1970), the Hertz vectors for the vertical 
dipole sources have only a z-component, while for 
the horizontal dipole sources, the Hertz vectors 
have both x- and z-components. The vertical di- 
pole sources have solutions of the form 

@OR n; = - 
R 

+kr ; uo(X)e-Po(Z+h)H~(Xp)dX, (10) 
m 0 

l-&L- 
2w s 

* x [al@) 
-_m PO 

ePIZ + a2(X)e-Prz] 

.e-PohZ3~(Xp)dX, (11) 

and 

(12) 
. eP*Z+(PZ-Pl)d-POh~~(~p)~~, 

X is the separation constant of the differential 
equation, and pj= (X2- ky)1’2, with the sign of the 
root being chosen such that the solution satisfies 
the radiation condition. In the above form, after 
scaling by W, X is a dimensionless parameter, and 
kj= 2s(KjMj)‘12 is the relative propagation con- 
stant of each region. The aj(X) are unknown func- 
tions of X which are found by satisfying the 
boundary conditions that tangential E and H be 
continuous at z = 0 and z = -d. 

For horizontal dipole sources, the solutions for 
the Hertz vector take the form 

eikoR 

r( = - 

WR 
(13) 

+iJ_- G bo(X)e-PO(Z+h)B~(Xp)dX, 
m 0 

and 

cos+ - x2 n; = - 
2w s - COG9 

-_m PO (14) 

. e-Po(Z+h)H~(Xp)dh D
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Radio Intwforomotry: Part I 561 

for region 0; 

nr, 2. 2w s _I ; [bl(A)eP1z + b2(A)e-P1zl 

-e-PohH~(Xp)dX, 
(15) 

and 

(16) 

for region 1; and 

(17) 
. ePtZ+.(PtP1)&Poh~~(~~)~~, 

and 

2 COSQ O” A2 
nz = - 

s 
- c&d 

2w -00 PO (18) 

for region 2. 
The parameters X and Pi are the same as for the 

vertical dipole solutions, and the coefficients hi(X) 
and ci(X) are found by satisfying the condition 
that tangential E and H be continuous at the 
boundaries. 

The boundary conditions for the Hertz vectors 
and the resulting expressions for @j(X), bj(X), and 
Cj(X) are tabulated in Appendix A. The expres- 
sions for ai( bj(X), and Cj(X) are written in terms 
of the TE and TM Fresnel plane-wave reflection 
and transmission coefficients. Using this notation, 
the similarity of all the solutions is clearly empha- 
sized and makes general discussion of the solu- 
tions possible rather than dealing with each source 
separately. 

In discussing the approximate evaluation of the 
above integral expressions, extensive use is made 
of the plane-wave spectrum concept, since the 
wave nature of the problem is most clearly under- 
stood using this approach. A brief outline of the 

.plane-wave spectrum notation used and approxi- 
mate evaluation of integrals by the saddle-point 
method is given in Appendix B. 

For radio interferometry applications, the 
fields at the earth’s surface for the source placed 
at the earth’s surface are of primary interest; this 

corresponds to setting both z and It equal to 0 in 
the preceding expressions for the Hertz vectors. 
In the following discussions, h is always set equal 
to 0, and, in most instances, z is assumed to be 
close to 0. The solutions are discussed in two 
parts; the half-space solutions and the two-layer 
earth solutions. The half-space solutions for the 
Hertz vectors are obtained by setting KI= K2 and 
Ml= Mz in expressions (10) through (18). The 
half-space solution is of considerable interest since 
the fields about the source show interference 
maxima and minima without a subsurface re- 
flector present. It also provides a base level for 
detection of reflections from depth. 

APPROXIMATE SOLUTIONS 

Half-space earth 
The solution of the half-space problem is treated 

by numerous authors, and the wave nature of the 
fields is well defined. In the following discussions, 
the results of Ott (1941) and Brekhovskikh (1960) 
are followed quite closely, and detailed discussions 
of various aspects of the solutions can be found in 
these references. The wave nature of the fields 
about the source is illustrated in Figure 3. The 
wavefronts denoted A and B are spherical waves 
in the air and earth regions; wave C in the air is 
an inhomogeneous wave, and wave D in the earth 
has numerous names, the most common being 
head, flank, or lateral wave. Waves C and D exist 
only in a limited spatial region, which is defined 
as those points whose position vectors make an 
angle greater than & with the z-axis. The angle QL~ 
is related to the critical angle of the boundary and 
is defined in Appendix B. 

All the dipole sources exhibit the same wave 
nature. To demonstrate how the waves are de- 
rived from the integral expressions, the vertical 
magnetic dipole source is used for illustration. In 
the air, the Hertz vector is given by 

II; = g + $J sin BoRoI(Bo) 
e 

(19) 

.eikoz con B~H;(kop sin 8o)&o, 

and in the earth by 
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562 

FIG. 3. Wavefronts about a dipole source on the surface of a half-space earth. A and B are spherical waves 
in the air and earth, respectively, wave C is an inhomogeneous wave in air, and D is the head wave in the earth. 

With the aid of the Hankel transform identity 
(Sommerfeld, 1949), 

eikoR ik,, 

WR=iif c s 
sin e. 

(21) 
.eikolzI coa eoI!Z~(kop sin &J&3,,, 

and the relation R,j= T,j- 1 for the Fresnel coeffi- 
cients, equation (19) becomes 

.eikolzI coS eoZY~(kOp sin Oo)dOo. 

Using the saddle-point method as discussed in 
Appendix B, the approximate solutions of the 
integral expressions (20) and (22) are 

II; = 

(23) 

and 

(24) 

- GR [z%(a) + cot ar:a(41} , 
1 

where R= (p2+22)1/2, and a!= tan-l p/lZl . Ex- 
pressions (23) and (24) correspond to the spheri- 
cal waves A and B in Figure 3. The bracketed 
terms on the right may be interpreted as the 
modification to the directionality of the source 
due to the presence of the boundary. 

