ALSEP Performance Summary Reports

1973

ALSEP Performance Summary Reports 1973 Table of Contents

April 13, 1973
April 19, 1973
April 27, 1973
May 4, 1973
May 11, 1973
May 18, 1973
May 25, 1973
June 1, 1973
June 8, 1973
June 15, 1973
June 22, 1973
June 29, 1973
July 6, 1973
July 13, 1973
July 20, 1973
July 27, 1973
August 3, 1973
August 10, 1973
August 17, 1973
August 24, 1973
August 31, 1973
September 7, 1973
September 14, 1973
September 21, 1973
September 28, 1973
October 5, 1973
October 12, 1973
October 19, 1973
October 26, 1973
November 2, 1973
November 9, 1973
November 16, 1973
November 21, 1973
November 30, 1973
December 7, 1973
December 14, 1973
December 21, 1973

13 April 1973
G.m.t.: 1300

Apollo 17 ALSEP
Sunrise of the scientific station's 5th lunation occurred 8 April. The central station's data subsystem electronics and thermal plate temperatures, as well as the stabion's external structural temperatures continue to rise within anticipated limits. Power from the RIG remains constant. The downlink received signal is reported at $-136.0 \pm 4.0 \mathrm{dbm}$. The procedure of inhibiting the package's internally generated 61-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate nommlly, with periodic ring bridge survey's being accomplished. The HFE is curcently operating in the gradient mode, with all sensoxs being sampled in full sem quence. Lunar surface temperature as measured by the HFE's thermocouples is $343.0 \pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe \#1 and 250.80^{K} at probe \#2.

Preliminary analysis of ISG data resulting from the test on 6 April indicates that the responses which have been detected are associated with the thermal effects related to the sunrise terminator. Whether the responses are instrumentationally derived or are nearby thermal monquakes is not now known. A conclusion of the test was that the d.c. offset voltage of the unbalanced bridge feeding into the d.c. coupled preamplifier stage drove the system into saturation resulting in the output deflection remaining in one direction and not switching polarities with the application and removal of bias voltage. The instrument was then configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 10 resulting in a usable data signal. On 19 April a test is scheduled to change and reduce the mass beam load point by driving both screws toward the bottom position and attempting to rebalance the beam by commanding the mass change mechanism.

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished on 6 and 12 April as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	$\begin{aligned} & \mathrm{HBR} \text { OFF } \\ & \mathrm{G} \cdot \mathrm{~m}, \mathrm{t} . \\ & \hline \end{aligned}$	LSPE STBY G.m.t.	Geophone Cals	Events
6	1451	1500	1530	1532	2	None
12	2055	2106	2125	-	1	None
12	-	2315	2326	2327	2	None
The	30-minu	passive	stening	iod is pl	d for 20	ril.

> ALSEP PERFORMANCE SUMMARY REPORT (continued)

13 April 1973
G.m.t.: 1300

The Iunar Atmospheric Composition Experiment is currently OFF. The LACE gathered data on the composition of the lunar atmosphere throughout the dawn terminator. The electrical background noise ramp continued to be noted on all three mass range data channel outputs. The LACE was commanded OFF at 1014 G.m.t., 11 April, for the remainder of this Iunar day when the electronic temperature (AM-4I) reached $122^{\circ} \mathrm{F}$ at a sun angle of 42.1°. The electronics fifth day temperature profile is tracking the third and fourth day profile within $\pm 3^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorite Experiment is presently OFF. The experiment's periodic calibrate pulses occurred as anticipated. On 8 April, the LEAM was commanded to STANDBY for a 6 hour and 37 minute pexiod in an effort to avoid the possible phenomena associated with lunar sunrise and lunar dust transport (Apollo 17 SMEAR, ALSEP 45). The LEAM was commanded OFF by the Hawaii tracking station at 0510 G.m.t., 10 April, when the instrument mirror temperature (AJ-11) reached $165.2^{\circ} \mathrm{F}$ and a sun angle of 27°. The IEAM will remain OFF until just prior to sunset for this lunar day. The instrument's fifth day temperature profile is tracking the fourth lunar day profile within $\pm 2^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP
Sunrise of the 13 th lunar day occurred on 9 April. The DSS-1 heater (10 watts) was commanded OFF at 1059 G.m.t., 9 April, when the central station's average thermal plate temperature increased to $38.2^{\circ} \mathrm{F}$. The thermoelectric power source output is normal. The 18 -hour timer output pulses continue to be inhibited per the agreed operational plan initiated. 6 May 1972. The 30 foot antenna tracking stations report a signal strength between -134.0 dibm and -139.5 dbm from transmitter " B ". Since the selection of transmitter "B" and processor "Y" on 26 March, the bit stream and signal strength have remained steady.
The instrument is configured for seismic network congruity (thermal control, AUTO ON: component gains, 0 db ; and feedback loop filter OUT). The uncage/ arm fire circuit is configured to the OT state. On 9 April, the Iong period y-axis responded to leveling mode commands. Commands to level the y-axis had not been attempted since 27 March . No significant seismic events were noted during the Iimited real-time support of this instrument.
Scientific data have been static since 16 February 1973. The ISM's scientific data continues to respond to flip calibrations (no cal raster observed) or filter commands. As of 11 April, 361 filp calibration sequences have been executed and verified by the experiment's engineering data.
The experiment is in standby OFF. On 11 April, the experiment was commanded to operate select at $1120 \mathrm{G} . \mathrm{m} . t$. and to high bit rate ON at $1130 \mathrm{G} . \mathrm{m} . t$. for a 30 minute passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real-time. High bit rate operations were terminated at $1200 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standby OFF at 1204 G.m.t. The next passive listening period is planned for 18 April.
Central station
Passive seismic
experiment
Lunar surface
magnetometer
experiment
Active séismic
Operational status from 5 April 1973, 1300 G.m.t., to 13 April 1973, 1300 G.m.t. experiment
Apol10 15 ALSEP
Operational status from 5 April 1973, 1300 G.m.t., to 13 April 1973, 1300 G.m.t. The experiment sensors were commanded to 100 gamma range at 1014 G.m.t., 9 April. position; does not respond to y-axis sensor head is fixed at the loo degree
 equences since activation. The experiment continues to measure time-dependent solar and induced magnetic fields with increasing activity as the moon enters the earth's bow shock and transition region.

The instrument has been in STANDBY since 21 March 1973.

Passive seis
experiment
Lunar surface
magnetometer
experiment
Solar wind
spectormeter
experiment
Suprathermal ion
detector/cold
cathode gauge
experiment
Apollo 15 AISEP (continued)

Heat flow experiment	The instrument measurement, TREF 1, is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is $305.2^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.2^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#z indicates a temperature of $250.8^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys axe obtained periodically