The waves C and D are generated by crossing 
the branch points of ToI and Tlo to obtain the 
saddle-point solutions (23) and (24) for angles 
cr>a”. As outlined in Appendix B, the contribu- 
tion of the branch point can be approximately 
evaluated by the method of steepest descent as 
long as (Y is not close to the branch point. For 
(Y >cyc the expressions 

2 21 
2iklqoI(l - cot LY tan $,I)-3’2eik1P-(k1-ko) ’ 

I; = 
(k: - k;) Wp2 

, (25) 

and D
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Radio Intetferometry: Part I 563 

2 21 

I; = 
2iko4 1 - cot a! tan ~EO)-3’2eikop--i’k1--kg’ ’ 

(k; - Ki) wp2 
(26) 

must be added to (23) and (24) in order that the 
solutions be correct. Expression (25) is readily 
identified as the inhomogeneous wave C, and (26) 
corresponds to the lateral wave D. 

The asymptotic solutions have the form of the 
geometrical optics solution plus second-order cor- 
rection terms. For a perfectly dielectric earth, 
expressions (24) and (26) become infinite as (Y 
approaches &. The singular behavior arises from 
the second-order terms which depend on the 
derivatives of T&Q. The first-order term which 
is the geometrical optics solution remains 
bounded. In this particular case, the angle (Ye 
is the critical angle of Tl&). As a result, the sad- 
dle point and branch point coincide at a=&, and 
the approximate methods used to evaluate the 
integrals are no longer valid. The conical surface 
about the z-axis, defined by (Y=o!, is the region 
where the lateral and spherical waves merge to- 
gether. In this region the two waves cannot be 
considered separately; the combined effect of the 
saddle point and branch point must be evaluated. 
Detailed analysis of this region for integrals sim- 
ilar to expression (20) is given by Brekhovskikh 
(1960), who obtains an asymptotic solution with 
the geometrical optics solution, as the leading 
term plus a connection term which falls off as 
(k,R)+4 instead of (k1R)-2. This result indicates 
that the geometrical optics solution still describes 
the fields adequately for a=& when (klR)+14<<l. 
The correction terms given in (24) and (26), how- 
ever, are not valid when (Y is close to &. 

The fields at the earth’s surface are of primary 
interest and are obtained by setting e=O and 
cr=r/2 in (23), (24), (25), and (26). The solutions 
given are valid for this region provided the con- 
trast in material properties is not extremely large. 
In the case of large contrasts, as occur in conduc- 
tive earth problems, the transmission and reflec- 
tion coefficients have a pole near &=x/2. The 
pole is located at &=x--0x, where eB is the Brew- 
ster angle. The role of this pole in radio wave 
propagation over a conductive earth has been the 
subject of a tremendous amount of discussion 
since Sommerfeld (1909, 1949) equated the con- 
tribution of this pole to the Zenneck surface wave. 
Numerous people (Norton, 1937; Ott, 1943; Van 

der Waerden, 1951; Brekhovskikh, 1960; and 
Wait, 1970) have considered the problem since 
then using the modified saddle-point technique to 
evaluate the integrals for a*7r/2. While a true 
surface wave is not excited, the pole enhances the 
fields near the source in such a manner that they 
fall off approximately as (kR)-I. At large dis- 
tances from the source, the fields are those deter- 
mined by the normal saddle-point method which 
have a (kR)+ fall off. The transition between the 
ranges is determined by the proximity of 8~ to 
x/2. In the radio interferometry application, the 
earth properties of interest are those of a low-loss 
dielectric which is assumed to have only moderate 
contrasts with the free-space properties. The pole 
in this case is well away from x/2 and does not 
affect the preceding solutions. 

In the particular situation of an earth where 
MO= Ml, the Hertz vector for a vertical magnetic 
dipole can be evaluated exactly for z=h=O. The 
result is 

2 &&-- 
(kf - ki) wp2 

[eik+ko-;) (27) 

1 _eiklp &__ 
( )I , P 

as shown by Wait (1951). This provides a check 
on the approximate solution. The approximate 
solution, obtained by adding (23) and (25) or (24) 
and (26) for (r=x/2, is 

J&J& 
2i 

- [koeikoP-kKleik’P], (28) 
(k; - k;) Wp2 

which is the same as (27) if third-order terms are 
neglected. 

The integral expressions for the Hertz vectors 
for the other dipole sources can be treated in the 
same manner as for the vertical magnetic dipole. 
For zti, in the air, they have the form 

&koR 

(- iko cos C#I sin a)“---- G(a) 
G2(4 

WR 
+ z 

0 1 
+ (cos +)“(l - cot (Y tan eEo)-3’2 (29) D
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564 Annan 

The Gi(a) for the various sources are tabulated in 
Table 1. The electric and magnetic fields can be 
obtained by differentiation of the preceding solu- 
tions; the particular form of the integrals encoun- 
tered permits interchange of the integration and 
differentiation steps. 

The half-space solutions demonstrated that 
interference patterns will be observed in the field 
strengths even when there is no subsurface re- 
flector. This is readily seen from equation (28). 
The fields at the earth’s surface are composed of 
two propagating components with one having the 
phase velocity of the air, and the other the veloc- 
ity of the earth. Another important feature of the 
half-space solutions is that the fields near the 
boundary fall off as the inverse square of the radial 
distance from the source at distances greater than 
two or three wavelengths from the source. 

tions is to equate the radiation pattern of the 
source on the boundary to the first-order term in 
the preceding solutions. This technique demon- 
strates how the boundary modifies the directional- 
ity of the source. The radiation pattern is sharply 
peaked in the direction of the critical angle into 
the earth. A sketch of the radiation pattern for a 
vertical dipole source is shown in Figure 4. This 
directionality of the source is important when re- 
flections from a subsurface boundary are con- 
sidered. 

Two-layer earfh 

A convenient method of interpreting the solu- 

The analysis of the integral expressions for the 
two-layer eart?h problem is carried out in two dif- 
ferent ways. The depth of the subsurface boun- 
dary and the electromagnetic losses of the first 
layer determine which approach is more useful. 
The primary method of analysis is to treat the 
first layer of the earth as a leaky waveguide and 
use normal mode analysis. In certain cases the 
mode analysis is cumbersome, and these cases 

Table 1. Coefficients G&Y) for half-space earth solutions for various dipole sources. 