	Apolio 14 ALSEP
Operational	status from 5 April 1973, 1300 G.m.t., to 13 April 1973, 1300 G.m.t.
Central station	Sunrise at the Apol1o 14 site occurred on 11 April (28th lunation). RTG power output is steady. Transmitter "A" signal strength was reported between - 136.0 dbm and -141.7 dbm. The DSS-1 heater (10 watts) was commanded OFF for lunar day operation at 1941 G.m.t., 12 April. Average thermal plate temperature was 77.1. D. Data processor "Y" was verified by command at 1951 G.m.t., 12 April.
Passive seismic experiment	The instrument is configured for seismic networix congruity (Apollo 16 AlsEP). The instrument's heater will be commanded to FORCFD OFF on 15 April to minimize heating during lunar day operations. The long-period y-axis has remained. in the on-scale leveled position since 22 March. The instrument's long period. z-axis has not displayed valid data nor responded to commands since 17 November 1972. During this limited real-time support period no significant seismic events have been noted.
Active seismic experiment	The experiment is currently in STANDBY. On 12 April 1973, the experiment was commanded to ON at 2159 G.m.t. and to high bit rate ON at 2207 G.m.t. for a passive listening mode. No significant signal was noted during the listening mode. Geophone calibration pulses were not sent during the listening period. At 2245 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at 2245 G.m.t., 12 April. The next listening period is scheduled for 16 April 1973.
Supratherma ion detector/cola cathode gauge experiment	The experiment is currently in the full automatic stepping sequence with Channeltron high voltages commanded ON. Since 9 May 1971 intermittent positive engineering data interruptions in one section of the analog-to-digital filter are not adversely affecting the scientific outputs of the experiment.
```Charge particle lunar environmental experiment```	The CPIEF has remained in STANDBY select since 15 March 1973.


Apollo 12 ATSEP	
Operation	status from 5 April 1973, 1300 G.m.t., to 13 April 1973, 1300 G.m.t.
Central station	Sunrise of the $43 r$ I Iunar day occurred on 12 ApriI. Power output from the RTG remains steady. A signal strength of $-136.5 \pm 3.5$ dbm from transmitter "B" was reported by the tracking stations. The DSS -1 heater ( 10 watts) was commanded OFF for Iunar day operations at $1936 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 12 \mathrm{April}$, when the average thermal plate temperature was 5I. $2^{\circ} \mathrm{F}$. Data processor "Y" was verified by command at 1950 G.m.t., 12 April.
Passive seismic experiment	The instrument is configured for seismic networi congruity (Apollo 16 ALSEP). The z-axis drive motor was commanded OFF for Iunar day operation at 1929 G.m.t., 12 April. No significant seismic events were noted during the periodic real-time support periods of this instrument. At 1150 G.m.t., IO April, the instrument responded to a spurious command (octal 071, y leveling motor oN). The Carnarvon tracking station confirmed receipt of the command in the ALSEP downlink. The leveling motor was turned OFF by command through the tracking station at 1204 G.m.t., 10 April, at the direction of mission control without incident.
Lunar surface magnetometer experiment	Scientific and engineering data have been invalid since 4 June 1972.
Solar wind spectrometer experiment	This experiment continues to return scientific data on solar wind plasma magnetosphere plasma and magnetopause crossings, by sensing the direction and energies of both electrons and positive ions. The instrument is currently in the low gain mode (7 August 1972) and is recording solar wind plasma data for subsequent long term analysis.
Suprathermal ion detector experiment	Currently the SIDE is in OPERATE select, automatic stepping sequence, gathering seientific data of the dawn terminator. Cyclic comanding of the instrument in the full automatic stepping sequence with Channeltron high voltages on to experim ment power OFF will be initiated on 14 April in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$ 。 on 8 April, the Canary ground station reported a spurious command verification work (octal 053), SIDE STANDBY. The spurious functional change was corrected by Mode 1 command at 2036 G.m.t. 8 April, through the Canary tracking station without incident.

APOLLO 16 ALSEP



## TM POINT



## TM POINT

[^0]ALSEP PERFORMANCE SUMMARY REPORT
19 April 1973
G.m.t.: 1300

Apol10 17 ALSEP
Noon of the scientitic station's 5th lunation ocurred on 15 April. All experiments and the central station are operating as expected. power from the RTG is stabilized at 76.29 watts. The downink received signal is reported between -142.5 and -147.0 dbm. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain (by internally generated 6l-hour pulses), continues during real-time support periods. The central station's temperature prom file is tracking that of the previous lunation.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge survey's being accomplished. The instrument is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE's thermocouples is $357 \pm$ $8^{\circ} \mathrm{K}$. Subsurface temperabure at 230 cm depth is 256.5 K at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Tunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 10 . On 19 April a test is scheduled to change and reduce the mass beam load point by driving both screws toward the bottom position and attempting to rebalance the beam by commanding the mass change mechanism. The experiments sensor temperature is stabilized at $49.190^{\circ} \mathrm{C}$ (slave heater on).

The Innar Seismic Profiling Experiment is in STANDBY. No passive listening mode was scheduled during this reporting period: the next passive listening mode is scheduled for 30 minutes on 20 April.

The Lunar Atmospheric Composition Experiment remains OFF since commanded to this mode at $1014 \mathrm{G} . \mathrm{m} . t$. on 11 April. The electronics temperature (AMm4) reached a value of $74.4^{\circ} \mathrm{F}$ near lunar noon, decreasing to $72.9^{\circ}$ at a sun angle of $103.6^{\circ}$. AM-41 is tracking the previous day's profile by $\pm 3^{\circ} \mathrm{F}$. Per the present operational plan, the experiment will be commanded on just prior to Iunar sunset on 22 April.

The Lunar Ejecta and Meteorites Experiment remains OfF since commanded to this mode on 10 April. Subsequent to the OFF command, the instrument's mirror temperature ( $A J-11$ ) decreased, reaching $152.2^{\circ} \mathrm{F}$ at a sun angle of $30.5^{\circ}$, and then continued to increase as the sun angle increased toward lunar noon. The instmment's 5th day temperature profile is in close agreem ment with that of the previous lunation. The LEAM will remain OPF until just prior to sunset on 22 April.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
ADO110 16 AISEP


$$
\text { Apo110 } 15 \text { ALSEP }
$$



$$
\begin{aligned}
& \text { Suprathermal ion } \\
& \text { detector/cold } \\
& \text { cathode gauge }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Heat flow } \\
& \text { experiment }
\end{aligned}
$$

Operationa
 The instrument is configured for seismic network congruity (Apol10 16 ALSEP). The instrument's heater was commanded to FORCED OFF on 16 April at 1015 G.m.t., to minimize heating during lunar day operations. The long-period y-axis has remained in the on-scale position since 22 March, however, the $y$-axis failed to respond to leveling commands on 17 April. The instrument's long period z-axis has not displayed valid data nor responded to commands since 17 November 1972. During this limited real-time support period no significant seismic events have been noted.

> The experiment is currently in STANDBY. On 16 April 1973, the experiment was commanded to ON at 1024 G.m.t. and to high bit rate ON at 1030 G.m.t. for a passive listening mode. No significant signal was noted during the listening mode. Geophone calibration pulses were not sent during the listening period. At 1100 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at $1102 \mathrm{G} . \mathrm{m} . t$. . 16 April. The next listening period is scheduled for 23 April 1973.
 Tequemuxotaua experiment


APOLLO 16 ALSEP


APOLIO 15 ALSEP



27 April 1973
G.m.t.: 0100

On April 21, the Apollo 16 ALSEP completed one year of uninterrupted operations.

## APO110 17 ATSEP

Mianight will occur 30 April at Taurus Littrow. The central station is operating normally with the automatic power management circuit functionm ing as designed. The structural components temperatures have stabilized and are tracking the temperature profile of the fourth lunar night. Downlink RF signal strength is reporfed between -136.5 and -145.0 dom from transmitter "A". Thermoelectric power source output is 76.9 watts. The procedure of inhibiting the internally generated 61 -hour pulse conm tinues with the command (octal 174) bejng sent to the command decoder switch during real-time support, periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $214.5 \pm 8 \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures axe $256.5 \% \mathrm{~K}$ at probe \#I and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at inerement $11.0 n 19$ April a test was conducted to change and reduce the mass beam load point by driving both screws toward the bottom position and attempting to rebalance the beam by commanding the mass change mechanism. The Iunar Seismic Prom filing Experiment was operated in High Bit Rate (HBR) ON for 65 minutes at optical terminator on 22 April to support the Lunar Surface Gravimeter tests (Apollo 17 SMEAR, ATSEP 48). Correlation of events between the ISG and the LSP should provide corroborative evidence for the 1.5 Hz natural frequency of the LSG, allow spectral comparisons of mecorded background noise and provide a means of comparing relative gain levels of the two instruments. Several events were noted during the sunset berminator crossing. However, the periodicity of these events were not the same as the periodicity of the events which were noted during the 8 April sunrise terminator crossing. The experiments sensor temperature is stabilized ot $49.190^{\circ} \mathrm{C}$ (alave heater ON).

## ALSEP PERFORMANCE SUMMARY RFPORT (continued)

27 April 1973
G.m.t.: 0100

The Lunar Seismic Profiling Experiment is currently in STANDBY select. ISPE passive listening mode operations were accomplished on 20 and 22 April as follows:

Date	ISPE ON   G.m.t.	HBR ON   20	G.m.t.	GBR OFF   22	1412	1200

The next 30 -minube passive listening period is planned for 27 April.
The Lunar Atmospheric Composition Experiment was commanded on at 1533 G.m.t. : 22 April for the lunar night. The LACE continues to collect data on the lunar atmospheric composition. The present configuration is automatic sweep; high voltage power supply, ON; ion source filaments, ON; multipliers. HIGH; low voltage power supply, ON; discriminator level. HIGH; and back. up heater OFF. The LACE electronich temperature (AM-4I) is curcently $-2.3^{\circ} \mathrm{F}$ as the internal electronics heater is not on the heater will be commanded ON during real-time support 27 April.

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded OV for the remainder of this lunar night at $1607 \mathrm{G} . \mathrm{m} . t ., 22$ April. The instrument was commanded to STANDBY for a 6 hour and 53 minute period, 22 April in an effort to avoid the possible phenomena associated with lunar sunset and lunar dust transport (Apollo 17 SMEAR, ALSEP 45). The instrument's mimpor temperature (AJ-11) currently is reading -17.4 F and tracking the previous Iunar night temperature profile.

It is requested that any organization having comments questions, or suggestions concerning this report contact R. Miley. Science Requirements Branch, TN3, telephone 483-5067.
Apoino 16 AISEP

The instrument is configured for seismic network congruity (themal control, AuTo ON; component gains, O db; and feedback loop filter OUT). The uncage/arm fire cireuit is configured to the OT state. The long period y-axis has responded to leveling mode commands since 9 April. The instrumen's assembly temperature (DI-O7) was on-scale on 23 April at the beginning of real-time support at a sun angle of 177.0 . No significant seismic events were noted during the limited real-time support of this instrument. data continues not to respond to flip calibrations (no cal raster observed) or filter command. As of 25 April, 373 flip caibration sequences have been
executed and verified by the experiment's engimeering data. The instrument sensor, base, and internal temperatures are ourrently reading much lower than at any other previous lunation. The thermal control $X Y O$ status is $X$ and the heater is ON.
The experiment is in standby OFF. The next 30 -minute passive listening period is planned for 27 April. Tevotybuedo Central station

[^1]Lunar surface
Active seismic
experiment
deSTV ST OTIOdZ
Operational status from 18 April 1973, 1300 G.m.t., to 26 April 1973, 0100 G.m.t. Sunset of the site's 22nd Iunation occurred on 24 April. The RTG output Transmitter "A" domlink signal strength is reported The Iunar night operational procedure of eliminating the data subsystem timer outputs, and $2200 \mathrm{G} . \mathrm{m} . \mathrm{t}$., will be initiated on 27 April. Between real at $1400 \mathrm{G} . \mathrm{m}$. t. periods at $0507 \mathrm{G} . \mathrm{m} . \mathrm{t} .23 \mathrm{April}$ and $1810 \mathrm{G} . \mathrm{m} . t ., 23$ April, the central station responded to a spurious command (octal 062. PCU 2 select). No CVW could be reported in the downink. After verification during real-time support. the command (octal 060, PCU 1 Select) was executed by mission control at 1912 G.m.t. 23 April, without incident. Downink data was not interrupted during the transfer to PCU 2 select and back to PCU I Select.
The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. On 20 April the sensor temperature (DI-07) returned on-scale (sun angle $=124.9^{\circ}$ ). During the intermittent realtime support periods this past week no significant seismic events were noted. The experiment sensors were commanded to the 50 gamma range at 1509 G.m.t.,
25 April 1973 , for lunar night operation. The y-axis senson head is fixed
at the 180 degree position; does not respond to flip cal commands; and has in-
dicated off-scale Iow static since 20 September 1972 . Flip calibration se-
querces were resumed for this lunation, 20 April, as the sensor internal tem-
perature decreased below $62^{\circ}$. The instrument has executed 892 flip calibra-
tion sequences since activation,

## The instrument has been in STANDBY since 21 March 1973

The instrument is currently operating with the Channeltron high voltages command-
ed on and in full automatic stepping sequence ( $0-127$ frames). Passive seismic
experiment
Central station

Central station	Sunset of the site's 22nd Iunation occurred on 24 April. The RIG output power remains steady. Transmitter "A" downink signal strength is reported at $-136.5 \pm 3.5 \mathrm{dbm}$ by the tracking stations with $30-f o 0 t$ antenna. The lunar night operational procedure of eliminating the data subsystem timer outputs, by uplink of the timer reset command (octal 150) twice daily at l400 G.m.t. and $2200 \mathrm{G} . \mathrm{m} . t .$, will be initiated on 27 April. Between real-time support. periods at 0507 G.m.t. 23 April and 1810 G.m.t. 23 April, the central station responded to a spurious command (octal 062. PCU 2 select). No CVW coula be reported in the downink. After verification during real-time support. the command (octal 060, PCU 1 Select) was executed by mission control at 1912 G.m.t., 23 April, without incident. Downink data was not interrupted during the transfex to PCU 2 Select and back to PCU I Select.
Passive seismic experiment	The instrument is configured for seismie network congruity (Apollo 16 ALSEP). The uncage/arm fire circuitry is oycling normally as a result of the central station's data subsystem timer outputs. On 20 April the sensor temperature ( $D I-07$ ) retumed on-scale (sun angle $=124.9^{\circ}$ ) . During the intermittent realtime support periods this past week no significant seismic events were noted.
Iunar surface magne ometer experiment	The experiment sensors were commanded to the 50 gamma range at $1509 \mathrm{G} . \mathrm{m} . \mathrm{t}$. . 25 April 1973, for lunar night opecation. The y-axis sersor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LOW static since 20 September 1972 . Flip calibration sem querces were resumed for this lunation, 20 April, as the sensor internal temperature decreased below $62^{\circ} \mathrm{C}$. The instrument has executed 892 flip calibration sequences since activation.
Solar wind spectrometer experiment	The instrument has been in STANDBY since 21 March 19
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently operating with the Chaneltron high voltages commanaed ON and in full automatic stepping sequence ( $0-127$ frames).





[^2]


APOLIO 14 ATSEP
810
9061
$166.3^{\circ}$
69.6 W
AII OFF
ASE \& CPIEE Stby
$58.3^{\circ} \mathrm{F}$
$125.0^{\circ} \mathrm{F}$
IV/A
N/A
Invalid
Invalid
$O F F$
$47.6^{\circ} \mathrm{C}$
$N / \mathrm{A}$

ALSEP PERFORMANCE SUMMARY REPORT

4 May 1973
G.m.t.: 1300

Apol1o 17 AISEP
The central station continues operating normally, with the station's electronics and structural components temperatures stabilized in the lunar night environment. Downlink RF signal strength, as reported by the 30-foot antenna tracking station, is between -134.0 dbm and -140.0 dbm. Power from the RTG remains constant. The station's command dem coder switch inhibit pulse occurced as anticipated, verified by a status change in telemetry point $A B-18$. The procedure of inhibiting the internally generated 61 -hour pulse contimues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge suxveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $108 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Iunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment Il. Correlation of events during the 22 April tests between the Lunar Surface Gravimeter and the Lunar Seismic Profiling Experiment are currently being analyzed by the Principal Investigator to confirm the evidence for the 1.5 Hz natural frequency of the LSG, allow spectral comparisons of recorded background noise and provide a means of comparing relative gain levels of the two instruments. In order to obtain a greater comprehensive background for data analysis of this experiment, the test accomplished on 22 April, will be repeated on 7 May, during the temmator crossing (Apollo 17 SMEAR 48). The experiment's sensor temperature is stabilized at 49.190 C (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. An LSPE passive listening mode operation was conducted on 27 April as follows:

	LSPE ON	HBR ON	HBR OFF	LSPE STBY	Geophone	
Date	G.m.t.	G.m.t.	G.m.t.	G.m.t.	Cals	Events
27	0428	0430	0500	0505	2	None

The next 30 minute passive listening period is planned for later boday.

ALSEP PERFORMANCE SUMMARY REPORT: (continued)
4 May 1973
G.m.t.: 1300

The Irunar Atmospheric Composition Experiment is ON for Iunar night operations. The LACE continues to collect data on the Iunar atmospheric composition. The present configuration is automatic sweep; high roltage power supply ON; ion source filaments, ON; multipliers, HIGF; low voltage power supply On; discriminator level, HIGH; and back-up heater On. The LACE electronics temperature (AM-41) with the heater OFF stabilized at $-2.3^{\circ} \mathrm{F}$. On 27 April the heatex was commanded OII, and the internal electronics temperature increased to its previous lunar night time operational level $\left(\mathrm{AM}-41=13.4^{\circ} \mathrm{F}\right)$. The heater OFF configuration was performed to determine if the heater affected the electrical background noise ramp on the three mass range data channel outputs. Wo noticeable effect was observed in real-time during the heater OFF configuration.

The Lunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates since turn-on for Iunar night operation on 22 Apwil 1973. The instrument's mirror temperature (AJ-II) is stabilized at $-20.8^{\circ} \mathrm{F}$ which is also the minimum temperature attained during the previous lunar nights. The instrument will be left in the operate select on mode through this terminator crossing 7 May, per the agreed plan (Apollo 17 SMEAR 49).

It is requested than any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol10 16 ALSEF
Central station

## Passive seismic

Lunar surface
magnetometer
experiment
Active seismic

The Active Seismic Experiment is currently in STANDBY OFF. ASE passive listening
mode operations were accomplished on 27 April and 2 May as follows:


The next $30-m i n t e$ passive Iistening period is planned for 11 May.
Operational status from 27 April 1973, 0100 G.m.t., to $4 \mathrm{May} \mathrm{1973,1300G.m.t}$. The DSS-I scantes site. Ihe Ds-l taions a tracking stations report a B". The themmoelectric A power source output remains essentially unchanged. The instrument is configured for seismic network congruity (themmel control, AUTO ON; component gains, O db; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OI state. Since 27 April, the LP y-axis has not responded to leveling commands. This is a reoccurring anomaly during night time operations. No significant seismic events were noted during the limited real-time support of this instrument. Soientific data have been static since 16 February 1973. The ISM's scientific data continues to not respond to flip calibrations (no cal raster oberved) on filter commands. The instrument is currently configured with the digital filter OUI, flip cal inhibit logic commanded ON, and sensors in the 200 gamma range. During real-time support on 27 April it was observed that the instrument's temm peratures were lowex than previous lunar night operations ( 20 to $30^{\circ} \mathrm{C}$ differential) On 27 April. $0315 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, the XYO status was commanded to the $Y$ heater ON ; instrumert internal temperature was -28.0 C . Since configuring to the Y heater ON, the instrument temperatures have increased as expected and are presenty stabilized in the lunar night environment. As of 2 May, 379 flip calibration sequences have been executed and verified by the experiment's engineering data. ASE OFP Geophone G.m.t. Cals 2
2 -

## HBR OFF $\frac{\text { G.m.t. }}{0415}$ 1515

 HBR ONT$\frac{\text { G.m.t. }}{0345}$
1445 ASE ON $\begin{array}{ll}\text { Date } & \frac{\text { G.m.t. }}{27 \text { April }} \begin{array}{l}0321 \\ 2 \text { May } \\ 1426\end{array}\end{array}$
ADOIIO 15 AISEP

Midnight at the Apollo 14 site ocurred today, 4 May. RTG power output is steay.
Transmitter "A" signal strength was reported at $-139.6 \pm 4.4 \mathrm{abm}$. The DSS-1 heat-
ex (10 watts) is oN for Iunar night operation. ex (10 watus) is on for lunar night operaulon.
The instrument is configured for seismic networix congruity (Apollo 16 ALSEP). The
long-period y-axis has remained in the on-scale leveled position since 22 March.
The instrument's heater is operating in the AUN ON mode for Iunar night operation.
The instrumert's long period zaxis has not displayed valid data nor responded to
commands since If November 1972 During this limited realutime support period no
significant aeismic events have been noted.

> The experiment is currently in STANDBY. The next listening period is scheduled restriction.

## The instrument is currently ON with SDE HV OFF and CCIC HV ON. On 25 Apric the

 experiment was commanded to OPERATE select. After numerous attemps of commanding to the instrument to maintain normal operation, it would either remain in STANDBY, es of operation would return to STANDBY. It is plamed to leave the instrument in the present configuration throughout lunar night pendingfurther analsis of this anomalous activity (Apollo 14 AISEP SMEAR 82).

The CPIFP is currently in STANDBY select. During real-time support at 1501 G.m.t. 27 April, the instrument was commanded to operate select and remained in that configuration until 1509 G.m.t., 28 April, when the CPIEE was commanded to STANDBY select. Since 30 April 1973 (per the agreed operational procedure) the experiment
 below:


286
88
in
$h$
$H$




\&	
¢	
¢ \%	$0 \cdot$
N+	O-
$\cdots$	$\stackrel{\infty}{0}$
${ }_{[ }>$	กั入




Central station
Passive seismic experiment

Active seismic
experiment
Suprathermal ion
detector/cold
Charged particle
Iunar
environmental
experiment




Status as of $1800 G . m .4,2$ May 1973 was as foliows:

## TM POINT

APOLLO 12 ALSEP


Total Days of Operation Total Comm Sun Angle Input Power APM Status (AB-13) Power Dump Status (AB-14) Avg Thermal Plate Temp LMS Temp (AM-41) LAM Temp (AJ-11)


## AISEP PERFORMANCE SUMMARY REPORT

11 May 1973
G.m.t.: 1200

ApOIIO 17 ATSEP
Sunrise of the scientific station's 6th Iunation occurred '7 May. The central station's data subsystem electronics and thermal plate tempexam tures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG remains constant. The downink received signal is reported between -134.0 and -143.5 dbm . The procedure of inhibiting the package's internally genem rated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-tine support periods.

The Heat Flow Experiment continues to operabe noxmally, with periodic ring bridge survey's being accomplished. The HFE ia currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunax surface temperature as measured by the HFw thermocguplea is $200^{\circ} \pm 8{ }^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth is $256.2^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe $\# 2$.

The Iunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 11. The Lunar Seismic Profiling Experiment was operated in High Bit Rate (HBR) ON for 51 minutes at optical terminator on 7 May to support the Iunar Surface Gravimeter testa (Apollo 17 SMEAR, ALSEP 48). Correiation of events between the LSG and the LSP should provide corroborative evidence for the 1.5 Hz natural frequency of the LSG, allow spectral comparisons of recorded background noise and provide a means of comparing relative gain levels of the two instruments. Several events were noted during the sunset terminator crossing. The periodicity of these events were the same as the periodicity of the events which were noted during the 8 April suncise terminator crossing, but were not the same as the 22. April sunset terminator crossing. The LSPP was operated in $H B R$ ON for six hours on 9 and 10 May to obtain the incidence of natural seismic events at the Apollo 17 site to corroborate in-depth analysis of LSG data (Apollo 17 SMEAR, ALSEP 50). Phase IV operations with Mode I commanding was accomplished by the Texas ground station and no realtime observations of recordexs were made. The experiments sensor temperature is stabilized at $49.190^{\circ} \mathrm{C}$ (siave heater ON).

ALSEP PERFORMANCE SUMMARY REPORT (continued)
11 May 1973
G.m.t.: 1200

The Lunar Seismic Profiling Experiment is currently in STANDBy select. LSPE passive listening mode operabions were accomplished on 4, 7, 9, and 10 May as follows:

Date	$\begin{aligned} & \text { LSPE ONT } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR ON } \\ & \text { G. } \mathrm{m}, \mathrm{t} . \end{aligned}$	$\begin{aligned} & \mathrm{GBR} \text { OFF } \\ & \text { G.m.t. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Is...EE STPBY } \\ & \text { Gom.t. } \end{aligned}$	Geophone CaIs	Events
4	1353	1410	1440	1443	2	None
7	21.38	2146	2237	2241	2	Reaponses
9	1331	1405	1435	1439	2	Responses
9	2355	-	-		0	-
10	- - - -	0007	0607	0610	-	---

The next 30 minute passive Iistening period is planned for 18 May .
The Lunar Atmospheric Composition Experiment is currently OFF. The LACE gathered data on the composition of the Iunar atmosphere throughout the dawn terminator. The electrical background noise ramp continued to be noted on all three mass range data channel outputs. The LACE was comanded OFF at 1513 G.m.t., 10 May , for the remainder of this Junar day when the electronic temperature (AM-41) reached $108.7^{\circ} \mathrm{F}$ at a sun angle of 38.5 . The electronics 6 th day temperature profile is tracking the previous day profiles within $\pm 3^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorite Experiment is presently OFF. The instrum ment was left in the operate select on mode through the 7 May terminator crossing per the agreed plan (Apollo 17 SMEAR 49). The LFAM was commanded OFF at $0002 \mathrm{G} . \mathrm{m} . t ., 10$ May, when the instrument mirror temperature (AJ-11) reached $167.0^{\circ} \mathrm{F}$ : The LEAM will remain OFF until the mirror temperature decreases to 150 F at which time the instrument will be commanded ON for the remainder of this Iunation.

It is requested that any organization having comments, questions, ox suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone $483-5067$.
The instrument is configured for seismic network congruity (Apoiso 16 ALSEP). The uncage/arm fire circuitry is cycling hormally as a result of the central station s data subsystem timer outputs. During the intermittent real-time support periods this past week no significant seismic events were noted.
 for Iunar day operation. The $y$ maxis sensor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LoW (static) since 20 September 1972 . The instrument has executed 910 flip
calibration sequences since activation.

> The instrument remains in STANDBY.
The instrument measurement, TREF I, is operating romally (TREF 2 has been invalid since 29 May 1972). The Iunar surface temperature was $83.9^{\circ} \mathrm{K}$ on 9 May ,
 a temperature of $250.8^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.
Central station
Passive seismic
Iunar surface
magnetometer
experiment Solar wind
spectrometer
experiment
Suprathermal ion aetector/cold. cathode gauge

[^3]\[

$$
\begin{gathered}
\text { Apo110 } 15 \mathrm{ATSEP} \\
\text { Operational status fiom } 4 \mathrm{May} \mathrm{1973,} 1300 \mathrm{Gm.t.to11May1973.1200m.m.}
\end{gathered}
$$
\]

command (octal 150) was terminated 10 May .

$$
\text { Operational status from } 4 \text { May 1973, } 1300 \text { G.m.t., to } 11 \text { May 1973, } 1200 \text { G.m.t. }
$$ for 13 May 1973 when the instrument temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ restriction.

Between real-time support periods of 4 May and 7 May the instrument reved a functional command to place the command register to SIDE command load (Master Reset). Mission control cleared the command register at 1945 G.m.

[^4][^5]Passive seismic experiment



Charge particle
lunar
The experiment is currently in STANDBY. The next listening period is scheduled

$$
\text { Apolio } 12 \text { AISEP }
$$

Operation Central station	status from 4 May 1973, 1300 G.m.t., to 11 May 1973, 1200 G.m.t.   Suncise of the 44th Iunar day will occur Iater today. Power output from the RTG remains steady. A signal strength of $-138.0 \pm 3.0$ dmm from transmitter " $B$ " was reported by the tracking stations. The DSS-1 heater (10 watts) will be commanded OFF for Iunar day operations on 13 May. Data processor "Y" will be verified by command on 13 May.
Passive seismic experiment	The instrument is configured for geismic network congruity (Apollo 16 ALsEP). The z-axis drive motor will be commanded OFF for Iunar day operation on 13 May. Between real-bime support periods of 4 May and 7 May the instrument experienced a spurious command (octal 063) placing the experiment's long period $X$ and $Y$ axes gain to the -10 db range. The experiment was commanded back to the 0 db gain at 1845 G.m.t., 7 May 1973, with no adverse effects. No significant seismicevents were noted during the periodic realmime support perioda of this instrument.
Lunar suxface magnetometer experiment	Soientific ana engineering data outputa remain
Solar wind spectrometer experiment	This experiment continues to return scientific data on alar wind plasma magnetosphere plasma and magnetopause crossings, by sensing the direction and energies of both electrons and positive ions. The instrument is curcently in the normal gain mode (14 ApriI 1973) and is recording solar wind plasma data for subsequent long term analysis.
Suprathermal ion detector/cold cathode gauge experiment	Currently the SIDE is in OPERATE select, automatic stepping sequence, gathering scientific data of the dawn terminator. Cyolic comanding of the instrument in the full automatic stepping sequence with Channeltron high voltages on to experiment power OFF will be initiated on 14 May in an effort to preclude instrumert mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

APOLLO 15 ALSEP



Status as of 1700 G.m.t., 10 May 1973, was as follows:

## TM POINT



## TM POINT



## AISEP PERFORMANCE SUMMARY REPORT

18 May 1.973
G.m.t.: 0900

## Apol10 17 ALSEP

Noon of the scientific station's 6th lunation occurred on 14 May. AII experiments and the central station are operating as expected. Power from the RTG is stabilized at 76.3 watts. The downlink received signal is reported between -141.0 and -147.5 dbm . Transmission of command octal 174 , to inhibit automatic selection of the redundant command sigm nal processing chain (by internally generated 61-hour pulses), continues during real-time support periods. The central station's temperature profile is tracking within $43^{\circ} \mathrm{F}$ that of previous Iunations.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge survey's being accomplished. The instrument is curcently operating in the gradient mode, with all sensors being sampled in full sequence. Tunar surface temperature as measured by the Hy's thermocouples is $359^{\circ} \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm is $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Tanar Surface Gravimeter Expeximent continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment ll. Evaluation of the data recorded by the Lunar Surface Gravimeter and the Lunar Seismic Profiling Experiment (Apolio 17 SMEARS, AISEP 48 \& 50) for correlation and comparative analysis continues. The experiment's sensor temperam ture remains stabilized at $49.190^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANBY。 No passive lism tening mode was accomplished during this reporting period. The next passive listening mode is scheduled for later today.

The Lunar Atmospheric Composition Experiment remains OFF, since commanded to this mode at 1052 G.m.t., 14 May. The LACE was commanded ON at 0832 G.m.t., 14 May, in order to activate the Bake Out heater. This experiment configuration change was requested by the Principal Investim gator in an effort to reduce and/or eliminate the outgassing that is observed on all three mass range data channel outputs (the Bake Out heater mode was onf for 1 hour 59 minutes). Per the agreed operational plan, the experiment will be commanded ON just prior to lunar sunset on 22 May. The instrument's electronic temperature profile for this lunar day is tracking that of the previous day within $\pm 3^{\circ} \mathrm{F}$.

## ALSEP PERFORMATCE SUMMARY REPORT (continued)

18 May 1973
G.m.t.: 0900

The Lunar Ejecta and Meteorites Experiment remains OFP since commanded to this mode on 10 May. The instrument's 6 th day temperature profile is in close agreement with that of the previous lunations. The IFAM will remain OFF until the mirror temperature decreases to $150^{\circ} \mathrm{F}$ at which time the instrument will be commanded on for the xemainder of this Iunation (Apollo 17 SMEAR Alsep 49).

It is requested that any oxganization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483 -5067.
Apol10 16 ATSEP

ADO110 5 ASSEP
Operational status from 11 May 1973, 1200 G.m.t., to 18 May 1973, 0900 G.m.t.


The experiment sensors are operating in the 100 gamma range for lunar day operation. The $y$-axis senson head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LOW (static) since 20 September 1972. The instrument has executed 920 flip calibration sequences since activation.

## The instrument remains in STANDBY.

The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames).

 cable thermocouples. The sub-surface temperature is 253.30 K at the bottom of the Lowest section of probe \#1. Probe \#2 indicated a temperature of 250.90 K at its lowermost point. Ring bridge surveys are obtained periodically.

Central station
Passive seismic
experiment

Lunar surface
magnetometer
experiment Solar wind spectrometer
experiment
Suprathermal ion detector/cold. cathode gauge experiment

Heat flow
experiment

$$
\text { ApOI10 } 14 \text { ALSEP }
$$





## Operational <br> Central station

Passive seismic
experiment
Lunar surface
magnetometer
experiment
Solar wind
spectrometer
experiment
Suprathermal ion
detector/cold
cathode gauge
experiment
APOLLO 16 ALSEP




TM POINT




# ATSEP PERFORMANCE SUMMARY REPORT 

25 May 1973
G.m.t.: 0300

## Apollo 17 ALSEP

Sunset of the 6 th Iunation occurred 22 May at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of the fifth lunation. Downlink RF signal strength is reported at $-139.5 \pm 4.5 \mathrm{dbm}$ from transmitter "A". Thermoelectric power source output is 77.4 watts. The procedure of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174 ) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Iunar surface temperature, as measured by the HFE thermocouples, is $116.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \# and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to scismic high gain, integrator shorted mode, bias OTT, and post amplifier gain at incement ll. The experiment's sensor temperature has increased to $49.194^{\circ} \mathrm{C}$ (slave heater on) and is now stabilized.

The Lunar Seismic Profiling Experiment is currently in SrANDBY select. ISPE passive listening mode operations were accomplished on 18 and 22 May as follows:

Date	$\begin{aligned} & \text { LSPE ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR OFF } \\ & \text { G.m.t. } \end{aligned}$	LSEE STMBY G.m.t.	Geophone Cals	Event
18	1114	1115	1145	1146	2	Response
22	0546	0600	0630	0632	2	Response

The next 30 -minute passive listening period is planned for 1 June.
The Lunar Atmospheric Composition Experiment was commanded on at 0912 G.m.t., 23 May for the lunar night. The IACE continues to collect data on the lunar atmospheric composition. The present configuration is automatic sweep; high voltage power supply, orf; ion source filaments, OFF; multipliers, HIGH; low voltage power supply, ON; discriminator level, LOW; and backup heater OFF. The IACE electronics temperature (AM-4I) is currently $1.4{ }^{\circ} \mathrm{F}$.

## ALSEP PERPORMANCE: SUMMARY REPORI (continued)

25 May 1973
G.m.t.: 0300

The Lunax Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this lunation at 0936 G.m.t., 19 May, when the mirror temperature (AJ-11) decreased to $162.0^{\circ} \mathrm{F}$ at a sun angle of $133.5^{\circ}$. The instrument's mirror temperature (AJ-II) currently is read.ing $-17.4^{\circ} \mathrm{F}$ and tracking the previous luar night temperature profile.

It is requested that any organization having comments, questions, on suggestions concerning this report contact R . Miley, Science Requirem ments Branch, TN3, telephone 483-5067.
dHSTV ST OTTOdZ

$$
\begin{aligned}
& \text { The instrument is configured for seismic network congruity (Apollo } 16 \text { ALSTP). } \\
& \text { The uncage/arm fire circuitry is cycling normally as a result of the central } \\
& \text { station's data subystem timer outputs. on } 2 l \text { May the sensor temperature } \\
& \text { (DImo returned on-scale (sun angle }=129.90 \text { ). During the intermitent real- } \\
& \text { time support periods this past week no significant seismic events were noted. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The experiment sensors will be commanded to the } 50 \text { gamma range later today, } \\
& 25 \text { May, for lunar night operation. The y-axis sensor head is fixed at the } 180 \\
& \text { degree position; does not respond to flip cal comands; and has indicated off- } \\
& \text { scale Iow static since } 20 \text { September } 1972 \text {. The instrument has executed } 930 \text { flip } \\
& \text { calibration sequences since activation. }
\end{aligned}
$$

## The instrument remains in STANDBY.

 ed ON and in full automatic stepping sequerce ( $0-127$ frames). The instrument measurement, TREF i, is operating nomaliy (TREF 2 has been in-Solar wind.

$$
\text { Operational status from } 18 \text { May 1973, } 0900 \text { G.m.t., to } 25 \text { May 1973, } 0300 \text { G.m.t. }
$$

The instrument is currently operating with the Chanmeltron high voltages command-


[^6]Lunar surface
magnetometer
experiment
Passive seismic
experiment
प0т7675 Teutuon

remained in the on-scale position since 22 March. The y-axis has responded to leveling commands since 25 April. The instrument's long period z-axis has not
 this limited real-time support period no significant seismic events have beer noted.

> The expeximent remains in STANDBY select. On 26 May the experiment will be commanded to OPERATE select for the remainder of the lunar night (Apollo I4 SMEAR, ATSEP 83).

> The instrument remains in STANDBY select. doTq.qร Texquon Passive seismic
experiment Active seismic Suprathermal ion
detector/cold detector/cold
cathode gauge experiment Charge particle Iunar
environmental experiment

$$
\text { ApO110 } 14 \text { ALSEP }
$$

$$
\text { to } 25 \text { May } 1973,0300 \text { G.m.t. }
$$

RTG power output is steady.
The
later

$$
\begin{aligned}
& \text { The instrument is configured for seismic network congruity (Apollo } 16 \text { ALSEP). } \\
& \text { The instrument's heater was commanded to AUTO ON at } 1027 \text { G.m.t. on } 23 \mathrm{May} \text { to }
\end{aligned}
$$

Apolio 12 ALSEP


APOLLO 16 ALSEP


APOLLO 15 ALSEP


APOLLO 14 ALSEP



## TM POINT

Status as of 1500 G.m.t., 24 May 1973, was as follows:


Total Days of Operation Total Commands to Date Sun Angle Input Power Heater and Power Dumps Avg Thermal Plate Temp AVE Sensor Temp (DL-07) TSM Internal Temp (DM-05) SWS Module 300 Temp (DW-13) SIDE Temp (DI-05)

1 June 1973
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not available at the following times:

	Date	$\begin{aligned} & \mathrm{GMT} \\ & \mathrm{LOS} \end{aligned}$	$\begin{aligned} & \text { GMT } \\ & \text { AOS } \end{aligned}$	Data Loss
Apol10 14 \& 17 ATSEP	24 May	2105	2125	$20^{\mathrm{m}}$
Apollo 12 thru 17 ALSEP	27 May	0718	0730	$12^{\mathrm{m}}$
Apollo 12 thru 17 ATSEP	30 May	0721	0755	$34^{m}$

ApO110 17 ATSEP
The central station continues operating normally, with the station's electronics structural components temperatures stabilized. Downink RF signal strength is reported between -133.0 dbm and -140.0 dbm . Power from the RTG remains constant. The station's command decoder switch inhibit pulse occurred as anticipated, verified by a stabus change in telemetry point $A B-18$. The procedure of inhibiting the internally genexated 6l-hour pulse contimues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $110.0 \pm 8 \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures are $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Iunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUI, and post amplifier gain at increment 11. The experiment's sensor temperature is stabilized at $49.194^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDPY select with a thirty minute passive listening mode scheduled for today, 1 June.

The Lunax Atmospheric Composition Experiment continues to collect data on the lunar atmospheric composition since turnmon (23 May) for Iunar aight operations. The present configuration is automatic sweep; high voltage power supply, ON; ion source filament, ON; multipliers, HIGH; low voltage power supply, ON; discriminator level, HIGH; and back-up heater ON. The mass range data channels continue to display electronic background noise. The LACE electronics temperature (AM-41) has currently stabilized at $15.0^{\circ} \mathrm{F}$. This temperature is $1.6^{\circ} \mathrm{F}$ higher than previous lunations.

1 June 1973
G.m.t.: 1300

The Lunar Ejecta and Meteoxites Experiment continues to collect data of impact flux rates since turn-on for lunar night operation on 19 May 1973. The instrument's mirror temperature (AJ-11) is currentiy stabilized at -20.80 F , which is the minimum temperature attained during previous lunar nights.

It is requested that any organization having comments, questions, or suggestions concerning this report contact $R$. Miley, Science Requirem ments Branch, TM3, telephone 483-5067.
Operational status from 25 May 1973, 0300 G.m.t., to 1 June 1973, 1300 G.m.t. idinight of the - Lunation occured on 30 May at the Descartes Site. Ihe thermoelectric power source output is normal. outp pulses ioot antenna tracking stations report

Scientific data have been static since 16 February 1973. The INM's scientific data continues not to respond to flip calibrations (no cal raster observed) on filter commands. As of 30 May, 403 flip calibration sequences have been executed and verified by the experiment's engineering data.

> The active seismic experiment is currently in standby off, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at ollg G.m.t. 27 May, and to high bit rate on at oljo G.m.t. for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listeming mode operation. High bit rate operations were terminated at ocoo G.m.t. and the experiment commanded to standby off at odo3 G.m.t. No significant signals were noted in ceal time.
Central station
Passive seismic

[^7]

The experiment sensors were commanded to the 50 gamma range at 0419 G.m.t.,
25 May, for lunar night operations. Currently the instrument has executed.
940 flip calibration sequences since activation. The experiment's y-axis
sensor head remains fixed at a I80 degree position, not responding to flip
cal command, and has indicated off-scale Low statio since 20 September 1972 .
The x-axis and z-axis sensors are returned to the I80 degree position follow-
ing each flip cal sequence to maintain sensor head synchronization.
The instrument remains in STANDBY.
wh mode observed during real-time support.

[^8] Central station
Passive seismic Lunar surface magnetometer Solar wind
spectrometer
experiment Suprathermal ion experiment detector/cold experiment
Heat flow
experiment
$$
\text { ApOL10 } 14 \text { ALSEP }
$$


The instmument is configured for seismic network congruity (Apoilo 16 ALSEP). The z-axis arive motor was commanded on 26 May to maximize the heat input to the sensor assembly auring lunar night operations. DImot inaicates 126.2 F zmotor ON. No significant seismic events were noted aurirg the periodic reai-time suppont periods.

The instrument remains in the nommal gain mode and is recording solen wind plasma data.

[^9] Tevotqexedo
บ๐Tq巴95 Texquen
Passive selsmio
experiment
Lunar surface
magnetometer
experiment
Solar wind
spectrometer
experiment



Status as of $1400 \mathrm{G} . \mathrm{m} . t ., 30 \mathrm{May}$ 1973, was as follows:

## TM POINT



TM POINT


## ALSEP PERFORMANCE SUMMARY RFPORT

8 June 1973
G.m.t.: 1300

Apo110 17 ALSEP
Sumise of the scientific station's 7th lunation occurred on 6 June The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG is 76.2 watts. The downlink received signal is reported between - 134.6 and -142.0 dbm . The procedure of inhibiting the package's internally genem rated 6l-hour pulse contimues with the command (octal 274) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment contimues to operate normally, with periodic xing bridge surveys being accomplished. The HFE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar gurface temperature as measured by the HFE thermocouples is $293^{\circ}+8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 em depth is $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 11 . The experiment"s sensor temperature is stabilized at $49.194^{\circ} \mathrm{C}$ (slave heater oN).

The Lunar Seismic Profiling Experiment is currentiy in STANDBY select. LSPE passive listening mode operations were accomplished on 1 and 6 June as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	HBR OFF   G.m.t.	ISPE STBY G.m.t.	Geophone Cals	Events
1	2258	2310	2340	2342	2	Response
6	1540	1545	1615	1617	2	None

The next 30 -minute passive listening period is planed for 13 June.
The Iunar Atmospheric Composition Experiment is currently ON with the discriminator level JOW; ion source filaments, OFF; and high voltage power supply, OFF (Apollo 17 SMEAR, ALSEP 51). The LACE gathered data on the composition of the Iunar atmosphere throughout this Iunar night. The electrical background noise ramp continued to be noted on all three mass range data channel outputs. The LACE will be commanded OFF later today. 8 June, for the remainder of this lunar day as the electronic temperature (AM-41) approaches $125.0^{\circ} \mathrm{F}$. The electronics 7 th day temperature profile is tracking the previous day temperature profiles.

## AISEP PERFORMANCE SUMMARY REPORT (continued)

8 June 1973
G.m.t.: 1300

The Tunar Ejecta and Meteorite Experiment is presently on The instrument was left in the operate select on mode through the 7 May terminafor crossing per the agreed plan (Apolio 17 SMEAR, ALSEP 49). The LEAM will be commanded OFF later today, 8 June, when the instrument mimror temperature (AJ-11) reaches $175.0^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $155^{\circ} \mathrm{F}$ at which time the instrument will be commanded on for the remainder of this lunation.

It is requested that any organization having comments, questions, or suggestions concemning this report conbact, R. Miley, Science Requirements Branch. TN3, telephone 483-5067.


ADO11O 15 ATSEP


$$
A 00110 \text { IL ATSEP }
$$




$$
\text { AOO170 } 12 \text { ATSEP }
$$




APOLLO 16 ALSEP




Status as of 1300 G.m.t. 7 June 1973, was as follows:


APOLLO 17 ALSEP


## TM POINT



TM POINT

[^10]15 June 1973
G.m.t.: 1300

Today, 15 June 1973, a partial penumbral eclipse of the moon will occur. The Apollo 15 and 17 ALSEP Iunar scientific stations will be affected by this eclipse (reference Bendix memorandum number 9'753-137, dated 28 Maxch 1973).

Apol10 17 ALSEP
All experiments and the central station are operating per the established plan. Power from the RTG remains constant. The downlink received signal is reported at $-144.0 \pm 3.0 \mathrm{dbm}$. The gtation's command decoder switch inhibit pulse is occurring as anticipated. The planned procedure to inm hibit the output of this pulse during real-time support periods is being maintained. The central station's average thermal plate temperature profile is tracking that of previous lunations with an identical operam tional configuration of the LACE and LEAM OFF, and the LSEE in STANDBY,

The Heat Flow Experiment continues to opemate normally with periodic ring bridge surveys being accomplished. The HFF is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE thermocouples is $373^{\circ}$ $\pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment ll. The experiment's sensor temperature is stabilized at $49.194^{\circ} \mathrm{C}$ (slave heater on).

The Lunar Seismic Profiling Experiment is in STANDBY select, with the next 30 -minute passive listening period planed for 22 June. The experiment was commanded ON at 0909 G.m.t. 11 June, and , LSPE data format processing (high bit rate) at $0920 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , for a thirty-minute passive listening period. Two geophone calioration pulses were sent during the listening period. Data output of the geophones appeared normal with a response observed on all geophones during the real-time operation. LSPE processing was texminated at $0950 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to STANDBY select at 0951 G.m.t.

The Lunar Atmospheric Composition Experiment remains ofF since being commanded to this mode at 1909 G.m.t. , 8 June. It is planned the LACF will remain in the OFF mode until the electronics temperature (AM-41) decreases to $32^{\circ} \mathrm{F}$ (Apollo 17 SMEAR, ALSEP 51). The LACE will then be placed to STANDBY select prior to the ephemeris sunset. Currently the electronics temperature (AM-41) is tracking previous lunar day thermal profiles.

15 June 1973
G.m.t.: 1300

The Lunar Ejecta and Meteoxites Experiment was commanded OFF at 2152 G.m.t. on 8 June. Prior to the OFF command, the instrument's mirror temperature (AJ-11) increased to $173.8^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $155^{\circ} \mathrm{F}$ at which time the instrument will be commanded ON for the remainder of this lunation (ADO110 17 SMEAR, ALSEP 49).

It is requested that any organization having comments questions, or suggestions concerning this report contact $R$. Miley, Science Requirem ments Branch, TN3, telephone 483-5067.

$$
\text { d\#STH } 9 \text { I otTody }
$$



## Operational status from 8 June $1973,1300 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, to 15 June $1973,1300 \mathrm{G} . \mathrm{m} . t$.

 Suprathermal ion Suprathermaldetector/cold cathode gauge experiment
Heat flow
experiment
The instrument is configured for seismic network congruity (Apollo l6 ALSEP). The
uncage/arm fire circuitry is cycling nomally as a result of the central stations
data absystem timen outputs. During the intermitent real time supprt periods
this past week no significant seismic events were noted.

The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames).

## The instrument remains in STANDBY.

Throughout this reporting period effects of a solar magnetic storm have been ob- served by the ISM and the SIDE/CCIG experiments. Noon of the station's 24 th Iunation occurs today. Power from the RTG continues steady and transmitter "A" downlink signal strength is reported between -133.5 dbm and -140.0 dbm . The data. subsystem's 18 hour timer outputs have occurred as expected since termina-