Hertz 
Source I I Vector 1z 

Vertical 
Electric 
Dipole 

Magnetic 0 0 

Horizontal nx 
Magnetic -- 
Dipole Magnetic 0 1 

IIZ 

Electric 
0 0 

Horizontal ax 
Electric 

G 

ToI 

Sot(a) 

SOlb) 

(yo, - l)Tol(a)Solb) 
PPo(4 

G2 
- 

- i(G:‘(a) + c:(a) cot a) 

- - 

-i(G:'(a) + G:(a) cot a) 

-i(G:'(a) + G:(a) cot a) 

-i(G:‘(a) + 3G:(4 cot OJ - 2(&(m)) 

- 

-i(G:‘(a) + G&Y) cot a) 

- 

-i(G:‘(a) + 3G:(a) cot a - 2G,(4) 

kf - k: 

2ik&o, 
k; - k: 

‘=&o + mo) 
k;(kz - kz)“* 0 I 

2 
2iko(mo + Em) 
k;(kz - k:)lz 0 

Definition : 
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Radio Intetferometry: Part I 565 

FIG. 4. Sketch showing how a dielectric boundary modifies the directionality of a vertical dipole source placed on 
the boundary. (a) No boundary present. (b) Boundary at Z=O. 

yield more useful results when the integrals are 
solved approximately using the saddle-point 
method of integration. 

The various dipole sources may all be treated 
in the same manner. For the purpose of illustrat- 
ing the method of analysis, the horizontal electric 
dipole source solutions are used as an example. 
The X- and z-components of the electric Hertz 
vector in the air for this source are given by equa- 
tions (13) and (14) where the coefficients bo and 
GO are listed in Table A-2. 

For normal mode analysis, equation (13) is re- 
written using the integral identity [equation (21)]. 
The components of the Hertz vector are given by 

ik? 
II; = cos f#J G 

s sin2 ~:m~~(Bdc~(fh) 
c (31) 

1 

where the integration variable is &, as defined in 
Appendix B. The singularities of the coefficients 
bo and CO determine the nature of the solutions to 
equations (30) and (31). 

The expressions 

rnlO(l + bo) = 
rllO~lO(l + R12P) 

1 - R,oJW 
, (32) 

and 

d = 2 J sin 4mlo(e1) [ 1 + bo(eI)] 1 
(30) mlOcO = - 

C 2PO 
1 

. e&o2 coS eOHo(kIp sin OI)dO1, (YOI- l)rlloTlo(l+R12~)So1(1+X1~B) . 

and (1--~10X128)(1-R10R12B) D
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566 Annan 

(l-xXlOX12P)(l-R1OR12P) _I ‘--I 

have branch points at the two critical angles of 
the two boundaries in question. In addition, 
equation (32) has an infinite set of simple poles, 
and (33) has a doubly infinite set of poles on each 
Riemann surface. These poles are determined by 
the normal mode equations, 

and 

1 - RroRizP = 0, (34) 

1 - x,ox,zp = 0. (35) 

Equations (34) and (35) are the TE and TM nor- 
mal mode equations, respectively. Both are trans- 
cendental equations with infinite sets of roots. The 
relation between the normal modes and multiple 
reflections is readily obtained by expanding the 
denominators of equations (32) and (33) into 
infinite geoi ric series. For example, 

‘2 In 
_- 

(1 - R1oRd3) = 2 (R1oRd3>“. (36) 
IL-0 

The positions of the poles and branch points in 
the complex plane determine the wave nature of 
the solutions to equations (30) and (31). The nor- 
mal mode solutions are obtained by deforming the 
contour of integration C to C’, as schematically 
illustrated in Figure 5. The integral from -(r/2) 
+ia, tor/2+im, andfromr/2+im to 7r/2--im 
is identically zero. Along the first part of C’ the 
integral is zero since the integrand is zero. Along 
the second part of the contour C’ the integral is 
zero due to the asymmetry of the integrand about 
&=x/2. This result is common in mode analysis 
and has a wide range of applications as discussed 
in detail by Brekhovskikh (1960). The integral 
along C is equal to the residues of the poles crossed 
in deforming the contour to C’, plus the integrals 
along contours Cr and Cz which run from +im 
around the branch points and back to +im . The 
components of the Hertz vector are given by 

i 
1 

I2 I a3 

n/2 

FIG. 5. Complex &plane showing how integration contour C is modified to C’ in order to obtain normal mode 
solutions. Branch points denoted by solid circles and the poles by squares. D
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Radio Interferometry: Part I 

Table 2. Residues of Roles for normal mode analysis for horizontal electric dipole. 

567 

TE Mode 
Residue 

0 
IIZ 

TM Mode 
Residue 

where t(&) = s o : [d-lo(eP)[i + R,~cePh9CeP)]sdl + xIr(ef)8(e3)l 

lTi = 2zri c (TE pole residues) 

+ 11 + 12, 
(37) 

and 

II: = 2ai c (TE pole residues) 

+ 27ri c (TM pole residues) (38) 

+ Ia + 14, 

where 

I2 2$ . s sinem10(f4> [l + hml 
c2 (40) 

. eaoz O”n e”H&p sin el)del, 
. 2 

la = cos f#J 2 
S Cl 

sin2 el~lo(fh)431) (41) 

. 2 

14 = cos#j”k’ S 2w c* 
sin2 ~l~lo(~l)dv 

(42) 
1 

. eikoZ con eoHI(klp sin el)d81. 

The solutions (37) and (38) are completely gen- 
eral and valid provided a branch point and a pole, 
or a TE and TM pole, do not coincide. In the first 
situation, the pole and branch-point contributions 
must be considered together rather than sepa- 
rately, as indicated. In the other situation, (38) 
must include the residue of a second-order pole 
rather than the residues of two simple poles, as 
indicated. Since these situations rarely occur, they 
are not discussed further here. 

The expressions for the residues in (37) and 
(38) are tabulated in Table 2. Approximate solu- 
tions to the branch cut integrals may be obtained 
by steepest-descent integration as discussed in 
Appendix B. The solutions are the second-order 
lateral and inhomogeneous waves generated at the 
boundaries. The approximate solutions are listed 
in Table 3. 

The behavior of the fields at the earth’s surface 
is very dependent on the position of the singular 
points in the complex & plane, which points are, 
in turn, determined by the material properties of 
the earth and the layer thickness d. The important 
features of the solutions are the radial depen- 
dences and the initial amplitudes of the various 
terms in the solutions. All the residues contain 
Hankel functions, which, for radial distances 
greater than one or two wavelengths, have the 
form 
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568 Annan 

Table 3. Approximate steepest-descent solutions to branch-cut integrals for 
normal mode analysis of the horizontal electric dipole. 

2 2 ikg 
2ikos,a(l + R12(&)8(dO)) e 

(k: - ki)(l - R1*(@$8(~iJ)*WP* 

cos +ko Cl(e;O)elkop 
2(k:-_ WP2 

I (1 _ C O t  (yd tan e;,)- Ji2Ca(eEe)ek0p+i2d(k:--k~)1’a 
-_ 

0 WP2 1 

cos qkr(l - cot LYE tan 0&)-a/2C3(8~;) k’zP--(kZdL) 
* * “22d-(k;-k;)l’~z 

2(k: - k;)“‘Wp” 

cl (eL) 
7jOl(l - I&‘)(1 + XI&’ + Eo,(l - x:*8*)(1 + iWqz - 

(1 - xl*s)*(l - RlZS)’ 1 
c,(ekd 

2iqloTloS01&T{ (701 - l)[.&S~o(l + To@ - Ru@) + t112T10(1 + SoIS - X~@)l 

cde2 - 2(1 - y&o1y&z1(l + X&(l - RIO@) + vz1(1 - x~~6)(1 + R&l) - 
kr,(l - yz~)l”(l - yz~)“~(l - X&)‘(l - &S)* 

ko 
sin eEo = - kz 

h 
sin eEz = - 

k1 

P --Illeiklp sin BP1 
, (43) 

where @ is a pole defined by equations (34) and 
(35). The branch cut contributions, II and 13, 
fall off as pe2 with no exponential attenuation, 
while 12 and Z4 fall off as pe2 and are exponentially 
attenuated when the earth is lossy. The ampli- 
tudes of the modes are largest for those poles in 
the vicinity of f?& This effect is related to the 
modified directionality of the source as discussed 
for the half-space fields. When the earth has a 
finite loss all terms in the solution except II and 
the first term of 13 have amplitudes which decay 
exponentially with increasing loss or increasing d. 

The positions of the poles in the complex O1 
plane for three idealized models are illustrated 
schematically in Figure 6. The earth consists of a 
perfect dielectric slab over a half-space, which is 
a perfect conductor in case (a), a perfect dielectric 
with Kz>K, in case (b), and a perfect dielectric 

with Kt< K1 in case (c). In all cases MO= Ml= Mt 
is assumed since permeabilities of bulk earth ma- 
terials vary little from the free-space value. The 
poles lie on the lines 1 I&&@[ = 1 and 1 XIOX&I 
= 1, with the density of distribution of the poles 
on these lines controlled by the slab thickness d. 
For d small, the poles are widely spaced with most 
of them lying high up the lines near the imaginary 
O1 axis. For increasing d, the poles move down the 
lines toward &=r/2 and are more closely packed. 
Unattenuated modes occur only when the Oy lie 
on or close to the real O1 axis. In case (a), the pole 
contours lie on the real axis for &, IO1 <a/2; unat- 
tenuated modes can be excited when O1 exceeds 
the critical angle of the free-space-earth interface. 
In case (c), the slab forms a dielectric waveguide 
when & is greater than the critical angles of both 
boundaries. For both (a) and (c), the modes with 
real@; less than the largest critical angle are highly 
damped due to energy leaking out of the slab. In D
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Is 0. 

Im 8, 

-Re e1 
n/2 

Ko = 1 FREE SPACE 

K* PERFECT DIELECTRIC 

PERFECT CONDUCTOR 

(4 

Kg = 1 FREE SPACE 

K, PERFECT DIELECTRIC 

K2 ’ K1 PERFECT DIELECTRIC 

04 

K, = 1 FREE SPACE 

/2Re 81 

(4 

KI PERFECT DIELECTRLC 

K2 < K1 PERFECT DIELECTRIC 

FIG. 6. Sketches of complex Or-plane showing positions of branch points and pole lines for 3 simple two-layer earth 
cases; case (a), dielectric slab over a perfect conductor; case (b), dielectric slab over dielectric half-space with 
Kz>Kl; case (c) dielectric slab over a dielectric half-space with K*<K,. The dashed lines are contours where 
1 R&$3 I= 1; the dotted lines are contours where 1 XIOXI~ I= 1; the branch points are denoted by solid circles. D
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570 Annan 

case (b), no unattenuated mode can exist, since 
energy is continually flowing out of the slab into 
the lower half-space. The effect of a finite loss ‘in 
the slab moves the pole contours up away from 
the real axis, and all modes have a finite attenua- 
tion. These models demonstrate the general posi- 
tion and behavior of the singular points in the 
complex plane. More detailed studies are given 
by Wait (1970), Brekhovskikh (1960), and Bud- 
den (1961). 

The normal mode approach is most useful when 
the distance from the source is greater than the 
depth of the boundary d and when the earth has 
a very low loss. In a lossy dielectric, the complex 
dielectric constant is R’(l+i tan S), where K’ is 
the real dielectric constant and tan 6 is the loss 
tangent; and the attenuation distance in free- 
space wavelengths for a plane wave is 

D= _!_ 
q//K’ tan6’ 

(44) 

when tan 6<1. When d approaches the attenua- 
tion distance, the solutions begin to approach 
those of a lossy dielectric half-space. An alternate 
approach to evaluating the fields when the dis- 
tance from the source is less than d, or when d 1 D, 
is desirable, since the normal mode approach is 
cumbersome in these cases. 