tion of the lunar night operational procedure on 8 June. The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The uncage/arm fresircultry is cycling normaly as a cesult of the central suauion this past week no significant seismic events were noted.



## อtustos 2ヘTssもd <br> experiment <br> Lunar surface <br> magnetometer <br> experiment

Solar wind
spectrometer
experiment

ApO110 I4 ATSEP

(panutquoo) dissTy tr ottody

$\begin{array}{llll}\text { Charge particle } & \text { The CPLEF is currently in STANDBY select. The experiment has been commanded to } \\ \text { lunar } \\ \text { enviromental } & \text { OPERATE select only during the real-time support period, as listed below: } \\ \text { experiment } & \\ & \text { CPIEF ON CPIEE STANDBY Analyzer A Analyzer A } & \\ & \text { Voltage } & \text { Voltage Operational }\end{array}$
tions 9 June and the start of real-time operations 10 June. Cyclic commanding voltage ON to experiment power OFF continues, initiated this Iunar day 12 June. mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.
Central station
Passive seismic
experiment
Iunar surface magnetometer experiment Solar wind spectrometer

[^11]Scientific and engineering data outputs remain invalid.
\[

$$
\begin{aligned}
& \text { At } 1010 \text { G.m.t., } 11 \text { June, the experiment was commanded to the extended range mode } \\
& \text { to preclude possible loss of data while the effects of a solar magetic storm } \\
& \text { was in progress throughout this reporting period. At } 0856 \text { G.m.t., } 12 \text { June, the } \\
& \text { experiment was comanded back to the normal range mode and remains in this con- } \\
& \text { figuration. }
\end{aligned}
$$
\]

$$
\text { At } 1010 \text { G.m.t., } 11 \text { June, the experiment was commanded to the extended range mode }
$$

Scientific and engineering data became valid betweer the end of real-time opera- of the instrument in the full automatic stepping sequence with Channeltron high The experiment is commanded in this manner as planed to preclude instrument




APOLLO 12 ALSEP


Total Days of Operation
Total Commands to Date
Sun Angle
Input Power
APM Status (AB-13)
Power Dump Status (AB-14)
Total Commands to Date
Sun Angle
Input Power
APM Status (AB-13)
Power Dump Status (AB-14)
Total Commands to Date
Sun Angle
Input Power
APM Status (AB-13)
Power Dump Status (AB-14)
Total Commands to Date
Sun Angle
Input Power
APM Status (AB-13)
Power Dump Status (AB-14) Experiment Status Avg Thermal Plate Temp

LMS Temp (AM-41)
LEAM Temp (AJ-11) -13) HFE Temp Ref 1 (DH-13)
 LSG Temp ISP Temp (AP-O1)

## TM POINT



## TM POINT

《 Hnはn


## ALSFP PERFORMANCE SUMMARY REPORT

22 June 1973
G.m.t.: 1300

The partial pemubral eclipse of the moon occurred on 15 June 1973. The Apolio 15 and 17 ALSEP lunar scientific stations were affected to a minor degree. The maximum temperature drop was $11.6^{\circ} \mathrm{F}$ at the Apollo 15 sibe and 8.5 F at the Apollo 17 site.

Remote site coverage for recording of ALSEP downink data was not available at the following times:

	Dabe	$\begin{aligned} & \text { GMT } \\ & \text { LOS } \end{aligned}$	$\begin{aligned} & \text { GMTI } \\ & \text { AOS } \end{aligned}$	Data Loss
Apolio 12 ALSEP	11 June	1455	1547	$52^{\mathrm{m}}$
Apollo 12 ALSEP	12 June	1115	1207	$52^{m}$
Apollo 14 ALSEP	14 June	2228	2250	$22^{\mathrm{m}}$
Apolio 14 ALSEP	15 June	0720	0856	1 h 36 m
Apollo 12 ATSEP	19 June	0930	1054	In 24 m
Apollo 12 ALSEP	20 June	0712	1000	$2^{n} 48^{m}$

## Apo110 17 AISEP

Sunset of the 7 th Iunation ocoureed on 20 June at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of the sixthlunation. Downlink RF signal strength is reported at $-140.0 \pm 5.5$ dbm from transmitter "A". Themoelectric power source output is 77.4 watts. The procedure of inhibiting the internally generated 6l-hour pulse contimes with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $120.0 \pm 8 \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256^{\circ} \mathrm{G}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 11 . The experiment's sensor temperature has increased to $49.199^{\circ} \mathrm{C}$ (slave heater on) and is now stabilized.

The Lunar Seismic Profiling Experiment is currently in STANDBY select. The next 30-minute passive listening period is planned for later today.

ALSEP PERFORMANCE SUMMARY REPORI (continued)
22 June 1973
G.m.t.: 1300

The Tunar Atmosphewic Composition Experiment was commanded on at 1921 G.m.t., 21 June for lunar night operation. The IACE continues to collect data on the lunar amospheric composition. The present configuration is automatic sweep; high roltage power supply, oN ; ion source filaments. ON ; multipliers. HTGH; low voltage power supply, on; discriminator level, HIGH; and back-up heater ON. The LACE electronics temperature ( AM -41) is currentily -16.19 F .

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the Iunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The IEAM was commanded ON for the remainder of this Iunation at 1238 G.m.t., 18 June, when the mirror temperature ( $\mathrm{AJ}-11$ ) decreased to $146.4^{\circ} \mathrm{F}$ at a sun angle of 153.5. The instrument's mixror temperature (AJ-11) currently is track ing the previous Iunar night temperature profile.

It is requested that ary organization having comments, questions, or suggestions concerning this report contact, R. Miley, Science Requirem ments Branch, TN3, telephone 483-5067.
APO110 16 ATSEP

Apollo 15 ALSEP

dASIV tT OTTOUG

Operatio Central station	status from 15 Jure 1973, 1300 G.m.t., to 22 June 1973 , 1300 G.m.t.   Sunset at the Apollo 14 site will occur on 24 June. RTG power output is steady. Transmitter "A" signal strength was reported at $-140.5 \pm 4.5 \mathrm{dbm}$. The DSS-1 heater ( 10 watts) will be commanded on for Iunax night operation on 23 June.
Passive seismic experiment	The instrument is configured for aeismic network congruity (Apollo 16 AISEP), The instrument's heater was commanded to AUIO ON at $1604 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, on 20 June to maximize heating during lunar night operations. The long-period y-axis has remained in the on-scale position since 22 March. The y-axis has responded to leveling commands since 25 April. The instrument's long period z-axis has not displayed valid data nor respondea to commands since 17 November 1972. During this limited real-time support period no significant seismic events have been noted.
Active seimic experiment	The experiment is currently in STANDBY. On 18 June 1973 , the experiment was commanded to ON at $1357 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and to high bit rate ON at $1405 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening mode. No significant responses were noted during the listening mode. Geophone calibration pulses were not sent during the listening period. At 1435 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at 1522 G.m.t. The next listening period is scheduled for 10 July 1973 when the GIA temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ temperature restriction.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently OFF. The experiment remained in STANDBY select from 10 June until 15 June. The instrument was commanded to OPERATE select at 1726 G.m.t., 15 June following two previous unsuccessfur attempts. In order; the SIDE -3.5 KV supply, HECPA, IECPA, Ground Plane Stepper, and Velocity Filter were commanded OFF. At 1742 G.m.t., the instrument went to STANDBY without command. The instrument was again commanded to OPERATE select at 1801 G.m.t. but it returned to STANDBY within one minute without command. The SIDE/CCIG was commanded to OFF at $1948 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 15$ June, and has remained in this configuration.



Central statior
Passive seismic
experiment



Suprathermal ion The instrument is currently OFF. The instrument has been cycled by command to the full automatic stepping sequence with Channeltron high voltages ON to experiment power CF to preduae instrument mode changes ot internal temperatures above 55 C during this lunar day. The SIDH Will be commanded to OPERATE select and automatic






Status as of 2100 G.m.t., 21 June 1973 , was as follows:


TNIOd Wiw



> Bendix $\begin{aligned} & \text { Aerospace } \\ & \text { Systems Division }\end{aligned}$
Prepared by: Warren Tosh Apollo 17 ALSEP $+\rightarrow$
MOON POSITIONS $\underset{2 \text { RULY to } 28 \text { JuLy } 1973}{\text { RELATIVE }}$


SUNRISE

NOTE: DATES NOTED ARE
Apollo 12 ALSEP
MARKED AT Oh GMT
$0-1$

29 June 1973
G.m.t.: 1300

Remote site coverage for recording of ALsEP downink data was available at all times since the last reporting period.

Apo110 17 ATSEP
Midnight at Taumus Littrow Lunar Laboratory occurred on 28 June. The central abation is operating normally with the automatic power management circuit functioning as designed. The average themal plate temperature is currently stabilized in the lunar night environment. DownIink RF stgnal strength is reported at $-136.7 \pm 2.2 \mathrm{dom}$ from transmitter "A". Thermoelectric power source output essentially remains unchanged. The procedure of inhibiting the internally generated 61 -hour pulse contimues with the command (octal 174) being sent to the comand decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a pexiodic basis. Lunar surface temperature, as measured by the $H F E$ thermocouples is $108 \pm 80 \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment remains configured to collect data in the seismic and free mode channels. The mass-changing, beam clamp/unclamp, screw drive, thexmal control, pressure, and electronics subsystems are operating nominally, The experiment's sensor temperature is presently stabilized at $49.199^{\circ} \mathrm{C}$ (slave heater on).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished on 22 and 27 June as follow:

	LSPE ON	HBR ON	HBR OFF	LSPE STBY	Geophone	
Date	G.m.t.	G.m.t.	G.m.t.	G.m.t.	Cals	Events
22	2045	2100	2130	2133	2	None
27	1329	134.	1416	1419	2	Response

The next 30 -minute passive listening period is planned for 5 July.

The Lunar Atmospheric Composition Experiment contimues to collect data since turn-on, 21 June, for lunar night operations. The present configuration is automatic sweep; high voltage power supply, on; ion source filament, ON; multipliers. HTGH; low voltage power supply, ON; discriminm aotr level. HTGH; and back-up heater ON. The three mass range data channels continue to display electronic background noise of various characteristics. The TACE electronics temperature (AM-41) has currently stabilized at $15.0^{\circ} \mathrm{F}$.

29 June 1973
G.m.t.: 1300

The Iunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates since turn-on for lunar night operation on 18 June. The instrument's mirror temperature (AJ-1L) is currently stabilized at $-20.8^{\circ} \mathrm{F}$, which is the minimum temperature attained during previous lunar nights.

It is requested that any organization having comments, questions, or suggestions concerning this report contact $R$. Miley. Science Requixements Branch, IN3, telephone 483-5067.

## Apolio 16 AISEP


Apollo 15 ALSEP

Central station	Midnight of the station's 24th lunation will oceur on 30 June. Power from the RTG continues steady. Transmitter "A" downink signal strength is reported at -137.0 $\pm 4.0 \mathrm{dbm}$. The procedure of eliminating the 28 -hour timer's output pulse during Iunar night time operations was not initiated for this Iunation. The data subsystem's average thermal plate temperature is presently stabilized at $-0.8^{\circ} \mathrm{F}$.
Passive seismic experiment	The instrument is configured for seismic netwom congruity (Apollo 16 ALSEP). The instrument's uncage/arm fire aircuitry this lunar night will be cycling per the nomal 18-hour timer out puise functions. The thermal characteristics of the PSE sensor assembly temperature (DL-O7) have been evaluated by the P.I. and he has determined that no anticipated adverse effects are expected in the acience data or instrument operation by allowing the cyeling of the 18-hour timer output pulses. Previously (since 14 October 1971), the instrument's uncage/arm fire circuitry was maintained in the or state to deliver maximum heating into the sensor assembly during lunar nights. No natural seismic signals have been observed during the limited reai-time support of this instrument.
Iunar surface magnetometer experiment	The experiment sensors were commanded to the 50 gamma range at 1332 G.m.t. , 23 June, for Iunar night-time operations. Currently the instrument has executed 978 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands, and has indicated off-scale LOW static since 20 September 1972. The $x$-axis and $z$-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	The instrument remains in StAndBy.
Suprathermal ion detector/cold cathode gauge experiment	The experiments are operating continuously in the full automatic stepping sequence ( O-127 frames) with no mode changes observed during the real-time support periods.

[^12]0
Apollo 15 ALSEP (continued)
Operational status from 22 June 1973,1300 G.m.t., to 29 June 1973,1300
Heat flow
experiment $\quad$ The instrument measurement, TREF 1 , is operating normaliy (TR
Apollo 14 ALser

Apolio 12 ATSEP





6 July 1973
G.m.t.: 1300

Remote site coverage for recording of ALSEP domlink data was not avail able at the following times:
Apolio 12 $\frac{\text { Date }}{2 \text { JuI }} \frac{\text { LOS }}{0435} \quad \frac{\text { AOS }}{0730} \quad \frac{\text { Data Loss }}{2^{h} 55^{m}}$

Apol10 17 ALSEP
Sunrise of the scientific station's 8bh Iunation ocoured on 5 July. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's extemal structural temperatures continue to rise within anticipated limits. Power from the RTG is 76.9 watts. The downlink received signal is reported between -135.0 dorn and - 143.5 dbm . The proceduce of inhibiting the package's internally gene rated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The HEE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE thermocouples is $140^{\circ}$ $\pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUP, and post amplifier gain at increment 11 . The experiment's sensor temperature is stabilized at $49.199^{\circ} \mathrm{C}$ (slave heater on).

The Lunar Seismic Profiling Experiment is in STANDBY select, with the next 30 minute passive listening period planned for 13 July. The experim ment was commanded ON at 1711 G.m.t., 5 July, and to LSPF data format processing (high bit rate) at $1735 \mathrm{G} . \mathrm{m} . \mathrm{t}$. f fox a thirtyminute passive Iistening period. Two geophone calibration pulses were sent during the listening period. Data output of the geophones appeared normal (no sigm nificant events observed) on all geophones during the real-time operation. LSPE processing was terminated at $1805 \mathrm{G} . \mathrm{m} . t$. , and the instrument command. ed to STANDBY select at $1810 \mathrm{G} . \mathrm{m} . \mathrm{t}$.

The Lunar Atmospheric Composition Experiment is currently ON with the discriminator level LoW; ion source filaments, OFF; and high voltage power supply, OFP (Apollo 17 SMEAR, ALSEP 51). The LACE gathered data on the composition of the lunax atmosphere throughout this lunar night. The electrical background noise ramp continued to be displayed on all three mass range data channel outputs. The IACE will be commanded OFF on 8 July for the remainder of this lunar day as the electronic temperam ture (AM-4.1) approaches $125.0^{\circ} \mathrm{F}$.

6 JuIy 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorite Experiment is presently ON. The instrum ment was left in the operate select on mode through the 5 July terminam tor crossing per the agreed plan (Apollo 17 SMEAR, ALSEP 49). The LEAM will be commanded OFF on 9 July when the instrument mirror temperature (AJ-II) increases to $180.0^{\circ}$. The LEAM will remain OFF until the mirror temperature decreases to $160^{\circ} \mathrm{F}$ at which time the instrument will be commanded on for the remainder of this Iunation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R Miley, Science Requirements Branch, TN3, telephone 483-5067.

## $A P O 12016$ ATSEP


Apolio 15 ALSEP

Apollo 14 ALSEP


$$
\text { ApO110 } 12 \text { ATSEP }
$$





Status wo of 2000 G.m.t., 5 July 1973, was as follows:


13 July 1973
G.m.t.: 1300

Remote site coverage for recording of ALsEP downink data was not available at the following times:

		LOS	AOS	
	Date	GMTI	GMP	Data Loss
Apollo 12	08 Jul	0336	0530	$1^{\mathrm{h}} 54{ }^{\mathrm{m}}$

Apol10 17 AISEP
Noon of the scientific station's 8th lunation occurred on 12 July . All experiments and the central station are operating as expected. Downlink signal strength is reported at $-144.2 \pm 1.7$ dom from transmitter A. The redundant transmitter $B$, as well as all other redundant systems, continue to be passive. Except for small repetitive day/night variations, thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control allowing the system thermal performance to track that of the previous lunar cycle. Transmission of command octal 174 , to inhibit automatic selection of the redundant command signal processing chain (by internally generated 6l-hour pulses), continues during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge survey's being accomplished. The instrument is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFF's thermocouples is $372 \pm 8 \mathrm{~K}$. Subsurface temperature at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 11 . The experiment's sensor temperature is stabilized at $49.199^{\circ} \mathrm{C}$ (slave heater on).

The Lunar Seismic Profiling Experiment is in STANDBY. No passive listenm ing mode was scheduled during this reporting period. It is plamed that continuous ISPE high bit rate operations will be implemented today during the real-time support period, 13 July through 17 July 1973 (Apollo 17 SMEAR, ALSEP 53).

The Lunar Atmospheric Composition Experiment remains OFF since being commanded to this mode at $1609 \mathrm{G} . \mathrm{m} . \mathrm{t} . \mathrm{S} 8 \mathrm{July}$. It is planned the LACE will remain in the OFF mode until the electronics temperature (AM-41) decreases to $32^{\circ} \mathrm{F}$ (Apollo 17 SMEAR, ALSEP 51). The LACE will then be placed to STANDBY select prior to the ephemeris sunset. Currently the electronics temperature ( $A M-4$ ) is tracking previous lunar day themal profiles.
ALSEP PERFORMANCE SUMMARY REPORT (continued)

13 July 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment has been cycled on and OFF during this reporting period as follows:

Date	G.m.t.	Experiment Condition	Survival   Temp (AT-11)	Sun Angle
18 Jun	1238	ON	$146.4{ }^{\circ} \mathrm{F}$	$153.5^{\circ}$
8 Jul	1737	OHF	179.5 F	40.50
9 Jul	1359	ON	$166.3{ }^{\circ}$	$50.7{ }^{\circ}$
9 Jul	1927	OFF	$180.5^{\circ} \mathrm{F}$	$53.5{ }^{\circ}$

It is planned that the IFAM will be operated during this lunation per Apollo 17 SMEAR, ATSEP 49, Rev. 1.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
ADOIIO 16 ALSEP


$$
\text { Apolio } 15 \text { ALSEP }
$$

Operation	status from 6 July 1973,1300 G.m.t., to 13 July 1973. $1300 \mathrm{G} . \mathrm{m} . t$.   Noon of the station's 25th lunation will ocour on 15 July. Power from the RTG conm tinues steady and transmitter "A" downink signal strength is reported between -134.5 dbm and -141.0 dbm . The data subsystems's 18 hour timer outputs have ocourred as expected and were verified during real-time support at $1327 \mathrm{G} \cdot \mathrm{m} . \mathrm{t} ., 7 \mathrm{July}$.
Passive seismic experiment	The instrument is configured for seismic retwork congruity (Apollo 16 AISEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. During the intermittent real-time support periods this past week no significant events were noted.
Lunar surface magnetometer experiment	The experiment sensors are operating in the 100 gama range for $1 u n a r$ day operam tion. The $y$-axis sensor head is fixed at the 180 degree position; does not respond. to flip cal commands; and has indicated offoscale IOW (static) since 20 September 1972. The instrument has executed 998 flip calibration sequences since activation.
Solar wind spectrometer experiment	At 0527 G.m.t. 10 July, the experiment was commanded to operate select for 4 minutes in order to provide additional data on the instrument's anomalous operation. The instrument's telemetry data continuously indicated out of sync data. During the operate select period the experiment continued to demand excessive power ( 9.5 watts). Following the operate select period the instrument was commanded back to STANDBY select (APOIIO 15 SMEAR, ALSEP 46).
Suprathermal ion detector/cold cathode gange experiment	The instrument is aurrently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames).
Heat flow experiment	The instrument measurement, TREF I, is operating nomally (fREF 2 has been invalid since 29 May 1972). The Lunar surface temperature is $356.2^{\circ} \mathrm{K}$ as indicated by the cable themocouples. The sub-surface temperature is 253.30 K at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temperature of $250.9^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are obtained periodically.

## dTSTV tT OTTODV

Operation	status from 6 July 1973, 1300 G.m.t., to 13 July 1973. $1300 \mathrm{G} . \mathrm{m} . t$.   Power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported at $-137.7 \pm 1.7$ dim. The DSS-1 heater ( 10 watts) was commanded OFF for lunar day operations at 0519 G.m.t., IO July, when the central station's average thermal plate temperature increased to $72.4^{\circ} \mathrm{F}$. Data processor "Y" was verified by command on 10 July . At $1347 \mathrm{G} . \mathrm{m} . \mathrm{t}$. on 10 July , the Central Station responded to a spurious command (octal O3I, DPREM OFF). The Carnarvon, Australia ground station reported receipt of a CVW in the downlink. After verification during real-time support, the DTREM was commanded ON by mission control at 0551 G.m.t. 11 July, without incident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 AISEP). The instrument's heater will be commanded to FORCED OFF later today to minimize heating during lunar day operations. The long-period y-axis has remained in the on-scale position since 22 March. The instrument's long-period z-axis has not displayed. valid data nor responded to commands since 17 November 1972. During this limited real-time support pexiod no significant seismic events have been noted.
Active seismic experiment	The experiment is currently in STANDBY. on 10 July 1973, the experiment was commanded to ON at $0557 \mathrm{G} . \mathrm{m} . t$. and to high bit rate ON at $0605 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening mode. Several responses were observed duxing the listening mode. Geophone calibration pulses were not sent during the listening period. Data output of geophones I and 2 appeared normal; geophone 3 indicated off-scale HIGH at the start of the high bit rate operation and then became continuously intermittent throughout the remaining listening mode period. This is a contiruing known anomaly. At 0638 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at 0641 G.m.t., 10 July. The next Iistening pexiod is scheduled for 16 JuIy 1973.





712


Status as of 1700 G.m.t., 12 July 1973, was as follows:

## TM POTNT



## TM POINT

[^13]20 July 1973
G.m.t.: 1200

## Apo110 17 ALSEP

Sunset of the 8th lunation occurred on 19 July at Taurus Iittrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. Downink RF signal strength is reported at $-140.2 \pm 4.2$ dbm from transm mitter "A". Thermoelectric power source output is 76.2 watts. The prom cedure of inhibiting the internally generated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surm veys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples. is $275.7 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are 256.50 K at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Iunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias ouT, and post amplifier gain at increment 11 . The experiment's sensor temperature is stabilized at $49.199^{\circ} \mathrm{C}$ (slave heater, ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished from 13 through 17 July per Apollo 17 SMEAR, ALSEP 53 as follows:

Date	ISPE ON   G.m.t.	HBR ON   G.m.t.	HBR OFF   G.m.t.	LSPE GTBY   13 Jul   14 Jul   1637	1645	1300

The next passive listening period is planned for 25 July.

ALSEP PERFORMANCE SUMMARY REPORT (continued)
20 July 1973
G.m.t.: 1200

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at $1453 \mathrm{G} . \mathrm{m} . t$. . 19 July for the lunar night. The experiment had been commanded from OFF to STANDBY during this report period at 1301 G.m.t., 16 July to maintain thermal stability of the instrument. At this time the electronics temperature had decreased to $52.7^{\circ} \mathrm{F}$ at a sun angle of $135.6^{\circ}$. The present configuration is automatis sweep; high voltage power supply, OFF; ion source filaments, OFF; multipliers, HIGH; low voltage power supply, ON; discriminator level, LOW; and backup heater OFF. The IACE electronics temperature (AM-41) is curcentiy 80.0 ${ }^{\circ} \mathrm{F}$.

The Lunax Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this lunation at $1304 \mathrm{G} . \mathrm{m} \cdot \mathrm{t} .317$ July, when the mirror temperature (AT-11) decreased to $157.6^{\circ} \mathrm{F}$ at a sun angle of 147.8 ${ }^{\circ}$. The instrument's mirror temperature (AJ-11) currently is read. ing $122.9^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, science Requirements Branch, TN3, telephone 483-5067.
ADollo 16 ALSEP

Apollo 15 ALSEP

Apollo 14 ALSEP

ADOIIO 12 ATSEP

Operation   Central station	status from 13 July 1973, 1300 G.m.t., to 20 July 1973, 1200 G.m.t.   Noon of the 46 th Iunar day occurred on 17 July. Power output from the RTG remains steady. A signal strength of $-140.7 \pm 2.2 \mathrm{dbm}$ from transmitter "B" was reported by the tracking stations. The DSS-1 heater ( 10 watts) remains OFF for lunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 AISEP). The z-axis drive motor remains OFF for lunar day operation. The instrument's sensor assembly temperature (DI-O7) was off-scale HIGH during real-time support 18 July (sun angle $=105^{\circ}$ ). It is projected to return on-scale 23 July I973. No significant seismic events were noted during the periodic real-time support periods of this instrument.
Lunar suxface magnetometer experiment	Scientific and engineering data have been invalid since 4 June 1972.
```Solar wind spectrometer experiment```	The instrument is currenty in the normal gain mode and is recording solar wind plasma data for subsequent Iong term analysis.
Suprathermal ion detector/cold cathode gauge experiment	Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF is in effect in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