The integrals can be approximately evaluated 
by the saddle-point method of integration when 
multiple reflections are not strong. The fields can 
then be expressed as the half-space solution plus 
a contribution from the subsurface boundary. By 
regrouping the coefficients bo and CO in the form 

bo = ROl + a;& (45) 

co = f (701 - 1) 
SolTo 
T + c$, (46) 

0 

b: = 
TolTloR12 

(1 - RIO&@) ’ 
(47) 

and 

The Hertz vector components can then be writ- 
ten as 

II: = JG+ Lx, (49) 

and 

IC = La + L, (50) 

where L1 and La are the half-space earth solutions 
discussed earlier, and L2 and L4, given by 

(51) 

and 

1 

a eitoz co8 eo@Z1(K1p sin el)del 

describe the effect of the subsurface boundary. 
L2 and LI can be approximately evaluated by 

the saddle-point method, which results in the ge- 
ometric optics solution. Since s is assumed close to 
zero throughout, the expression 

B&RN sin 0,) (53) 

in the integrands may be regrouped using the 
asymptotic expansion of the Hankel function in 
the manner discussed in Appendix B. L2 and Lp 
then contain the expression 

,+2kld cm bl+ikip sin 81 = ,+lRd oos(dl-a.+) (54) 

in the integrand, where Rd= (p2+4d*)1/2 and 
ad= tan’-’ C9/2d). In this form cyd is the saddle 
point of the integrand and is the geometric optics 
direction of a ray reflected from the subsurface 
boundary. The saddle-point solutions of L2 and 
LI, outlined in Appendix B, are 

1 1 (YOI - ~)SOJ’OI[TIORI~ + S1oX12 + (SOI + TOI - S~IT,,I)X~~R&] 

co =;i;;(; (1 - R10&28)(1 - X10X128) 

_ (721 - l)S1~~loSlzmolTolylzTlz 1 
(48) 

* (I - &o&28)(1 - XloXd) 
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Radio Interferometry: Part I 571 

P((Yd) - 2% (P”(CYd) 
1 d 

-I 
(55) 

+ p’((Yd) cot ad) , I 
and 

&klRd 

L4 = cosdsinad- 
WRd 

* Q(%i) - & (Q”(w) (56) 

+ 3 cot adQ’(ad) - 2Q((Yd)) , 1 
where 

1 
P = mlo(CYd)bO((Yd)eikoZ(1--710 sina ad) l/Z , (57) 

and 
1 

Q = mlo(crd)co(~d)e’koZ(l-r~o sin’ ad) “a. (58) 

Expressions (55) and (56) can be interpreted as 
having replaced the subsurface boundary by an 
image source at twice the depth. The image source 
has a radiation pattern which depends on the re- 
flection and transmission coefficients of the boun- 
daries and the layer thickness. 

In obtaining the saddle-point solution, the ef- 
fect of the poles and branch points has been 
neglected; such neglect is justified when the 
boundary is deep and the earth has a significant 
loss. This is illustrated in Figure 7. To obtain the 
saddle-point contribution, the integration contour 
C must be deformed into the saddle-point contour 
I. The position of I in the complex 0, plane is 
determined by ffd, which, in turn, is determined by 
the ratio of the radial distance to the depth of the 
boundary, p/2d. In order that a given pole or 
branch point be crossed when C is deformed to I’, 
ffd must exceed a certain value which is deter- 
mined by equation (B-11), which defines the con- 
tour I. Since p=2d tan (Y,& the radial distance 
from the source at which the singular point is 

FIG. 7. Complex &-plane showing deformation of contour C to saddle-point contour r. Solid circles= branch points, 
squares= TE poles, and open circles= TM poles. D

ow
nl

oa
de

d 
12

/1
3/

19
 to

 1
98

.1
20

.2
52

.6
1.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s o

f U
se

 a
t h

ttp
://

lib
ra

ry
.se

g.
or

g/



572 Annan 

crossed in obtaining P is defined. When the singu- 
lar point is a pole, the contribution to the integral 
after crossing the pole is a residue of a form similar 
to those in Table 2. When the pole is not on the 
real 01 axis, the residue is exponentially attenuated 
with increasing radial distance. The value of p at 
which the pole must be considered in determining 
the integral is also defined, and is usually much 
greater than the attenuation distance of the mode. 
As a result, the residue of the pole is extremely 
small and is negligible compared to the saddle- 
point contribution. For cases when some poles lie 
on or near the real 81 axis, a fixed radial distance 
from the source must be exceeded before their ef- 
fect needs to be considered. Beyond this distance, 
the normal mode approach is more convenient for 
expressing the solutions. 

The branch-point contributions yield inhomo- 
geneous and lateral waves generated at or reflected 
from the subsurface boundary. As in the case 
of the poles, a finite distance from the source must 
be exceeded before these contributions need to be 
considered. For the earth models where the saddle- 
point method is useful, these contributions, which 
are second-order effects, are negligible. When 
these second-order waves are significant in the 
determination of the field strengths at the earth’s 
surface, the normal mode approach is the better 
method for computing the fields. 

The two-layer earth solutions cover a wide 
range of possible responses. The important results 
are as follows: 

1. When the first layer of the earth is very 
thin and the second layer is a low-loss me- 
dium, the first layer is undetectable. The re- 
sponse of the earth is the same as that of a 
half-space composed of the second layer of 

are generally few in number. Since each 
propagates radially with a different phase 
velocity, the fields will show a regular pe- 
riodic beating as the various modes move in- 
and out-of-phase. 

3. When the first layer of the earth is lossy 
and several wavelengths deep, the geometric 
optics solution is more useful than the normal 
mode approach. The expression for the fields 
is the half-space solution plus a contribution 
from the reflecting boundary. This is the type 
of solution used by El-Said (1956). In El- 
Said’s analysis, the waves propagating along 
the surface were not correctly expressed, and 
the modification in directionality of the 
source due to the air-earth interface was not 
considered. This form of solution is particu- 
larly useful for a quick computation of the 
strength of reflections from subsurface 
boundaries and of the effect on surface fields 
of changes in electrical properties. 

4. The saddle-point solution is useful for 
determining the radial distance from the 
source at which the various contributions of 
the singularities of the integrand become im- 
portant. Since the saddle-point contour is 
positioned in the complex plane by the ratio 
p/2d, a ratio p/2d can be defined for each 
singularity. For normal modes, the radial 
distance defined by this ratio may be inter- 
preted as the distance from the source re- 
quired for a given mode to develop. For the 
branch points, this ratio defines the critical 
distances from the source, where lateral 
waves and inhomogeneous waves from the 
subsurface boundary reach the surface. 