APOLLO 17 ALSEP

27 July 1973
G.m.t.: 1300

This reporting period culminates an aggregate total of 10 years that the Apollo 12 through 17 ALSEP Iunar laboratonies have returned scientific data of the moon and its associated solar phenomena to the earth for interpretation and evaluation. During this operational time period the various experiment packages and central stations have responded 6o 6l, OOl functional changes as a result of ground commands which have resulted in the ultimate collection of the scientific data.

Apol10 17 ALSEP
Midnight occurs today, 27 July, at Taurus-Iitwrow. The central station is in normal operation with the automatic power manage circuit functioning as designed. The average thexmal plate and structural components temperatures are curcently stabilized in the lunar night envixoment. Downlink RF signal strength is reported at $-136.0 \pm 2.0 \mathrm{dbm}$ from transmitter "A". Thermoclectric power source output essentially remains unm changed. The proceduxe of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunax surface bemperature, as measured by the HFF thermocouples, is $109 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm . the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Iunar Surface Gravimeter Bxperiment continues to collect data with the instmment configured to seismic high gain, integrator shorted mode. bias OUT, and post amplifier gain at increment 11 . The experiment's sensor temperature is stabilized at $49.199^{\circ} \mathrm{C}$ (slave heater on).

The Lunar Seismic Profiling Experiment is in STANDBY select, with the next 30 -minute passive listening period planned for 3 August.