DISCUSSION 

the earth. 
2. When the first layer of the earth is on 

the order of one wavelength thick, the sur- 
face fields become extremely complex. The 
fields exhibit a p-r’* fall-off out to the attenua- 
tion distance of the least attenuated mode 
which is strongly excited. Beyond this dis- 
tance, the contribution of the modes becomes 
negligible and the second-order lateral and 
inhomogeneous waves, with no radial ex- 
ponential attenuation, determine the field 
strengths which then fall off as p-z. When 
modes with low attenuation are excited, they 

The radio interferometry technique provides a 
method of determining electrical properties in 
situ and of detecting subsurface stratification of 
the electrical properties in environments which 
are moderately transparent to electromagnetic 
waves. The theoretical analysis of the two-layer 
earth problem defines the behavior of the fields at 
the earth’s surface and provides a basis for under- 
standing experimental results reported by Ros- 
siter et al (1973) in Part II. The various solutions 
derived here are also useful for computing rough 
estimates of the interference patterns in the fields 
at the earth’s surface, provided the asymptotic 
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Radio Intevferometry: Part I 573 

nature of the expressions is given due respect. 
Examples of these are given in Part II. 

The half-space solutions provide a method of 
determining the electrical properties for a half- 
space. Any strong departures from the half-space 
wave nature (i.e., a regular interference pattern 
and a pe2 distance dependence) indicate that re- 
flections from depth are important. When the 
reflections from depth are due to a horizontal 
boundary in electrical properties, the behavior of 
the fields varies considerably. For example, when 
normal modes are excited, the fields fall off as 
pw112 with regular beating in the field strengths 
with distance from the source. 

The treatment of a two-layer earth with plane 
boundaries, homogeneous media, and point 
sources is a considerable simplification of most 
real environments. These simple models and the 
approximate solutions obtained do, however, pro- 
vide insight into the field behavior in the radio 
interferometry application. Methods to accurately 
compute field strengths for these models are cur- 
rently under investigation. The effect of rough 
and dipping boundaries on the solutions is ex- 
tremely important. Also, the presence of scatter- 
ing by inhomogeneities in the earth can drasti- 
cally alter the fields at the earth’s surface. These 
problems are virtually impossible to treat in a 
general manner theoretically. Scale model experi- 
ments seem to be the most feasible method of 
studying these problems. This work is presently 
in progress. 

The free-space wavelength provides the most 

useful unit of length when discussing and plotting 
radio interferometry data. Scale model construc- 
tion is based on keeping all dimensions the same 
on the wavelength scale and having the same loss 
tangent. In the analysis of field data, plotting 
distances on a wavelength scale makes compari- 
son of data taken at different frequencies straight- 
forward. If the electrical properties are not fre- 
quency dependent, running the experiment using 
several different frequencies can effectively vary 
the depth of a subsurface interface from a fraction 
of a wavelength to many wavelengths. 

APPENDIX A: COEFFICIENTS AND PARAMETERS 

The coefficients in the integral expressions for 
the Hertz vectors for the various dipole sources 
are obtained by satisfying the boundary condi- 
tions at z=O and z= -d. Without a consistent 
notation, the coefficients are extremely compli- 
cated expressions, which lose the symmetry of 
equations (1) through (6) and are difficult to 
interpret physically. In this section, the solutions 
for the coefficients are tabulated, and the notation 
used throughout the body of the text is defined. 

In Table A-l, the boundary conditions for the 
Hertz vectors are listed. In Table A-2, the expres- 
sions for the ai( bj(X), and cj(X) are listed for 
each dipole source. Examination of these solutions 
shows the symmetry between the electric and 
magnetic dipole sources. Interchanging the roles 
of Ki and Mi, one can readily obtain the solution 
for a magnetic dipole source from that of an 
equivalent electric dipole source, and vice versa. 

Table A-l. Boundary conditions for Hertz vectors for various dipole sources. 

Vertical Magnetic Dipole 
(VMD) 

Magnetic 
an; a&’ _=__ 
az az 

Vertical Electric Dipole 
NED) 

Electric ZLII: = Ki+&l 
ad a&' -=- 
az az 

Horizontal Magnetic Dipole 
@MD) 

Magnetic 

Horizontal Electric Dipole 
(HED) 

Electric 
K,I& = Kit&+ 

aIIi+l 
Ki as = KitI ~ 

az 
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574 Annan 

Table A-Z(a). Coefficients a<(h), hi(k), and c&x) 

for vertical dipole source. 

a0 

Two-layer 
earth Half-space 

&I + RllS 
1 - &d&4 

ROl 

- 

Vertical al 

Magnetic ~ 

Dipole a2 

a3 

a0 

aolTot?7lzTl* 
1 - R1oR128 

rloJol 

- 

x01 + x128 
1 - X10X128 

X01 

Vertical 

Electric 

al 
EOlSOl 

1 - x10x128 
EOlSOl 

Dipole a2 
EOlSOlXlzS 

___- 

1 - xloxlzB 
0 

a3 
E01S01E1zS12 

1 - XlOX12B 
~olsol 

The various parameters used in the solutions are 
listed in Table A-3. 

The expressions Xii, Sij, Rtj, and Tij are the 
Fresnel plane-wave reflection and transmission 
coefficients. The subscript notation ;j has the fol- 
lowing meaning: subscript i denotes the medium 
from which the plane wave is incident on the plane 
boundary between media i and j. For example, the 
subscripts 01 mean a plane-wave incident from 
the air on the boundary between the air and the 
first layer of the earth. The Xij and Sij are the 
reflection and transmission coefficients respec- 
tively for a TM plane wave; the Rij and Sij are 
the reflection and transmission coefficients for a 
TE plane wave. 

APPENDIX B: PLANE-WAVE SPECTRUM AND 

EVALUATION OF INTEGRALS 

The physical meaning of the integral expres- 
sions for the various Hertz vector solutions is 

much more apparent when the plane-wave 
spectrum notation is used. The form of the plane- 
wave spectrum used throughout is obtained by 
defining three complex angles, BO, &, 82, and trans- 
forming the integration variable by setting 

X = k. sin B0 = K1 sin & = kz sin &. (B-l) 

The angle 00 is used in the region 220, B1 in the 
region -d <Z <O,and& in the region Z 5 4. The 
above transformation is just an expression of 
Snell’s law. A plane-wave incident from the region 
Z> 0 on the earth’s surface at an angle & to the 
z-axis is refracted into medium 1 at an angle &, 
and to the z-axis and into medium 2 at an angle 
02, as illustrated in Figure B-l. The reader is 
referred to Clemmow (1966) for details. 

The expressions for the Hertz vectors in equa- 
tions (10) through (18) transform as follows, 
where the II”, for a vertical dipole has been chosen 
as an example: 

II; = s + $ J sin eoao(eo) 
c 

(B_2) 

1 
- eiko CoIJ eo(Z+h)EZO(kOp sin e&e,. 

The integration contour C runs from -5r/2+Ztoo 
to --a/2 along the real 00 axis to r/2 and then to 
7r/2- im , as illustrated in Figure B-2. For the 
angles Bi, the contour C is obtained from equation 
(B-l). The Pi transform to -iki cos &, where the 
negative sign is chosen in order to satisfy the radi- 
ation condition. Substituting for P, in the Fresnel 
coefficients of Table A-3 results in the more fa- 
miliar form 

Xij= 

($-)“‘cos&- ($y” cos ej 

($)l” cos ei+ (2)“’ cos e,’ (B-3) 
where the TM reflection coefficient is shown as 
an example. 

The integral expressions can be approximately 
evaluated by manipulating the integration con- 
tour C in the complex 8 plane. The approach is to 
replace the Hankel function by its asymptotic 
expansion, which is valid when the argument is 
considerably greater than unity. 
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Table A-Z(b). Coefficients ai(x), b;(x), and G(X) for horizontal dipole sources. 

Two-layer earth Half-space 
- 

-- 

-- 

-- 

-_ 

-- 

-- 
* 

== 

-- 

-- 

-- 

-- 

Xa1fX1nS 
1 -x10x128 

bo X01 

Y&1 
1 -X1&128 bl YOlSOl 

0 

ba 
YO&llYlzSl2 
1 -x,0x126 YOlSOl HMD 

Cl 

62 

bz 

HED ba 

1 (yo,- l)&-o&(l+XlzB) - (m- 1MlO~l2mO1~olrl2Slz 
- 

2PO (1 --IZ&*8)(1 --x10x12i3 

1 (m- l)?O,~,,~l2asO,~l+r,2~~ - ~r2l-~~~~2molro~Solrl2S~d - 

2PO (l-RlOR,*B)(1-xXloXl28) 
0 

~o,Tol 

0 

YOJlll 

& (Yol-l)SO*Sol 
0 

1 (yol- 1)&,&J-0,(1+&a) - (YZI- 1~Sl2X~o~o,rO~~ol~~2T128 
-c_ 
2PO (l-Rl&28)(1-X10X12B) 

1 (~~1-1)E01S01X128(1+R128)T01- (~21-1)S12m01~01T01~12T12B c2 - 

2po (1--~10R128)(1-X10X12B) 

_ 

1 (YOI- l)~oS,lE,S,2T,,(l+R,zB) - (WI- 1)512S112(1+yO~~)mO~yO1~~1~12T,2 
ca -- 

2PO (l-RlaR12a)(l-XlOX12S) 

0 
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Table A-3. Parameters wed and 
Fresnel coefficients

Parameters 

k; 

yij = ? 
Pi 

mij = E 
fl B @W 

Mi 

?ij =Mi 
ki a KiMi(2r)’ 

TM Fresnel Coefficients 

Reflection: X,, KjPi - KcPj 
” * KjPi + KiPj 

Transmission: Sij = 
2KjPi 

KjPi + KiP, 

Relations: xij = - xji Xij a Sij - 1 

Xij p 1 - Sfi sit 31 tisji 
mii 

TE Fresnel coefficients

Reflection: R,, MjPi- MiPj 
” = MjPi + MiPj 

Transmission: Tij = 
2MjPi 

MjPi f MiPj 
Relations: Rij = - R,i Rij 0 Tij - 1 

Rij = 1 - Tji Tij _ ?ii Tji 
w 

REGION 0 

REGION 1 

FIG. B-l. Illustration of integration variables 61, 81, 
and & and Sell’s law. 

(B-4) 

and 

(B-5) 

FIG. B-2. Complex B-plane showing contour C, saddle-point contours r and r’, and the positions of the branch point 
8~ and branch cut (chain line). D
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Radio Interferometry: Part I 577 

Substitution into the integrals, such as that in 
equation (B-2), results in an expression of the 
form 

eiZk cm B+ikp ain 9 03-a 

in the integrand, which can be written as 

(B-7) 

where R= @+Z*)*‘*, and R and (Y are just the 
length and direction of the geometric-optics ray- 
path. An integral with exponential of the form 
(B-7) is amenable to the saddle-point method 
integration, where 19=a is the saddle point. By 
deforming C to the contour of most rapid descent 
away from the saddle point r one obtains an 
asymptotic series in the parameter (kR)-’ for the 
integral. The leading term in the series is the 
geometric-optics solution to the problem. 

The saddle-point contour r is defined from the 
argument of the exponential in expression (B-7). 
Along the contour r, 

ikR cos (0 - a) = ikR - kR?, (B-8) 

where 

s2 = - sin (0’ - cr) sinh 0”, (B-9) 

and 

8 = 8’ + ie”, (B-10) 

The contour r is then given by the equation 

cos (f3’ - CX) sinh 0” = 1 (B-11) 

and is illustrated in Figure B-2. 
An excellent evaluation of the particular types 

of integrals that appear in the text is given by 
Brekhovskikh (1960), and the reader is referred 
to this reference for more detailed discussion. In 
the rest of the discussion, solutions to the integrals 
valid to the second order in kR_r are used. This 
involves using the second-order terms in the 
Hankel-function expansion and then taking the 
asymptdtic solution to the integrals to the second 
order. The integrals in the text have two forms: 

sin eA(e> 
(B-12) 

.eikz co8 eI&kp sin @de, 

and 

S 
sin2 eA(e) 

e (B-13) 

.eikz co:o8 eH:(kp sin 0)&. 