The Lunar Atmospheric Composition Experiment continues to collect data since total operational turn-on, 21 July, for lunar night operations. The present configuration is automatic sweep; high voltage power supply, ON; ion source filament, ON; multipliers, HTGH; low voltage power supply, ON; discriminator level, HIGH; and back-up heater ON. The three mass range data channels continue to display electronic background noise of various characteristics. The LACE electronics temperature (AM-41) has currently stabilized at $15.0^{\circ} \mathrm{F}$.

ALSEP PERFORMANCE SUMMARY REPORT (continued)
27 July 1973
G.m.t.: 1300

The Lunar Fjecta and Meteorites Experiment continues to collect data of impact flux rates since turnmon for lunar night operation on 17 Tuly. The instrument's mirxor temperature (AJ-II) is currenty stam bilized at $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R . Miley, Science Requirem ments Branch, TN3, telephone 483-5067.
Apollo 16 AISEP

dHSTV GT OTTOd \forall

Apolio 14 ALSEP

Operation Central station	status from 20 July 1973, 1200 G.m.t., to 27 July 1973, 1300 G.m.t. Sunset at the Apollo 14 site occurred on 24 July. RIG power output is steady. Transmitter "A" signal strength was reported at $-141.2 \pm 1.7 \mathrm{dm}$. The DSS -1 heater (10 watts) was commanded ON for Iunar night operation at $1530 \mathrm{G} . \mathrm{m} . \mathrm{t}$. . 23 July 1973. Average thermal plate temperature was 41. $2^{\circ} \mathrm{F}$.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ATsep). Attempts during real-time support to level the y-axis on 21 and 22 July were unsuccessful, however, on 23 July this axis did respond to leveling commands. The instrument's heater is operating in the AUTO ON mode for lunar night operation. The instmuent's long period z-axis has not dispiayed valia data nor responded to commands since 17 November 1972 . No significant seismic events were noted during the Iimited real-time support periods.
Active seismic experiment	The experiment is currently in STANDBY. On 23 July 1973, the experiment was commanded to ON at $1416 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and to high oit rate ON at $1430 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening mode. No significant responses were observed during the Iistening mode. Geophone calibration pulses were not sent during the Iistening period. At $1500 \mathrm{G} . \mathrm{m}$.t. high bit rate operation was terminated. The inm strument whs commanded to STANDBY at $1502 \mathrm{G} m, t, 23 \mathrm{July}$. The next listening period is scheduled. for 8 August 1973 wher the GTA temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ temperature reatriction.
Suprathermal ion debector/cold cathode gauge experiment	The expeximent was commanded to operate select at 1503 G.m.t., 23 July and is operating in the full automatic stepping sequence with Channeltron high volbages commanded. ON. Since 9 May 1971 intermittent positive engineering data interruptions in one section of the analog-tomigital filter are not adversely affecting the scientific outputs of the experiment. Present plans are to maintain the experiment in this mode of operation throughout this funar night.

Apollo 14 AISEP (continued)

$$
A D O 11012 \text { ALSBD }
$$

Operati Central station	status from 20 July 1973, $1200 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, to $27 \mathrm{July} 1973,1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$. Sunset of the 46 th lunar day occurred on 24 July. Power output from the RTG remains steady. A signal strength of -140.7 ± 2.2 dbm from transmitter " B " was reported by the tracking stations. The DSS-I heater (10 watts) was commanded ON for Iunar night operations at 1152 G.m.t. : 24 July , when the average thermal plate temperature was 32.90 F .
Passive seismic experiment	The instrument is configured for seismie network congruity (Apollo 16 ATSEP). The z-axis drive motor was commanded ON for Iunar night operation at $1154 \mathrm{G} . \mathrm{m} . t$, 24 July, when the sensor temperature ($D \mathrm{Im} 07$) decreased to $126.5_{\mathrm{F}}^{\mathrm{F}}$. At 1242 G.m.t., 22 July, at the start of real-time support (sun angle 15°) the sensor temperature (DI-O7) was noted to have returned on-scale. No significant seismic events have been observed during the limited real-time support periods.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalia.
Solar wind. spectrometer experiment	The instrument remains in the nomal gain mode and is recording solar wind plasma data.
Suprathermal ion detector/cold athode gauge experiment	The instrument is operating in full automatic stepping sequence with the Chaneltron high voltage ON. The experiment was commanded on for continuous lunar night operations at $1244 \mathrm{G}, \mathrm{m}, \mathrm{t} ., 22 \mathrm{JuIV}$, when the SIDE temperature (DI-05) was reading $17.5^{\circ} \mathrm{C}$.

Status as of 1600 G.m.t. 25 TuIy 1973, was as follows:

3 August 1973
G.m.t.: 1300

On July 30 the Apollo 15 ALSEP completed two years of uninterrupted Iunar operation.

Apol10 17 ALSEP
Midnight of the 8th lunation at Taurus Littrow Lunar Laboratory oceurred on July 27. The central station is operating normally with the automatic power management circuit functioning as designed. The average thermal plate temperature is currently stabilized in the lunar night environment. Downlink RF signal strength was reported between -135.2 dbm and -143.5 dbm from transmitter "A". Thermoelectric power source output essentially remains unchanged. The procedure of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real..time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples is $105 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.4^{\circ} \mathrm{K}$ at probe \#l and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment remains configured to collect data in the seismic and free mode channels. The mass-changing, beam clamp/unclamp, screw drive, thermal control, pressure, and electronics subsystems are operating nominally. The experiment's sensor temperature is presently stabilized at $49.199^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select, with the next 30 -minute passive listening period planned for later today. The experiment was commanded ON at 1410 G.m.t., 27 July and to LSPE data format processing (high bit rate) at $1426 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , for a thirty-minute passive listening period. Two geophone calibration pulses were sent during the listening period. Data output of all geophones appeared normal (no significant events observed) during the real-time operation. LSPE processing was terminated at 1456 G.m.t., and the instrument commanded to STANDBY select at 1500 G.m.t.

The Lunar Atmospheric Composition Experiment continues to collect data since turn-on, 21 July, for lunar night operations. The present configuration is automatic sweep; high voltage power supply, on; ion source filament, ON; multipliers, HIGH; low voltage power supply, ON; discriminator level, HIGH; and back-up heater ON. The three mass range data channels continue to display electronic background noise of various characteristics. The LACE electronics temperature (AM-4I) is currently stabilized at $15.0^{\circ} \mathrm{F}$ in the lunar night environment.

ALSEP PERFORMANCE SUMMARY REPORT (continued)

3 August 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates since turn-on for lunar night operation on 17 July. The instrument's mirror temperature ($\mathrm{AJ}-11$) is currently stabilized at $-20.8^{\circ} \mathrm{F}$, which is the minimum temperature attained during previous lunar nights.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Apollo 16 ALSEP

Apollo 15 ALSEP

Apollo 15 ALSEP (continued.

Apollo 14 ALSEP
Operational status from 27 July 1973 , 1300 G.m.t., to 3 August 1973, l300 G.m.t. Midnight at the Fra Mauro site occurred on 31 July. RIG power output is steady.
Transmitter "A." signal strength was reported between -l33.0 dibm and - 139.3 dbm .
The DSS-l heater (lo watts) is ON for lunar night operation. At l837 G.m.t.,
26 July 1973 , the central station responded to a spurious command (octal 022,
14 -watt Power Dump Resistor ON). The command was verified by simultaneous
ripple-off of the CPIEE experiment to STANDBY select as a result of the drain
in reserve power. At 2348 G.m.t., 26 July, the PDR was commanded off (octal 023)
by Mode I command through the Carnarvon tracking station.
The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The instrument's heater is operating in the AUTO ON mode for lunar night operation. Between real-time support periods of 25 July and 27 July the instrument
 speed mode to HIGH. The experiment was commanded back to the LOW mode at 1656
 were noted during the periodic real-time support periods of this instrument. The experiment is currently in STANDBY. The next listening period is scheduled for 8 August 1973 when the instrument temperature (AS-03) should be above the The experiment is currently on and operating in the full automatic stepping sequence ($0-127$ frames). Present plans are to maintain the experiment in this At 1837 G.m.t., 26 July the experiment went to STANDBY select as reported by the
Texas Tracking Station (ref central station). The instrument was commanded oN
(manual mode, -35 vdc range, automatic thermal control mode) at 1343 G.m.t.,
27 July, for the remainder of the lunar night by mission control without incident.
Central station
Passive seismic
experiment
Active seismic
experiment
Suprathermal ion
experiment detector/cold
cathode gauge experiment
Charge particle
lunar
environmental experiment
Scientific and engineering data outputs remain invalid.

[^14]

I0 August 1973
G.m.t.: 1300

Apolio 17 ALSEP

Sunrise of the scientific station's 9th lunation occurred on 4 August. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG is 75.8 w watts. The downlink received signal is reported between -139.5 dbm and -145.0 dbm . The procedure of inhibiting the package's internally generated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The HFE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE thermocouples is 360.1° $\pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment ll. The experiment's sensor temperature has increased to $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1547 G.m.t., 8 August, and to LSPE data format processing (high bit rate) at $1600 \mathrm{G} . \mathrm{m} . \mathrm{t}$., for a thirty-minute passive listening period. Two geophone calibration pulses were sent during the listening period. Significant events were observed on all geophones during the real-time operation. LSPE processing was terminated at 1632 G.m.t., and the instrument commanded to STANDBY select at 1633 G.m.t.

The Lunar Atmospheric Composition Experiment is currently OFF. The LACE gathered data on the composition of the lunar atmosphere throughout the lunar night. The electrical background noise ramp continued to be displayed on all three mass range data channel outputs. The LACE was commanded OFF on 7 August for the remainder of this lunar day when the electronic temperature (AM-4I) reached $125.0^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorite Experiment is presently OFF. The instrument was left in the operate select on mode through the 4 August terminator crossing per the agreed pian (Apollo 17 SMEAR, ALSEP 49). The LEAM was commanded OFF on 7 August when the instrument mirror temperature (AJ-II) indicated $185.0^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $170^{\circ} \mathrm{F}$ at which time the instrument will be commanded OIN for the remainder of this lunation.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Operatio Central station	status from 3 August 1973, 1300 G.m.t., to 10 August 1973, 1300 G.m.t. Sunrise of the 17th Iunation occurred on 5 August 1973. The DSS-1 heater (10 watts) was commanded OFF on 5 August. The thermoelectric power source output is normal. The 18 -hour timer output pulses continue to be inhibited. The 30 -foot antenna tracking stations report a signal strength between -134.0 dbm and - 138.0 dbm from transmitter " B ".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, $O \mathrm{db}$; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the oT state. The long period y-axis again responded to leveling commands on 7 August 1973. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	On 7 August, magnetometer science data were valid fox approximately a ten minute period, with calibration rasters and fizter comands observed. The ISM's science data had been intermittent since 26 February 2972. 168 flip calibration sequences have been executed and verified by the experiment's engineering data as of 8 August.
seismic	The active seismic experiment is currently in standby OFF, with a 30 minute passive listening mode operation planned for later today.

Apolio 15 ALSEP

Apol1o 14 ALSEP

Apollo 12 ALSEP

APOLLO 15 ALSEP

$$
\begin{aligned}
& \text { APOLLO } 17 \text { ALSEP } \\
& 240 \\
& 8721 \\
& 72.1^{\circ} \\
& 75.8 \mathrm{~W} \\
& \text { ON } \\
& \text { A1工 OFF } \\
& \text { LSPE Stby/ LEAM \& ILACE OFF } \\
& 114.9^{\circ} \mathrm{F} \\
& 65.7^{\circ} \mathrm{F} \\
& 167.4^{\circ} \mathrm{F} \\
& 323.2^{\circ} \mathrm{K} \\
& 49.2^{\circ} \mathrm{C} \\
& 115.6^{\circ} \mathrm{F}
\end{aligned}
$$

Status as of 1300 G.m.t.,

TM POINT

ALIEP PERFORMANCE SUMMARY REPORT

17 August 1973
G.m.t.: 1300

Apollo 17 ALSEP
Noon of the scientific station's 9 th Iunation occurred on 11 August. All experiments and the central station are operating as expected. Downink signal strength is reported at $-140.0 \pm 6.0 \mathrm{dbm}$ from transmitter A. Thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 6l-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The instrument is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFF's thermocouples is $249 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment II. The experiment's sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater on).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1359 G.m.t., 13 August, and to LSPE data format processing (high bit rate) at 14.15 G.m.t., for a thirty-minute passive listening period. Two geophone calibration pulses were sent during the listening period. Significant events were observed on all geophones during the real-time operation. LSPE processing was terminated at 1445 G.m.t., and the instrument commanded to STAMDBY select at 1446 G.m.t.

The Lunar Atmospheric Composition Experiment is in STANDBY. The experiment had been commanded from OFF to STANDBY during this report period at 2136 G.m.t., 14 August to maintain thermal stability of the instrument. At this time the electronics temperature had decreased to $55.7^{\circ} \mathrm{F}$ at a sun angle of 134.8°. The instrument will be commanded oN for the remainder of this lunation later today, 17 August. The IACE electronics temperature ($\mathrm{AM}-41$) is currently $104.5^{\circ} \mathrm{F}$.

17 August 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this Iunation at $1454 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 15$ August, when the mirror temperature (AJ-11) decreased to $165.2^{\circ} \mathrm{F}$ (Apollo 17 SMEAR, ALSEP $49 \mathrm{R}-1$) at a sun angle of 143.5°. The instrument's mirror temperature (AJ-11) currently is reading $168.4^{\circ} \mathrm{F}$ and tracking the previous lunation temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requiremeats Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

status from 10 August 1973, 1300 G.m.t., to 17 August 1973, 1300 G.m.t.							
Central station	Noon of the l7th Iunar day occurred on 12 August at the Descartes Site. The DSSheater (10 watts) has been OFF since 5 August. The thermoelectric power source o put is normal. The 18 -hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The 30 -foot antenna tracking stations report a signal strength between -134.0 dbm and -141.5 dibm from transmitter "B".						
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO OlF; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the on state. The long period x and y-axes have responded to leveling mode commands since 6 August. Previously the long period x-anis had not responded to leveling comands since 25 July 2973 and the long period y-axis had not responded since 23 July 7973 . The instrument's assembly temperature (DI-O7) was off-scale HIGH on 11 August at the beginning of realsupport at a sun angle of 80.8°. No significant seismic events were noted during the limited real-time support of this instrument.						
Lunar surface magnetometer experiment	Scientific data have been intermittent since 16 February 1973. The LSM's scientific data continues to respond to flip calibrations (no cal raster observed) or filter commands. As of 15 August, 474 flip calibration sequences have been executed and verified by the experiment's engineering data.						
Active seismic experiment	The experiment is currently STANDBY OFF. ASE passive listening mode operations were accomplished on 10 August and 15 August as follows:						
	Date	ASE ON G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	$\begin{aligned} & \text { ASE OFF } \\ & \text { G.m.t. } \end{aligned}$	Geophone Cals	Events
	10 Aug	1851	1905	1935	1938	2	None
	15 Aug	1555	1600	1630	1634	2	None
	The next 30-minute passive listening period is planned for 24 August.						

Apollo 15 ALSEP

Apollo 14 ALSEP

Apollo 12 ALSEP

Operation Central station	status from 10 August 1973, 1300 G.m.t., to 17 August 1973, 1300 G.m.t. Noon of the 47 th lunar day occurred on 15 August at the site in the Ocean of Storms. Power output from the RTG has been a steady 66.6 watts during the past month. The signal strength is $-140.5 \pm 3.5 \mathrm{dbm}$ from transmitter "B" was reported by the tracking stations. The DSS-1 heater (10 watts) is OF'F for lunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The z-axis drive motor is OFF for lunar day operation. The PSE's sensor temperature (DI-07) was off-scale HIGH at the beginning of real-time support on 16 August (sun angle lol.20). No significant seismic events were noted during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
```Solar wind spectrometer experiment```	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	Currently the SIDE is OFF. Cyclic commanding of the instrument in the full autom matic stepping sequence with Channeltron high voltages ON to experiment power OFF was initiated on 9 August. The instrument has been cycled by command to the power OFF to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$ during this lunar day. During real-time support on 14 August, the instrument experienced an unexpected mode register load of $X 10$ at an intemal tempenature of $50^{\circ} \mathrm{C}$ and a sun angle of $80.0^{\circ}$. The experiment was commanded to OFF at 2114 G.m.t., 14 August, and remained OFF untit real-time support on 15 August to alzow the instrument to cool below $50^{\circ} \mathrm{C}$.




Status as of 1600 G.m.t., 16 August 1973, was as follows:

## TM POINT


TM POINT

[^15]
## ALSEP PERFORMANCI SUMMARY REPORT

24 August 1973
G.m.t.: 1300

## Apollo 17 ATSEP

Sunset of the 9th lunation occurred on 18 August at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. Downlink RF signal strength is reported at $-138.0 \pm 3.2 \mathrm{dbm}$ from transmitter "A". Thermoelectric power source output is 76.9 watts. The procedure of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the $H F E$ thermocouples, is $111.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#l and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment ll. The experiment's sensor temperature is stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 2351 G.m.t., 22 August and to LSPE data format processing (high bit rate) at 2355 G.m.t., for a thirty-minute passive listening period. Two geophone calibration pulses were sent during the listening period. Significant events were observed on all geophones. LSPE processing was terminated at 0025 G.m.t., and the instrument commanded to STARDBY select at 0028 G.m.t. The next listening mode is scheduled for 27 August, 1973.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at l3l 7 G.m.t., 17 August for the lunar night. At this time the electronics temperature had decreased to $91.2^{\circ} \mathrm{F}$ at a sun angle of $167.0^{\circ}$. The present configuration is automatic sweep; high voltage power supply, ON; ion source filaments, ON; multipliers, HIGH, low voltage power supply, ONF discriminator level, HIGH; and backup heater ON. The LACE electronics temperature (AM-4]) is currently $15.0^{\circ} \mathrm{F}$.

24 August 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $-17 \cdot 4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apolio 16 ALSEP


The experiment is in standby 0FF. The next 30 -minute passive listening period
is planned for later today, 24 August. Active seismic
experiment
Apolio 15 ALSEP

Operational status from 17 August 1973, 1200 G.m.t., to 24 August 1973 , 1300 G.m.t.

Central station
Sunset at the Apollo 14 site occurred on 22 August. RTG power output is steady. Transmitter "A" signal strength was reported at -14...0 + 4.0 dbm . At the start of real-time support on 19 August, it was noted that central station had start switched from PCU \#1 to PCU \#2 without ground command. This spurious switch occurred between real-time support periods at 0300 G.m.t. and 1230 G.m.t., 19 August. The system was re-configured to PCU \#1 at 1437 G.m.t. 19 August by command from mission control without further incident. The DSS-1 heater (10 watts) was commanded ON for lunar night operation at 1352 G.m.t., 21 August 1973. Average thermal plate temperature was $59.4^{\circ} \mathrm{F}$.

The instrument is configured for seismic network congruity (Apollo 16 ALSEP). Since 23 July 1973, the instruments y-axis sensor has responded to leveling. commands. The instrument's heater is operating in the AUIO ON mode for Iunar night operation. The instrument's long period z-axis has not displayed valid data nor responded to commands since 17 November 1972. A significant seismic
event (Apolwo 16 ALSEP) was noted during the limited real-time support period.
The experiment is currently in STANDBY. On 20 August 1973, the experiment was commanded to ON at 1914 G.m.t. and to high bit rate ON at 1926 G.m.t. for a passive listening mode. No significant responses were observed during the listening mode. Geophone calibration pulses were not sent during the listening mode. At 1956 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at 2142 G.m.t., 20 August. The next listening period is scheduled for 7 September 1973 when the GLA temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ temperature restriction.

The experiment was commanded to operate select at 1244 G.m.t., 21 August and is operating in the full automatic stepping sequence with Channeltron high volne Since 9 , 1971 intermittent positive engineering data interruptions in one section of the analog-tomagital lilter are not adversely affecting the scientific outputs of the experiment. Present plans are to maintain the experiment in this mode of operation throughout this lunar night. Suprathermal ion Active seismic
experiment Passive seismic
experiment



Apollo 12 ALSEP






## TM POINT



## TM POINT



# ALSEP PERFORMANCE SUMMARY REPORT 

31 August 1973
G.m.t.: 1300

Apolio 17 ALSEP
Midnight of the 9 th Iunation at Taurus Littrow Lunar Laboratory occurred on 25 August. The central station is operating normally. Downlink signal strength is reported at $-140.7 \pm 4.2 \mathrm{dbm}$ from transmitter A. The redundant transmitter B, as well as all other redundant systems, continue to be passive. Except for small repetitive day/night variations, thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control allowing the system thermal performance to track that of the previous lunar cycle. Transmission of command octal 174 , to inhibit automatic selection of the redundant command signal processing chain (by intemally generated 61-hour pulses), continues during realtime support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples is $107 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted modebias OUT, and post amplifier gain at increment 11. The experiment's sensor temperature is stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select, with the next 30 -minute passive listening period planned for 5 September. The experiment was commanded ON at 1312 G.m.t., 27 August and to LSPE data format processing (high bit rate) at 1315 G.m.t., for a thirty-minute passive listening period. Data output of all geophones appeared normal (no significant events observed) during the real-time operation. ISPE processing was terminated at 1345 G.m.t., and the instrument commanded to SIANDBY select at 1346 G.m.t.

The Lunar Atmospheric Composition Experiment continues to collect data since turn-on, 17 August, for lunar night operations. The present configuration is automatic sweep; high voltage power supply, on; ion source filament, ON; multipliers, HIGH; low voltage power supply, ON; discriminator level, HIGH; and back-up heater ON. The three mass range data channels continue to display electronic background noise of various characteristics. The LACE electronics temperature (AM-4I) is currently stabilized at $13.4^{\circ} \mathrm{F}$ in the lunar night environment.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

31. August 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates during this lunar night operation. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) is currently stabilized at $-20.8^{\circ} \mathrm{F}$, which is the minimum temperature attained during previous lunar nights.

It is requested that any organization having comments, questions, or suggestions concerning this report contact $R$. Miley, Science Requirements Branch, TN3, telephone 483-5067. valid. The instrument continues to execute flip calibrations (with cal rasters observed) and responds to fi乙ter commands. As of 29 August, 486 flip calibration sequences have been executed and verified by the experiment's engineering data.

> The experiment is in standby OFF. On 24 August, the experiment was commanded to operate select at $2235 \mathrm{G} . \mathrm{m} . t$. and to high bit rate ol at $2245 \mathrm{G} . \mathrm{m} . t$. for a 30-minute passive listening period. Two geophone calibration pulses were sent appeared appeared normal and no responses were observed in real-time. High bit rate standby OFF at $2317 \mathrm{G} . \mathrm{m} . t$. The next passive listening period is planned for later today-
Central station
Passive seismic
experiment

[^16]Active seismic
Apule oto RDNLI
Operational status from 24 August 1973, 1300 G.m.t., to 31 August 1973, 1300 G.m.t.
Central station
Passive seismic Lunar surface magnetometer experiment Solar wind
spectrometer
experiment
Suprathermal ion
detector/cold
cathode gauge
experiment

## The instrument remains in STANDBY.

> The experiments are operating continuously in the full automatic stepping sequence ( $0-127$ frames). The SIDE experienced an initial unexplainable operational change between the real-time support periods of 13 August 1973 (1459 G.m.t.) and 14 August 1973 ( 2129 G.m.t.), when the instrument's Low Energy Curved Plate Analyzer (LECPA) voltage was terminated. With gero voltage, Zow energy scientific data is not transmitted. The SIDE's LECPA voltage was re-established without incident by ground command on 29 August 1973 , 1414 G.m.t.
The experiment sensors are in the 50 gamma range for lunar night operations. activation. The experiment's $y$-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands, and has indicated off-scale LOW static since 20 september 1972. The x-axis and z-axis sensors are returned to the loo degree position following each flip cal sequence to maintain sensor

The instrument measurement, TREF I, is operating normally (TREF 2 has been
invalid since 29 May 1972). The lunar surface temperature is $86.6{ }^{\circ} \mathrm{K}$ as in-
dicated by the cable thermocouples. The sub-surface temperature is $253.2^{\circ} \mathrm{K}$
at the botom of the lowest section of probe \#l. Probe \#2 indicates a tem-
perature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are being
conducted periodically. (continued) (continued)
Supratherma Suprathermal ion
detector/cold detector/cold
cathode gauge experiment

[^17]
## ApOIIO 14 ALSEPP

Operational status from 24 August 1973, 1300 G.m.t., to 31 August 1973, 1300 G.m.t.
Midnight at the Apollo 14 site occurred on 29 August. RTG power output is steady. Transmitter "A" signal strength was reported at $-1.37 .5 \pm 2.5 \mathrm{dbm}$.

The instrument is configured for seismic network congruity (Apollo 16 ALSEP).
Since 23 July 1973 the y-axis sensor has responded to leveling commands. The
instrument's heater is operating in the AUTO oN mode for lunar night operation.
The instrument's long-period z-axis has not dispalyed valid data nor responded
to commands since 17 November l972. No significant seismic events were noted
during the limited real-time support periods.
The experiment is currentiy in STANDBY. The next listening period is scheduled for 7 September 1973 when the instrument temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ restriction.

$$
\begin{aligned}
& \text { The experiments are operating continuously in the full automatic stepping } \\
& \text { sequence with Channeltron high voltages commanded on. The June- culy } 1973 \\
& \text { Cold Cathode Gauge Experiment progress report noted a number of problems } \\
& \text { which prohibit obtaining full data from the CCGE. The original problem } \\
& \text { ocurped in April 1971 when the positive analog-to-digital converter became } \\
& \text { erratic. This anomaly is not serious since it affects only the temperature } \\
& \text { and housekeeping data. }
\end{aligned}
$$

The second problem, other than occasionally noisy data was encountered with
the CCGE during the nighttime operation in Febmary 1972 . This gauge anomaly
The second problem, other than occasionally noisy data was encountered with
the CCGE during the nighttime operation in Febmary 1972. This gauge anomaly occurred intermittently until the nighttime operation in late November 1972
The second problem, other than occasionally noisy data was encountered with
the CCGE during the nighttime operation in Febmary 1972 . This gauge anomaly
occurred intermittently until the nightime operation in Iate November 1972
at which time all nighttime data were lost. This total loss of nighttime
data lasted until late March 1973, followed by no nighttime data for two more
months.
The second problem, other than occasionally noisy data was encountered with
the CCGE during the nighttime operation in Febmary 1972 . This gauge anomaly
ocurred intermittently until the nighttime operation in late November 1972
at which time all nightime data were lost. This total loss of nighttime
data lasted until late March 1973, followed by no nighttime data for two moxe
months. data Zasted until late March 1973, followed by no nighttime data for two more
months. The start of the lunar day on 15 Aprit 1973 produced the third and most serious problem to date. At this time the SIDE/CCGE went to the STAANBY con-

Central station <br> Passive seismic <br> \section*{Passive seismic} <br> \section*{Passive seismic}

> Suprathermal io

Central station

experiment

monthe.

[^18]$\qquad$ the CGE during the nightime operation in Febmary 1972. Ihis gauge anomaly


告
-

$\qquad$男

(penutquoo) dसs'TV れt Ottody

Operational status from 24 August 1973,1300 G.m.t., to 31 August 1973,1300 G.m.t.	
Charged particle	The experiment is presently operating in the manual mode at the -35 vdc range
lunar	and automatic thermal control mode. It is planned to leave the experiment
environmental	in this configuration pending possible degradation of (Ac-03) Analyzer A
experiment	voltage to - 2200 vdc, at which time the instrument will be commanded to

ApOIIO 12 ALSEP



01 Jun 73
27 Aug 73
30 May 73
24 Aug 73
29 Aug 73




APOLLO 17 ALSEP


## TM POINT

Total Days of Operation
Total Commands to Date
Sun Angle
Input Power
Heater and Power Dumps
Experiment Status
Avg Thermal Plate Temp
PSE Sensor Temp (DI--O7)
LSM Internal Temp (DM-05)
SWS Module 300 Temp (DW-13)
SIDE Temp (DI-05)
CCGE Temp (DI-04)
CPLEE Elect Temp (AC-06)
ASE GLA Temp (AS-O3)
HFE Temp Ref I (DH-13)

## TM POINT




7 September 1973
G.m.t.: 1300

## Apollo 17 ALSEP

Sunrise of the scientific station's l0th lunation occurred 2 September. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG is 75.3 watts. The downlink received signal is reported between -136.0 dbm and -147.0 dbm. The procedure of inhibiting the package's internally generated 61-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The HFE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature, as measured by the HFE thermocouples is 333 $\pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUP, and post amplifier gain at increment 11. The experiment's sensor temperature is stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater oN).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 2007 G.m.t., 5 September and to LSPE data format processing (high bit rate) at 2015 G.m.t., for a thirty-minute passive listening period. Two geophone calibration pulses were sent during the listening period. A significant event was observed on all geophones during the real-time operation. LSPE processing was terminated at 2045 G.m.t., and the instrument commanded to STANDBY select at 2046 G.m.t.

The Lunar Atmospheric Composition Experiment is currently OFF. The LACE gathered data on the composition of the Iunar atmosphere throughout the lunar night. The electrical background noise ramp continued to be displayed on all three mass range data channel outputs. The LACE was commanded OFF on 5 September for the remainder of this Iunar day when the electronic temperature (AM-4I) reached $123.3^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was left in the operate select ON mode through the terminator crossing per the agreed plan (Apollo 17 SMEAR, ALSEP $49 \mathrm{R}-2$ ). The LFAM was commanded OFF at 1608 G.m.t., 6 September, when the instrument mirror temperature (AJ-1I) read 191. $0^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $175.0^{\circ} \mathrm{F}$ at which time the instrument will be commanded OIV for the remainder of this lunation.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067. d. 3 september as follows:
Events
None
None
The next 30 -minute passive listening period is planned for 12 September.

$$
\begin{aligned}
& \begin{array}{ll}
\text { Apollo } 16 \text { ALSEP } \\
& \\
\text { Operational status from } 31 \text { August } 1973,1300 \text { G.m.t., to } 7 \text { September 1973, l300 G.m.t. }
\end{array} \\
& \text { mere }
\end{aligned}
$$

APOI10 15 ALSEP

Operation Central station	status from 31 August 1973, 1300 G.m.t., to 7 September 1973, 1300 G.m.t.   Sunrise of the station's 27 th Iunation occurred 4 September. Power from the RTG continues steady. The transmitter "A" downlink signal strength is reported between -131.0 dbm and -141.0 dbm .
Passive seismic experiment	The instrument is configured for seismic network congurity (Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. The thermal characteristics of the PSE sensor assembly temperature (DL-OT) have been stable and no adverse effects have been noted in the science data or instrument operation by allowing the cycling of the 18 -hour timer output pulses during lunar night operation. No lunar seismic events have been observed during the limited real-time support of this instrument. At 1347 G.m.t., 31 August, the instmment responded to a spurious command (octal 070, X leveling motor ON). The Bermuda tracking station confirmed receipt of the command in the ALSEP downlink. The leveling motor was turned OFF by command through mission controt at 1359 G.m.t., 31 August, without incident.
Linar surface magnetometer experiment	The experiment sensors were commanded to 100 gamma range on 3 September for Iunar day operation. The y-axis sensor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off--scale LOW (static) since 20 September 1972. The instrument has executed 1072 flip calibration sequences since activation.
Solar wind spectrometer experiment	The instrument remains in STAIVDBY.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames). The CCGE data continues to be noisy and the automatic zero and calibration functions are still not functioning property.

Operational

[^19]\[

$$
\begin{aligned}
& \text { Apollo } 15 \text { ALSEP (continued) } \\
& \text { status from } 31 \text { August } 1973 \text {, } 1300 \text { G.m.t., to } 7 \text { September } 1973 \text {, } 1300 \text { G.m.t. } \\
& \text { The instrument measurement, TREF I, is operating normally (TREF } 2 \text { has been in- } \\
& \text { valid since } 29 \text { May 1972). The lunar surface temperature was } 315.1^{\circ} \mathrm{K} \text { on } 6 \text { September } \\
& \text { as indicated by the cable thermocouples. The sub-surface temperature was } 253.3^{\circ} \mathrm{K} \\
& \text { at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temper- } \\
& \text { ature of } 251.0^{\circ} \mathrm{K} \text { at its lower-most point. Ring bridge surveys are obtained }
\end{aligned}
$$
\]

Apollo 14 ALSEP

Operational Central station	status from 31 August 1973, 1300 G.m.t., to 7 September 1973, 1300 G.m.t.   Sunrise at the Apollo 14 site occurred 6 September (33rd Iunation). RTG power output is steady. Transmitter "A" signal strength was reported between -135.0 dbm and -143.0 dbm. The DSS-I heater ( 10 watts) was commanded OFF for Iunar day operation on 6 september. Data processor "Y" was verified by command on 7 September.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The instrument's heater will be commanded to FORCED OFF on 10 September to minimize heating during lunar day operations. The long-period y-axis has remained in the on-scale leveled position since 23 July 1973. The long-period z-axis has not displayed valid data nor responded to commands since 17 November 1972. During this limited real-time support period no significant seismic events have been noted.
Active seismic experiment	The experiment is currently in STANDBY. The next 30 -minute passive listening period is planned for later today, 7 September, when the instrument temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ restriction.
Suprathermal ion detector/cold cathode gauge experiment	On 6 September, the experiment experienced a functional change, without ground command, as observed by the Ascension remote site. AB-05 changed to octal 104 indicating the instrument was OFF. The experiments had been operating continuously in the full automatic stepping sequence with Channeltron high voltages commanded oN during the lunar night. Present plans are to maintain the experiment in STANDBY until prior to lunar night.
Charged particle   Iunar   environmental.   experiment	The CPLEE was commanded to STANDBY on 5 September per present plans. The experiment had been in OPERATE select since 23 August 1973.

$$
\text { Apolio } 12 \text { ALSEP }
$$






Status as of 2100 G.m.t., 6 September 1973, was as follows:
APOLIO 12 ALSEP
1387
17989
$0.2^{\circ}$
65.6 W
All OFF
All ON
$10.4^{\circ} \mathrm{F}$
Offscale LOW
Invalid
-16.0 ${ }^{\circ} \mathrm{C}$
Invalid
Invalid
IV/A
N/A
IN/A


## TM POINT



# AISEP PERFORMANCE SUMMARY REPORT 

14 September 1973
G.m.t.: 1300

Apolio 17 ALSEP
Noon of the scientific station's loth lunation occurred on 9 September. All experiments and the central station are operating as expected. Downlink signal strength is reported at $-139.5 \pm 3.5 \mathrm{dbm}$ from transmitter $A$. Thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 6l-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues to operate nomally, with periodic ring bridge surveys being accomplished. The instrument is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE's thermocouples is $337 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 11. The experiment's sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON). A planned reconfiguration of the flight ISG is tentatively set for 26 September 1973, when 10 hours of real-time computer support have been scheduled. This third special tost will be made to determine the absoZute sensitivity of the LSG at its natural frequency of 1.5 Hz . During the test the instrument's closed loop (feedback) mode of operation will be employed in an effort to detect lunar tidal variation and improve the quality of the free modes data. It is understood that this third special test will complete the implementation of the flight LSG design modes of operation. No reconfiguration of the ISG has been attempted since 19 April 1973.

The Lunar Seismic Profiling Experiment is in STANDBY select. The next 30-minute passive listening period is planned for later today.

The Iunar Atmospheric Composition Experiment is currently OFF. The LACE was commanded OFF on 5 September for the remainder of this lunar day when the electronic temperature (AM-4I) reached $123.3^{\circ} \mathrm{F}$.

ATSEP PERFORMANCE SUMMARY REPORT (continued)
14 September 1973
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was operated per Apollo 17 SMEAR, ALSEP 49 R-2 as follows:

Date	LEAM ON G.m.t.	LEAN OFF G.m.t.	$\begin{gathered} \mathrm{AJ}-11 \\ \text { Temp }^{\circ_{\mathrm{F}}} \end{gathered}$	Sun Angle
6 sep	----	1608	191.0	$52.5^{\circ}$
7 sep	0842	-----	172.8	$60.1^{\circ}$
8 Sep	---*-	1.758	191.0	$77.9^{\circ}$

The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $177.5^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $175.0^{\circ} \mathrm{F}$ at which time the instrument will be commanded ON for the remainder of this lunation.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALsEP

Central station	Noon of the 18th lunar day occurred on 10 September at the Descartes Site. The DSS-I heater (10 watts) has been OFF since 5 September. The thermoelectric power source output is normal. The 18 -hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The 30 -foot antenna tracking stations report a signal strength between -135.0 dbm and -140.0 dbm from transmitter "B".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUMO OIV; component gains, 0 d.b; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The long period $x$ and $y$-axes have responded to leveling mode commands since 4 September. The instrument's assembly temperature (DI-O7) has remained offscale HIGH since 9 September. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM science data, observed during real-time support periods, have been valid since 17 August 1973. The instrument continues to execute flip calibrations (with cal rasters observed) and responds to filter commands. 498 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The experiment is in standby OFF. On 12 September, the experiment was commanded to operate select at 1321 G.m.t. and to high bit rate ON at 1330 G.m.t. for a 30-minute passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no responses were observed in real-time. High bit rate operations were terminated at 1400 G.m.t. and the experiment commanded to standby OFF at 1401 G.m.t.

ApOIIO 15 AISEP
Operational status from 7 September 1973, 1300 G.m.t., to 14 September 1973, 1300 G.m.t.

Central station
Passive seismic
experiment
Lunar surface magnetometer experiment

## The instrument has remained in SIANDBY since 10 July 1973

The instrument is curcently operating with the Channeltron high voltages commanded ON and in the full automatic stepping sequence ( $0-127$ frames). At the start of real-time support on 13 September, it was noted that the instmumen's high voltage had changed from -3.475 KV (value noted during real-time support on 12 September) to -2.535 KV . The high and low energy counts were also indicating zero values at this time. The instrument was commanded to STANDBY at 1001 G.m.t. and to ON at 1005 G.m.t. at which time the SIDE retumed to nomal operation with the high voltage supply indicating a nominal-3.5KV level. The Cold Cathode Ion Gauge Experiment's scientific data has been intermittent during real-time support operations this past week.

[^20]difsiv tr ottody

Apollo 12 ALSEP

Operational   Central station	status from 7 September 1973 , 1300 G.m.t., to 14 September 1973 , 1300 G.m.t.   Noon of the 4 thh Iunar day occurs today, 14 september at the site in the Ocean of Storms. Power output from the RTG has been a steady 66.2 watts during the past week. The signal strength is $-141.3 \pm 3.7 \mathrm{dbm}$ from transmitter "B" was reported by the tracking stations. The DSS-1 heater ( 10 watts) is OFF for Iunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The z-axis drive motor is OFF for lunar day operation. At the start of realtime support on 7 September the sensor temperature (DL-07) returned onscale, indicating a value of $126.40^{\circ} \mathrm{F}$. No significant seismic events were noted during the periodic real-time support periods.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	Currently the SIDE is OFF. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF was initiated on 9 September. During real-time support on 9 September and again on 12 september the instrument experienced an unexpected mode register load of X10. In both instances the experiment was commanded OFF and remained OFF until it cooled below $50^{\circ} \mathrm{C}$. At the start of real-time support on 7 September the instrument's digital data was again valid and has remained so during periods of real-time support this week.




Status as of 1040 G.m.t., 13 September 1973, was as follows:


## TM POINT



21 September 1973
G.m.t.: 0900

Remote site coverage for recording of ALSEP downink data was not available at the following times:
Apoz20 12 $\begin{array}{lllll} & \frac{\text { Date }}{17 \text { Sep }} & \frac{\text { LOS }}{2133} & \begin{array}{l}\text { GMT } \\ 2227\end{array} & \frac{\text { Data Loss }}{1_{14}^{h}}\end{array}$

## Apollo 17 ALSEP

Sunset of the loth lunation occurred on 17 September at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. Downlink RF signal strength is reported at $-138.7 \pm 3.7$ dbm from transmitter "A". Thermoelectric power source output is 76.9 watts. The procedure of inhibiting the internally generated 61-hour pulse continues with the command (octal 174) being sent to the command decoder switch during realtime support periods as required.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $112 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.4^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect data with the instrument configured to seismic high gain, integrator shorted mode, bias OUT, and post amplifier gain at increment 11. The experiment's sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON). A planned reconfiguration of the flight LSG is set for 26 September 1973, when 10 hours of real-time computer support have been scheduled. During the test the instrument's closed loop (feedback) mode of operation will be employed in an effort to detect lunar tidal variation and improve the quality of the free modes data. It is understood that this third special test will complete the implementation of the flight LSG design modes of operation. No reconfiguration of the LSG has been attempted since 19 Aprit 1973.

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	$\begin{aligned} & \text { LSPE ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \mathrm{HBR} \text { ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR OFF } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { LSPE STBY } \\ & \text { G.m.t. } \end{aligned}$	Geophone Cals	Events
14 Sep	1524	1528	1558	1601	2	None
19 Sep	1348	1445	1515	1517	2	None

The next passive listening period is planned for 28 September.

## ALSEP PERFORMANCE SUMVARY REPORI (continued)

21 September 1973
G.m.t.: 0900

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at 1405 G.m.t., 17 September for lunar night. The experiment had been commanded from OFF to STANDBY during this report period at 1307 G.m.t., I4 September to maintain thermal stability of the instrument. At this time the electronics temperature had decreased to $39.1^{\circ} \mathrm{F}$ at a sun angle of $148.5^{\circ}$. On 18 Septembex after the LACE's high voltage was commanded ON, it was noted that the intermediate mass range output (DM-04) was indicating all zeros. In an attempt to correct, and/ow isom tate this anomaly during real-time support, 19 September, the experiment's high voltage power supply was cycled, without any conclusive results being obtained. Later today further analysis of this problem is planned with commanding of the LACE's redundant filament. If the anomaly persists, $12 \%$ of the LACE's scientific data will be unrecoverable. Investigation of this anomaly will continue. The present configuration is automatic sweep; high voltage power supply, oN; ion source filaments, ON; multipliers, HIGH; low voltage power supply, ON; discriminator level, HIGH; and back-up heater OFF. The LACE electronics temperature (AM-41) is currently $13.4^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this lunation at 1308 G.m.t., 14 September, when the mirror temperature (AJ-ll) decreased to $159.8^{\circ} \mathrm{F}$ at a sun angle of 148.5 . The instrument's mirror temperature (AJ--11) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact.R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ATSEP

Apollo 15 ALSEP
Operational status from 14 September 1973 , 1300 G.m.t., to 21 September 1973, 0900 G.m.t. The RTG output power remains steady. Transmitter "A" downiink signal strength is reported at $-136.0 \pm 2.0$ dbm by the tracking stations with $30-$ foot antena. Sunset of the site's 27th Iunation occurred on 19 September. The data subsystem's 18 -hour timer outputs are occurring as expected.
The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. During the intermittent real-time support periods this past week no significant seismic events were noted. The experiment sensors were commanded to the 50 gamma range at 1439 G.m.t., 20 September, for Iuner night-time operations. Currently the instrument has executed 1086 flip calibration sequences since activation. The experiment's $y$-axis sensor head remains fixed at a 180 degree positon, not responding to flip cal commands, and has indicated off-scale LOW static since 20 September 1972. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-217$ frames). On 13 September 1973 at the vinve of real-time support, a spurious functional mode change had 2 occurred, the SIDE ( -3.5 kv ) high voltage was OFF. Investigation of the experiment's engineering and science data disclosed that the mode and command registers were clear, CCIG data and calibrations appeared normal and no command verification word (CVW) in the downlink signal was observed by the remote tracking stations to identify this anomaly. The following is a sequential list of the anomatous activities of the instrument during this reporting period:

Central station
Passive seismic
experiment
Lunar surface
magnetometer
experiment

## The instrument remains in STANDBY.

 Solar windspectrometer
experiment
Suprathermal ion
detector/cold
cathode gauge
experiment
Apollo 15 ALSEP (continued)
Operational status from 14 September 1973, 1300 G.m.t., to 21 September 1973, 0900 G.m.t.

Suprathermal ion detector/cold	Date	GMT	$\begin{gathered} \text { SIDE } \\ \text { STATUS } \end{gathered}$	$\begin{gathered} \text { SIDE } \\ H V(-3.5 \mathrm{KV}) \\ \hline \end{gathered}$	CCIG   DATA/CALS	$\begin{gathered} \text { SIDE Temp } \\ (D I-05) \\ \hline \end{gathered}$	Sun Angle	Comments
experiment	13 Sep	082.9	ON	OFF	Normal	$89.5{ }^{\circ} \mathrm{C}$	$707.0^{\circ}$	Spurious change
(continued)		1001	STB.	OF'F	OFE'	$89.5{ }^{\circ} \mathrm{C}$	$107.4^{\circ}$	Ground command
		1005	ON	ON	Invalid	$89.5{ }^{\circ} \mathrm{C}$	$107.4^{\circ}$	Ground command
	14 Sep	1259	ON	OFF	Invalid.	$88.2{ }^{\circ} \mathrm{C}$	$121.6^{\circ}$	Spurious change
		1301	STBY	OFF	OFF	$88.2{ }^{\circ} \mathrm{C}$	$121.6^{\circ}$	Ground command
	15 Sep	1313	ON	ON	Invalid	$54.6{ }^{\circ} \mathrm{C}$	$133.8^{\circ}$	Ground command
	Since the CC changes be cyc	Sept data at ins comm	er the as been ument ded fro	IDE channel valid sine ernal temp ON to STAND	on voitage 13 Septembe tures abov y.	nd data ha 1973. To $85^{\circ} \mathrm{C}$ (DI-	been valid. rectude po the exper	however, ible mode nent wizl
Heat flow experiment	The in valid by the of the at its	rumen nce 29 able owest ower-r	measurer   ay 1972   rmocoup   ction   t point	, TREF 1, The luna s. The sub probe \#1. Ring bridg	operating surface tem surface tem robe \#2 ind surveys ar	normally (T rature is rature is cated a ter obtained	2 has b $.5^{\circ} \mathrm{K}$ as i. $3.3^{\circ} \mathrm{K}$ at rature of iodically	$\begin{aligned} & \text { n in- } \\ & \text { icated } \\ & \text { e bottom } \\ & 51.0^{\circ} \mathrm{K} \end{aligned}$

Apollo 14 ALSEP
Operational status from 14 September 1973, 1300 G.m.t., to 21 September 1973, 0900 G.m.t. Sunset at the Apollo 14 site occurred today. RTG power output is steady. Trans-
nitter "A" signal strength was reported at $-141.5 \pm 3.5$ dom. The DSS-l heater
(lo watts) was commanded on for lunar night operation at 1352 G.m.t., 20 September,
when the average thermal plate temperature was 51.80 F.
The instrument is configured for seismic network congruity (Apollo 16 ALSEP).
The instrument's heater was commanded to AUTO ONT at I448 G.m.t., on 17 September
to maximize heating during lunar night operations. The long period y-axis has
remained in the on-scale position since 22 March. The instrument's long period
zaxis has not displayed valid data nor responded to commands since IT November
l972. During this limited real-time support period no significant seismic
events have been noted. The experiment is currently in STANDBY. On 17 September I973, the experiment
was commanded to ON at 1449 G.m.t. and to high bit rate ON at 1455 G.m.t. for a
passive listening mode. No significant responses were noted duirng the listening
mode. Geophone calibration pulses were not sent during the listening period.
At 1525 G.m.t. high bit rate operation was terminated. The instrument was
commanded to STANDBY at l526 G.m.t. The next listening period is scheduled
for 8 October 1973 when the GIA temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$
temperature restriction. The experiment was commanded to OPERATE select at 1353 G.m.t., 20 September and is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON. Since 9 May 1971 intermittent positive engineering data interruptions in one section of the analog-to-digital filter are not adversely affecting the scientific outputs of the experiment. Present plans are to maintain the experiment in this mode of operation throughout the lunar night. At 1359 G.m.t., 20 September the experiment was commanded to the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of (AC-03). Analyzer A voltage to 2200 vdc , at which time the instrument will be commanded to Central station Passive seismic
Active seismic Suprathermal ion
Charged particle STANDBY select. experiment
experiment
detector/cold cathode gauge
experiment
environmental experiment
Apollo 12 ALSEP




Bendix $\begin{aligned} & \text { Aerospace } \\ & \text { Systems Division }\end{aligned}$
Prepared by: Warren Tosh
RELATIVE TO EARTH-SUN LINE


APOLLO   (ALSEP)	DAY/HOUR (GMT)				
	Midnight	Sunrise	Noon	Sunset	Midnight
17		1 Oct/2024	(11th)9 Oct/0540	16 Oct/1520	24 Oct/0033
16		3 Oct/0222	(19th) 10 Oct/1145	17 Oct/2124	25 Oct/0630
15		4 Oct/0143	(28th) 11 Oct/1110	18 Oct/2046	26 Oct/0549
14	28 Sept/1019	5 Oct/1918	(34th)13 Oct/0453	20 Oct/1421	27 Oct/2320
12	28 Sept/2156	6 Oct/0703	(49th) 13 Oct/1639	21 Oct/0116	28 Oct/1058

MOON POSITIONS

# ALSEP PERFORMANCE SUMMARY REPORT 

28 September 1973
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not avaitable at the following times:

	Date	GMT	GMT	
Apo220 12	LOS	IOS	Data Loss	
	23 Sep	2156	2302	$1^{h} 6^{m}$

## Apollo 17 ALSEP

Midnight of the IOth Iunation at Taurus Littrow Lunar Laboratory occurred on 24 September. The central station is operating normally. Downlink signal strength is reported at -142.0 $\pm 4.0 \mathrm{dbm}$ from transmitter A. Except for small repetitive day/night variations, thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain (by internally generated 6l-hour pulses) continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the $H F E$ thermocouples is $106+8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Grovimeter Experiment (Reference attached Apollo 17 LSG Test Results). The experiment's sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The next $30-$ minute passive listening period is planned for later today.

The Lunar Atmospheric Composition Experiment is currently OND. Tape playback from the Honeysuckle ground station indicated that ion source Filament \#1 failed at 2152 G.m.t., 23 September 1973. Failure of this component results in the analog and digital scientific data of HIGH, INTERMEDIATE and LOW mass range channels to read zero. On 25 September, during investigation of this anomaly, it was verified that Filament \#1 had failed completely. At 2353 G.m.t., 25 September, Fitament \#2 was commanded $O N$ and the analog and digital scientific data indicated that the LACE was operating normally for HIGH and LOW. The INTERMEDIATE mass range output has indicated all zeros since 18 September. This anomaly is additional and separate from the filament anomaly. The LACE was then configured to discriminator level; LOW, Filament \#2 voltage,

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

28 September 1973
G.m.t.: 1300

OFF; high voltage power supply, OFF; and back-up heater, ON. Later today the instrument will be configured to automatic sweep; high voltage power supply, ON; ion source filoment, ON; multipliers, HIGH, low voltage power supply, ON; discriminator level. HIGH; and back-up heater ON. The instrument will remain in this configuration until just prior to optical sunsise when normal daytime operation will be resumed. A new operational plan is being prepared to obtain the maximum utilization of the instrument considering the present condition of only one useable ion source filament. The LACE electronics temperature (AM-4I) is currently $-2.3^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature (AJ-II) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Require-ments Branch, TN3, telephone 483-5067.
 fie


Active seismic
experiment


$$
\pm
$$

Central station
Passive seismic
Lunar surface
magnetometer
experiment experiment





























Apollo 15 ALSEP

Operatio Central station	status from 21 September 1973, 0900 G.m.t., to 28 September 1973, 1300 G.m.t.   Midnight of the station's 27 th Iunation occurred on 26 september. Power from the RTG continues steady. Transmitter "A" downlink signal strength was reported at $-135.0 \pm 4.0 \mathrm{dbm}$. The data subsystem's average thermal plate temperature is presently stabilized at $-2.8^{\circ} \mathrm{F}$.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. The thermal characteristics of the PSE sensor assembly temperature (DL-O7) have been stable and no adverse effects have been noted in the science data or instrument operation by allowing the cycling of the 18-hour timer output pulses during lunar night operation. At 2051 G.m.t., 26 September, a significant seismic event of approximately 1 hour 17 minutes duration was observed during the rimited rear-time support of this instrument. The event was also observed on Apollo 12, 14, and 16 ALSEPS.
Lunar surface magnetometer experiment	The experiment sensors are in the 50 gamma range for lunar night operations. Currently the instrument has executed 1096 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands, and has indicated off-scale LOW static since 20 september 1972. The $x$-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind   spectrometer   experiment	The instrument remains in STANDBY.
Suprathermal ion detector/cold cathode gauge experiment	The experiments are operating continuously in the full automatic stepping sequence (0-127 frames). Since 15 September the STDE channeltron voltage and data has been valid, however, the CCIG data has been invalid since 13 September 1973. To preclude possible mode changes at instrument internal temperatures above $85^{\circ} \mathrm{C}$ (DI-05) the experiment will be cyclic commanded from ON to STANDBY.

Apollo 15 ALSEP (continued)
status from 21 september 1973, 0900 G.m.t., to 28 September 1973 , 1300 G.m.t.
The instrument measurement, TREF I, is operating normally (TREF 2 has been in-
valid since 29 May l972). The lunar surface temperature is $87.5^{\circ} \mathrm{K}$ as indicated
by the cable thermocouples. The sub-surface temperature is $253.3^{\circ} \mathrm{K}$ at the
bottom of the lowest section of probe \#l. Probe \#2 indicates a temperature of
25l. $0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are being conducted period-
ically.
dASTIV tt otrody

The experiment is currently in STANDBY. The next listening period is soheduled
for 8 October 1973 when the instrument temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ restriction.

$$
\begin{aligned}
& \text { The experiment was commanded to OPERATE select at } 1353 \text { G.m.t., } 20 \text { September and } \\
& \text { is operating in the full automatic stepping sequence with Channeltron high vol- } \\
& \text { tages commanded oN. Since } 9 \text { May } 1971 \text { intermittent positive engineering data } \\
& \text { interruptions in one section of the analog-to-digital filter are not adversely } \\
& \text { affecting the scientific outputs of the experiment. Present plans are to main- } \\
& \text { tain the experiment in this mode of operation throughout the lunar night. }
\end{aligned}
$$ The experiment is currently $O N$ in the manual mode at the -35 vac range and automatic thermcl control mode. It is planned to leave the experiment in this configuration pending possible degradation of (AC-03), analyzer $A$ voltage, to 2200 vdc at which time the instrument will be commanded to STANDBY select. Central station

Passive seismic
experiment
Active seismic
experiment
Suprathermal ion
detector/cold
detector/cold
cathode gauge
Charged particle
Iunar
environmental
experiment
Apolio 12 ALnEP

The instrument is currently in the normal gain mode and is recording solar
wind plasma data.
The SIDE is in OPERATE select and automatic stepping sequence for the remainder of this lunation. The instrument had previously been cycled by command to the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$ during the lunar day.





## ALSEP PERFORMANCE SUMMARY REPORT

5 October 1973
G.m.t.: 1300

## Apollo 17 ALSEP

Sunrise of the scientific station's llth lunation occurred I October. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG is 75.3w watts. The downlink received signal is reported between -137.0 dbm and -I45.0 dbm. The procedure of inhibiting the package's internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The HFE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature, as measured by the HFE thermocouples is 247.0 $\pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is configured to collect tidal and free mode data (siesmic gain, HIGH; integrator mode, NORMAL; bias circuit, IIT; and post amplifier gain at increment 15). The experiment's sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	$\begin{aligned} & \text { LSPE ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR ON } \\ & \text { G.m.t. } \end{aligned}$	HBR OFF G.m.t.	LSPE STBY	Geophone Cals	Events
28 Sep	1354	1445	1515	1519	2	None
3 Oct	1606	1615	1645	1648	2	None

The next passive listening period is planned for 12 October.
The Lunar Atmospheric Composition Experiment is currently OFF. The LACE was commanded OFF for lunar day operation when the electronics temperature, AM-41, reached $112.9^{\circ} \mathrm{F}$ (sun angle, $33^{\circ}$ ). The instrument has functioned nominally since the switch to Filament \#2 on 28 September 1973 with the exception of the INTERMEDIATE mass range output, which has indicated all zeros since 18 September 1973.

The Lunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates on the lunar surface. The instrument will remain on until the mirror temperature (AJ-II) reaches $196.0^{\circ} \mathrm{F}$, at which time it will be cycled per Apollo 17 SMEAR, ALSEP 49 R-2.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apolio 16 ALSEP

Apol1o 15 ALsEP
Central station
Operational status from 28 September 1973, 1300 G.m.t., to 5 October 1973, 1300 G.m.t.


[^21]
## The instrument remains in STANDBY.

The instrument is currently operating with the Channeltron high voltages command$\begin{array}{ll}\text { detector/cold } & \text { ed ON and in full automatic stepping sequence ( } 0-127 \text { frames). The CCGE data con- } \\ \text { cathode gage } & \text { tinues to be noisy and the automatic zero and calibration functions are still not }\end{array}$ functioning properly. At the request of the principal investigator, the instrument will be operated for a three hour period during real time support on 10 October (sun angle, $75^{\circ}$ ). To insure the instrument does not exceed the $85^{\circ} \mathrm{C}$ operational limit, the SIDE will be commanded to OFF during real time support on 9 October and returned to power ON for three hours of operation on 10 October. The instrument will then be cycled from ON to STANDBY for the remainder of lunar day.

Operational

$$
\begin{aligned}
& \text { Apollo } 15 \text { ALSEP (continued) } \\
& \text { status from } 28 \text { September 1973, } 1300 \text { G.m.t., to } 5 \text { October } 1973 \text {, } 1300 \text { G.m.t. } \\
& \text { The instrument measurement, TREF I, is operating normally (TREF } 2 \text { has been in- } \\
& \text { valid since } 29 \text { May 1972). The lunar surface temperature was } 85.6{ }^{\circ} \mathrm{K} \text { on } 4 \text { October } \\
& \text { as indicated by the cable thermocouples. The sub-surface temperature was } 253.4^{\circ} \mathrm{K} \\
& \text { at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temper- } \\
& \text { ature of } 251.0^{\circ} \mathrm{K} \text { at its lower-most point. Ring bridge surveys are obtained. } \\
& \text { periodically. }
\end{aligned}
$$

Apollo 14 ALSEP
Operational status from 28 September 1973, 1300 G.m.t., to 5 October 1973, 1300 G.m.t.
Sunrise at the Apollo 14 site occurs later today (34th lunation). RTG power
output is steady. Transmitter "A" signal strength was reported between -134.5
dbm and -139.9 dbm . Data processor "Y" will be verified by command on 5 October.

The experiment is currently in STANDBY. The next 30 -minute passive listening period is planned for 8 October, when the instrument temperature (AS-03) should be above the $-60^{\circ} \mathrm{C}$ restriction.

> The experiment is currently operating in the full automatic stepping sequence The exper
 select later today for the remainder of lunar day.
Central station
Passive seismic
experiment
Active seismic
experiment Suprathermal ion
Charged particle lunar environmental experiment

Operationa Central station	status from 28 September 1973, 1300 G.m.t., to 5 October 1973, 1300 G.m.t.   Sunrise of the 49 th lunar day occurrs tomorrow, 6 October, at the ALSEP site in the Ocean of Storms. Power output from the RTG during this report period has been from 66.1 to 66.5 watts. A signal strength between -136.5 dbm and -139.9 dbm from transmitter "B" was reported by the tracking stations. The DSS-1 heater (10 watts) will be commanded OFF for lunar day operations on 6 October. Data processor "Y" will be verified by command on 6 October.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The z-axis drive motor will be commanded OFF for lunar day operation on 6 October. The PSE sensor temperature (DL-O7) has remained offscale LOW during realtime support operations this week. No significant seismic events were noted during the periodic real-time support periods.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
```Suprathermal ion detector experiment```	Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF will be initiated on 7 October in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$. The instrument is operating in full automatic stepping sequence with the Channeltron high voltages ON.