The solutions to the second order are given by 

(B-14) 

and 

123r: - ik sin (Y 

(B-15) 

A”(cr)+3cotcuA’(cr)-2A(cr) . II 
Solutions (B-14) and (B-15) are valid as long as 
A (0) is a slowly varying function of 0 near the 
saddle point cr. This assumption is valid provided 
A (0) does not have a singular point near Q. In the 
expressions for the various A (0) appearing in the 
text, branch points and poles of A (0) are of the 
utmost importance in the solutions. The branch 
points of A (0) are the critical angles of the 
boundaries in the problem. The critical angles 
enter all the A(8) through the relation 

COS Oj = f [l - yij sin* ei]*lz (B-16) 

in all the Fresnel coefficients subscripted ;j. 
The radical splits the complex e-plane into two 

Riemann sheets with branch points at 

h 
sin& = f -. 

ki 
(B-17) 

For the two-layer earth there are two boundaries 
which give two critical angles and result in a four- 
sheeted e-plane. In the half-space earth problem, 
the complex &plane is two-sheeted. The conven- 
tion followed throughout is that of taking the 
positive square root. The surface defined in this 
manner is referred to as the upper Riemann sur- 
face. For one to evaluate the integrals, the branch 
cuts from the branch points must be defined. The 
convention used here is the same as that of Ott 
and Brekhovskikh, who define the branch lines as 
those contours along which the imaginary part of 
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578 Annan 

equation (B-16) is zero. The branch line is the 
chain line in Figure B-2. 

The branch points must be taken into account 
for saddle-point angles greater than oc. As illus- 
trated in Figure B-2, for a>&, in order to deform 
contour C into r, the branch point 0” must be 
crossed. A modified integration contour to take 
8” into account is shown in Figure B-3. As long as 
cy and 8” are well separated, the saddle-point and 
branch-point contributions can be evaluated 
separately. The contribution of the branch point 
is a second-order effect (Ott, 1941) as long as 
cr#B” and an approximate evaluation of the 
branch-point contribution can be obtained using 
the method of steepest descent. In general, oc is 
obtained by substituting 0=0” in equation (B-11). 
In the particular case of two perfect dielectric 
materials, i andj, forming the boundary, 

e . -I ki 
Orij = sin 

0 g 
Ki < ki, (B-18) 

and 

c . -I kj 
rYij = sin 

0 Ki’ 
kj < ki. (B-19) 

The steepest-descent evaluation of the branch- 
point contribution is summarized 
branch cut integral has the form 

as follows: The 

(n+l) 
iki rg = ~ s 2w B 

sinn+l &A (OJ (B_20) 

.eikiz co8 ‘iHt(kip sin Bi)dBi, 

where the contour B runs from im to 0” on the 
left of the branch cut and from 0” back to in 
along the right of the branch cut. For approxi- 
mate evaluation, 1~ is rewritten 

n+l iki 1/Z 
IgIv-- 

2w e- 

*r 

(B-21) 
sinn+(1’2) Bi[A+(&) - k(e,)] 

J B' 
. eikiR em (fJi-a)&), 

I, 

where the Hankel function has been replaced by 
the first term of its asymptotic expansion. The 
superscripts + and - on A(&) denote the sign of 
the radical in equation (B-16) taken in A(&), and 
the contour Z?’ runs from t$, to im . The contour 
B’ is deformed into the steepest-descent contour, 
B”, away from 0& The path of steepest descent 
is defined by 

Im ikiR cos (0; - a) = constant (B-22) 

and is illustrated by the dotted line in Figure B-3. 
On the assumption that kiR>>l, so that only 

FIG. B-3. Complex B-plane showing modification of saddle-point contour r to contour B in order to account for 
branch-point contribution, and path of-steepest descent (dotted-line). 
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Radio Interferometry: Part I 579 

angles very close to $ contribute significantly tto 
the integral, 19i can be set equal to O;i in all expres- 
sions in the integrand except for the radical. In 
general, 

A+(Oi) - A-(ei) = F(Oi) COS Bj, (B-23) 

and the integral is approximately 

n+l 
--iki 

I* = ___ e--i(2n+l)r/4 
2w 

l/2 
sin nf(1’2) O:jF(O”,j) (B-24) 

-S cos ejeikiR cm (ei-m)dei. 

B’ 

For low-loss media, Oil is close to the real axis for 
kj<ki or close to the r/2 line for ki <ki in the 
complex Oi plane. The method of solution of the 
integral in equation (B-24) is slightly different in 
the two situations, but the results are identical. 
Here, the Olj will be assumed close to the real axis. 
The approximate solution is valid for Oij near the 
?r/2 line. 

Along the steepest-descent contour near &, 

tli = et + iu, (B-25) 

where u is much less than unity. Then, 

cos t9j ‘v - Ci*14&i (~-26) 

and 

ikiR cos (Bi-a)zikiR cos (e:j-a) 

-kiR sin (a-t9t)zJ. 
(B-27) 

The integral in equation (B-24) becomes 

- _ &-i*l4,/2 (d-a) 

(B-28) 

fB,,d;e-6u(ju ‘v f mx2e-si:& 
0 

(B-29) 

Rearranging equations (B-24) and (B-28), one 
finally obtains 

ik: e 
-in(*/2)F(e:j) 

. Ie=_._L-- 
2wp2 (k”, - k;yy3,2 (B_3o) 

* (1 - cot a tan Oij) 

. eikip ain 8$jfiki COB @fjZ 

which must be added to equations (B-14) and 
(B-15) when cz>cr’. 

The assumption in the saddle-point and steep- 
est-descent techniques that kR>>l is reasonably 
valid when R is greater than two wavelengths, 
since k>2s and kR>lO when R>2. 

The poles of the integrands are also of im- 
portance in the solutions. Discussion of their role 
in the solutions is given in the text. 
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