APOLLO 12 ALSEP

TM POINT

ALSEP PERFORMANCE SUMMARY REPORT

12 October 1973
G.m.t.: 1300

Apolio 17 ALSEP

Noon of the scientific station's llth lunation occurred on 9 October. All experiments and the central station are operating as expected. Downlink signal strength is reported at $-138.0 \pm 2.0 \mathrm{dbm}$ from transmitter A. Thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhi-bit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The instrument is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE's thermocouples is $364 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth is $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect tidal and free mode data with the instrument configured to seismic high gain, integrator normal, bias IN, and post amplifier gain at increment 15. The experiment's sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The next 30 -minute passive listening period is planned for later today.

The Lunar Atmospheric Composition Experiment is currently OFF for lunar day operation. It is planned to command the instrument to STANDBY select on 13 October to maintain thermal stability. The LACE electronic temperature is presently reading $72.1^{\circ} \mathrm{F}$ and tracking the previous lunation temperature profile.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF by Mode 1 command through the Bermuda Tracking Station at 0354 G.m.t., 6 October when the mirror temperature (AJ-11) increased to $196^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $180.0^{\circ} \mathrm{F}$ at which time the instrument will be commanded ON for the remainder of this lunation. The mirror temperature profile (AJ-Il) is tracking approximately $5^{\circ} \mathrm{F}$ higher than the previous lunation. The instrument's mirror temperature (AJ-II) currently is reading $189.5^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Geophone Cals
2
2

ASE OFF
G.m.t.
1713
1452
$\mathrm{HBR} O F F$
$\mathrm{G} \cdot \mathrm{m} . t$.
1710
1450

HBR ON | 0 | |
| ---: | ---: |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 | 1640

1420 ASE ON 1638
1410 วาทuțu-0ร

$$
\begin{aligned}
& \text { Events } \\
& \text { None } \\
& \text { None } \\
& \text { October. }
\end{aligned}
$$

Apollo 15 ALSEP
Operational status from 5 October 1973, 1300 G.m.t., to 12 October 1973, 1300 G.m.t.
Noon of the station's 28th Iunation occurred on 11 October. Power from the RTG continues steady and transmitter "A" downlink signal strength is reported beween -132.5 dom and -139.0 dbm . The data sub
The instrument is configured for seismic network congruity (Apollo 16 AISEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. At the start of real-time support on 11 October the instrument's assembly temperature (DL-07) was offscale HIGH (sun angle $=92^{\circ}$). During the real-time support periods this past week no significant events were observed. The experiment sensors are operating in the 100 gamma range for lunar day operation. The y-axis sensor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LOW (static) since 20 September 1972. The instrument has executed 1110 f"ip calibration sequences since activation.
The instrument remains in STAIDBY. At 1353 G.m.t., 9 October, the experiment was commanded to operate select for 4 minutes in order to provide additional data on the instrument's anomalous operation. The instmment's telemetry data continuously indicated out of sync data. During the operate select period the experiment continued to demand excessive power (19 watts). Following the operate select period the instrument was commanded back to STANDBY select (Apollo 15, Currently the SIDE is in STANDBY. At the request of the principal investigator, the instrument was operated for a three hour period during real-time support on 10 October (sun angle $=75^{\circ}$). Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages on to experiment STANDBY was initiated on 9 October to insure the instrument does not exceed the $85^{\circ} \mathrm{C}$ operational limit duirng the remainder of the lunar day (Apollo 15 ALSEP, SMEAR 47). Central station
Passive seismic
experiment Lunar surface magnetometer
experiment Solar wind
spectrometer
experiment Suprathermal ion Suprathermal
detector/cold cathode gauge experiment
rog

$$
\begin{aligned}
& \text { en in- } \\
& \text { ndicate }
\end{aligned}
$$

$$
8
$$

$$
\begin{aligned}
& 4 \\
& 0
\end{aligned} 0_{0}^{4}
$$

$$
\begin{aligned}
& \text { indid } \\
& \text { of } \\
& \text { of }
\end{aligned}
$$

Hix

$$
\stackrel{A}{4}+4
$$

Apolilo 15 ALSEP (continued.)

$$
\text { Operational status from } 5 \text { October 1973, } 1300 \text { G.m.t., to } 12 \text { October 1973, 1300 G.m.t. }
$$

$$
\begin{aligned}
& \text { I, is opera } \\
& \text { nar surface } \\
& \text { sub-surface }
\end{aligned}
$$

Heat flow

$$
\begin{gathered}
\text { (TRF } \mathrm{T} \\
\text { s } 36 \\
\text { s } 25
\end{gathered}
$$

Apollo 14 ALSEP
Operational status from 5 October 1973, 1300 G.m.t., to 12 October 1973, 1300 G.m.t.

Central station	Noon of the 34 th lunation at the Apollo 14 site will oceur tomorrow, 13 October. Power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported at $-141.2 \pm 1.8 \mathrm{dbm}$. The DSS-1 heater (10 watts) is OFF for lunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The instrument's heater was commanded to FORCED OFF at 0511 G.m.t., 10 October, to minimize heating during lunar day operations. Since 1 October 1973, the experiment has not displayed the intermittent zero digital data output that had previously been observed. Investigation of this anomaly continues. The longperiod y-axis has remained in the on-scale position since 22 March 1973. The instrument's long-period z-axis has not displayed valid data nor responded to commands since 17 November 1972. During this limited real-time support period no significant seismic events have been noted.
Active seismic experiment	The experiment is currently in STANDBY. On 8 October 1973, the experiment was commanded to $O N$ at $1538 \mathrm{G} . \mathrm{m} . t$. and to high bit rate ON at $1545 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a 30 minute passive listening mode. No significant events were observed. Geophone calibration pulses were not sent during the listening period. At 1615 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at 1618 G.m.t. The next listening period is scheduled for 15 October 19

The CPLEE was commanded to STANDBY on 5 October per present plans. The experiment had been in OPERATE select since 20 September 1973. Suprathermal ion
detector/cold cathode gauge experiment Charged particle lunar
environmental
experiment
The experiment is in STANDBY and present plans are to leave it in this configu- periment experienced a functional change to STANDBY without ground command, as
Apolio 12 ALSEP

TM POINT

19 October 1973
G.m.t.: 1300

Apol10 17 ALSEP

Sunset of the lith lunation occurred on 16 October at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. Downlink RF signal strength is reported at $-138.0 \pm 2.0 \mathrm{dbm}$ from transmitter "A". Thermoelectric power source output is 76.9 watts. At 0249 G.m.t., 2 October, the station's command sequencer provided an automatic switchover (61-hour pulse) to the redundant receiver/decoder (B) and power routing cipcuit (X). The station was reconfigured to its primary operational status receiver/decoder "A" and "W" power routing during real-time support (0425 G.m.t., 2 October) without problem. The procedure of inhibiting the internally generated pulse remains in effect with command octal 174 being sent during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $116 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.4^{\circ} \mathrm{K}$ at probe \#l and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect free mode and tidal data with the instrument configured to seismic high gain, integrator shorted mode, bias IN, and post amplifier gain at increment 15. The experiment sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experjment is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	$\begin{aligned} & \text { ISPE ON } \\ & \text { G.m.t. } \end{aligned}$	HBR ON G.m.t.	HBR OFF G.m.t.	$\begin{aligned} & \text { LSPE STBY } \\ & \text { G.m.t. } \end{aligned}$	Geophone Cals	Events
12 Oct	1421	1430	1500	1501	2	None
17 Oct	1303	1305	1335	1348	2	Respons

The next passive listening period is planned for 26 October.
The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at $1600 \mathrm{G} . \mathrm{m} . t ., 15$ October for lunar night. The experiment had been commanded from OFF to STANDBY during this report period at 1402 G.m.t. 13 October, to maintain thermal stability of the instrument when the electronics temperature had decreased to $50.6^{\circ} \mathrm{F}$ at a sun angle of 142.9° During reat-time support on 12 October the LACE was conmanded ON at 1524 G.m.t. for lunar day data. Following the execution of commands for multipliers, HIGH; automatic sweep; ion source filament \#2, ON; discriminator level, HIGH; and high voltage power supply, ONI; it was determined on the analog and digital data that the engineering data (high voltage OFF; ion

ALSEP PERFORMANCE SUMMARY REPORT (continued)

19 October 1973
G.m.t.: 1300

Apollo 17 ALSEP (continued)

source filoment, OFF; and discriminator level, LOW) was incorrect. The instmonent was commanded OFF at 1533 G.m.t., 12 October, pending analysis of this anomaly. On 17 October, the LACE was configured to automatic sweep ion source filament \#2, Oll; high voltage power supply, ON; multipliers, HIGH; and discriminator level, HIGH. The analog and digital data indicated that engineering and science information were correct and the instrument was operating properly. The anomaly of 12 october is considered to have been caused by elevated temperatures ($A M-41=63.1^{\circ} F$) at the time of tum-on. At the beginning of real-time support on 18 October the high voltage power supply was ofF and all mass range outputs were offscate HIGH. The experiment was commanded to STANDBY, back to ON, and reconfigured to sweep lock; high voltage power supply, oFF; ion source filament \#2, OFF; multipliers, HIGH; low voltage power supply, ON; discriminator level, LOW; and back-up heater, ON. The instrument will remain in this configuration pending further analysis of this anomaly. The LACE electronics temperature (AM-41) is currently reading $31.3^{\circ} \mathrm{F}$ (sun angle $=204.5^{\circ}$) which is 17.9° higher than the nowal 13.4 ${ }^{\circ} \mathrm{F}$ Iunar night reading.

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this Iunation at 1401 G.m.t., 13 October, when the mirror temperature ($\mathrm{A} J-11$) decreased to $171.7^{\circ} \mathrm{F}$ at a sun angle of 142.9°. The instrument's mirror temperature ($A J-11$) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TMV3, telephone 483-5067.

The RTG output power remains steady. Transmitter "A" downlink signal strength is reported between -133.5 and -141.0 dbm by the tracking stations with 30 -foot antenna. Sunset of the site's 28 th Iunation occurred on 18 October. The data subsystem's 18-hour timer outputs are occurring as expected.

The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. During the intermittent real-time support periods this past week no significant seismic events were noted.

The experiment sensors will be commanded to the 50 gamma range later today, I9 October, for lunar night-time operations. Currently the instrument has executed 1120 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position; not responding to flip cal commands, and has indicated off-scale LOW static since 20 September 1972. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

The instrument remains in STANDBY.
The instrument has been operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ($0-127$ frames) since 13 October, for the remainder of this lunation. The instrument measurement, TREF I, is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is $145.4^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.3^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$
at its lower-most point. Ring bridge surveys are obtained periodically.

Passive seismic

Lunar surface magnetometer experiment

Suprathermal ion detector/cold cathode gauge experiment

Heat flow experiment

Solar wind

 spectrometer spectrometerexperiment

Central station
Passive seismic
experiment The instrument is configured for seismic network congruity (Apollo 16 ALSEP). At 1238 G.m.t., 14 October, during the real-time support period, the sensor temperature (DL-07) was noted to have been off-scale HIGH at a sun angle of 100.1°. No significant seismic events were noted during the periodic real time support periods.

Scientific and engineering data outputs remain invalid.
 nvalia.

Central station	1 status from 12 October 1973, 1300 G.m.t., to 19 October 1973, 1300 G.m.t. Sunset of the 49 th lunar day will occur on 21 October. Power output from the RTG during this report period has been from 65.7 to 66.2 watts. A signal strength of -138.0 to -143.0 dbm from transmitter " B " was reported by the tracking stations. The DSS-l heater (10 watts) will be commanded ON for lunar night operations on 20 October. At 2020 G.m.t., 14 October, the centrat station responded to a spurious command (octal 022, 14-watt PDR ONV). The Carnarvon tracking station confirmed receipt of the command in the Apollo 12 ALSEP downlink. The 14-watt PDR was returned to the OFF condition by mode 1 cormand (octal 023) by the Carnarvon ground station at 2128 G.m.t., 14 October, without incident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). At 1238 G.m.t., 14 October, during the real-time support period, the sensor temperature (DL-07) was noted to have been off-scale HIGH at a sun angle of 100.1. No significant seismic events were noted during the periodic real time support periods.

> The instrument remains in the normal gain mode and is recording solar wind
The instrument remains in the normal gain mode and is recording solar wind
plasma data.

[^22] Lunar surface
magnetometer
experiment
Solar wind
spectrometer
experiment

TM POINT

TM POINT

ALSEP PERFORMANCE SUMMARY REPORT

26 October 1973
G.m.t.: 1300

Apol10 17 ALSEP
Midnight of the llth Iunation at Taurus Littrow Lunar Laboratory occurred on 24 October. The central station is operating normally. Downlink signal strength is reported at $-139.0 \pm 3.0 \mathrm{dbm}$ from transmitter A. Except for small repetitive day/night variations, thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain (by internally generated 61-hour pulses) continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples is $108 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#l and $256.9^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment continues to collect free mode and tidal data with the instrument configured to seismic high gain, integrator shorted mode, bias IN, and post amplifier gain at increment 15. The experiment sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The next 30-minute passive listening period is planned for later today.

The Lunar Atmospheric Composition Experiment is currently on and configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The LACE data of 17 October was played back during reaz-time support on 19 October by the Canarvon tracking station. The playback indicated that at 1732 G.m.t., 17 October, the sweep high voltage (AM-44) dropped to zero. The electronics noise data ramp also disappeared from all three data channel outputs and the anomaly locked all three data channels into the continuous calibration mode (data offscale HIGH). This failure was preceeded by a series of noise spikes on the low and mid mass range data channels which appeared at 1723 G.m.t., 17 October.

A series of high vottage and filament commands were executed during the real-time support period in an attempt to correct the anomaly. Cursory real-time analysis concluded that the multiplier hgin voltage supply had apparently failed. This conmon high voltage power supply also affected the sweep high voltage (AM-44), and cross coupled into the data channel outputs (DM-03, DM-04, and DM-05).

The LACE was allowed to cool down (i.e., back-up heater OFF) by a temperature Δ of $15^{\circ} \mathrm{F}$. Attempts to correct the anomaly by ground command were made again on 22 October without success.

26 October 1973
G.m.t. : 1300

It is further planned to allow the LACE to cool down (i.e., STANDBY or OFF) for five hours later today. Attempts will again be made by ground command.ing to correct this anomaly. Analysis of the anomaly is continuing.

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature ($\mathrm{AJ}-11$) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Operatio	status from 19 October 1973, 1300 G.m.t., to 26 October 1973, 1300 G.m.t.
Central station	This ALSEP experienced midnight of its 19th lunation on 25 0ctober. The thermoelectric power source output is normal. The DSS-I heater (l0 watts) is ON for lunar night operations. Inhibiting of the 18 -hour timer output pulses is continuing. The 30-foot antenna tracking stations report a signal strength of -136.0 $\pm 3.0 \mathrm{dbm}$ from transmitter " B ".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUP). The uncage/arm fire circuit is configured to the OT state. The long period y-axis failed to respond to leveling mode commands on 19 October. No significant seismic events were noted during the real-time support of this instrument.

The experiment is currently in STANDBY OFF. On 20 September, the experiment was commanded to operate select at 2249 G.m.t. and to high bit rate ON at 2310 G.m.t. for a 30 -minute passive listening period. IWo geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal. Several responses were obsemed during the real-time support. High bit rate operations were terminated at 2340 G.m.t. and the experiment command-

Apollo 15 ALSEPP

Operatio Central station	status from 19 October 1973, 1300 G.m.t., to 26 October 1973, 1300 G.m.t. Midnight of the station's 28th Iunation occurs later today. Power from the RTG continues steady. Transmitter "A" downlink signal strenght was reported at $-135.5 \pm 3.5 \mathrm{dbm}$. The data subsystem's average thermal plate temperature is presentIy $-2.7^{\circ} \mathrm{F}$.
Passive seismic experiment	The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. During the real-time support periods this past week no significant seismic events were noted.
Iunar surface magnetometer experiment	The experiment sensors are in the 50 gamma range for lunar night operations. Currently the instrument has executed 1130 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands, and has indicated off-scale LOW static since 20 September 1972. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	The instrument remains in STANDBY.
Suprathermal ion detector/cold cathode gauge experiment	The instrument has been operating with channeltron high voltages comnanded ON and in full automatic stepping sequence ($0-127$ frames) since 13 October, for the remainder of this Iunation.
Heat flow experiment	The instrument measurement, TREF 1 , is operating normally (TREF 2 has been invalia since 29 May 1972). The lunar surface temperature is $89.2^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 indicates a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are being conducted periodically.

Apollo 14 ALSEP

Apollo 12 ALSEP
 $55^{\circ} \mathrm{C}$ during the Iunar day.

TM POINT

Status as of 1300 G.m.t., 25 October 1973, was as follows:

2 November 1973
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not available at the following times:

	Date	GMI LOS	GMT AOS	Data Loss
Apolzo 12	25 Oct	2355		
	26 Oct			0536

Apol1o 17 ALSEP

Sunrise of the scientific station's l2th Iunation occurred 31 October. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RIG is 75.8 watts. The downlink received signal is reported between -135.0 dbm and -143.0 dbm . The procedure of inhibiting the package's internally generated 61-hour pulse continues with the command (octal 274) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The HFH is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature, as measured by the HFE thermocouples is $187.0 \pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.4^{\circ} \mathrm{K}$ at probe \#l and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect free mode and tidal data with the instrument configured to seismic high gain, integrator shorted mode, bias IN, and post amplifier gain at increment 15 . The experiment sensor temperature is presently stabilized at $49.203^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1423 G.m.t., 26 October and to LSPE data format processing (high bit rate) at 1425 G.m.t., for a passive Iistening period. One geophone calibration pulse was sent during the listening period. Signal quality from the supporting ground station was very intermittent and no events were observed during the real-time operation. LSPE processing was terminated at $1448 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to STANDBY select at 1451 G.m.t.

The Lunar Atmospheric Composition Experiment is currently ON and configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The attempts to correct the high voltage anomaly by ground command and cold soaking on 26 October were without success. The LACE will remain in the present configuration until (AM-4I) the electronics temperature reaches $125^{\circ} \mathrm{F}$, when the experiment will be commanded OFF for this lunar day. Analysis of the anomaly is continuing.

ALSEP PERFORMANCE SUMMARY REPORT (continued)

2 November 1973
G.m.t.: $\quad 1300$
The Lunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates on the lunar surface. The instrument will remain ON until the mirror temperature (AJ-11) reaches $196.0^{\circ} \mathrm{F}$, at which time it will be cycled per Apollo 17 SMEAR, ALSEP 49 R-2.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Apollo 15 ALSEP
Operational status from 26 October 1973, 1300 G.m.t., to 2 November 1973, 1300 G.m.t.
 RTG continues steady. The transmitter "A" downlink signal strength is reported between -130.0 dbm and -138.0 dbm .
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. No lunar seismic events have been observed. during the limited real-time support of this instrument. At 1855 G.m.t., 28 October, the instrument responded to a spuwious command loctal 070, X leveling motor ONJ. The Ascension Island tracking station confirmed receipt of the command at 1940 G.m.t., 28 Octobex, without incident.
The experiment sensors were commanded to the 100 gamma range on 1 November for lunar day operation. The y-axis sensor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LOW (static) since 20 September 1972. The instrument has executed 1136 flip calibration sequences since activation.

The instrument is currently operating with the Channeltron hieh voltages commanded onv and in full automatic stepping sequence ($0-127$ frames). The CCGE data continues to be noisy and the automatic zero and calibration functions are still not functioning properly.
The instrument measurement, TREF I, is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature was $83.8^{\circ} \mathrm{K}$ on 1 November as indicated by the cable thermocouples. The sub-surface temperature was $253.3^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.1^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surseys are obtained periodically.

Passive seismic
Lunar surface
magnetometer
experiment

Suprathermal ion
detector/cold cathode gauge experiment
Heat flow experiment
Apollo 14 ALSEP

$$
\text { Apollo } 12 \text { ALSEP }
$$

Operatio Central station	status from 26 October 1973, 1300 G.m.t., to 2 November 1973, 1300 G.m.t. Sunrise of the 50th Iunar day occurs on 4 November, at the ALSEP site in the Ocean of Storms. Power output from the RTG during this report period has been a constant 66.1 watts. A signal strength between -135.0 dbm and -143.0 dbm from transmitter " B " was reported by the tracking stations. The DSS-I heater (10 watts) remains ON, but will be commanded OFF for lunar day operations on 5 November.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The z-axis drive motor will be commanded OFF for lunar day operation on 5 November. The PSE sensor temperature (DL-07) has remained offscale LOW during realtime support operations this week. No significant seismic events were noted during the periodic real-time support periods.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprethermal ion detector experiment	The instrument is presently operating in full automatic stepping sequence with Channeltron high voltages ON. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF will be initiated on 7 November in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

APOLLO 14 ALSEP

ALSEP PERFORMANCE SUMMARY REPORT

9 November 1973
G.m.t.: 1300

Apol.10 17 ALSEP
Noon of the scientific station's l2th lunation occurred on 7 November. All experiments and the central station are operating as expected. Downlink signal strength is reported at $-138.0 \pm 2.0 \mathrm{dbm}$ from transmitter A. Thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplished. The instrument is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature as measured by the HFE's thermocouples is $381^{\circ} \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect tidal and free mode data with the instrument configured to seismic high gain, integrator normal, bias IN, and post amplifier gain at increment 15. The experiment's sensor temperature has increased to and is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in SrandBy select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	$\begin{aligned} & \text { ISPE ON } \\ & \text { G.m.t. } \\ & \hline \end{aligned}$	HBR ON G.m.t.	$\begin{aligned} & \text { HBR OFF } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { LSPE STBY } \\ & \text { G.m.t. } \end{aligned}$	Geophone Cals	Events
2 Nov	1559	1605	1635	1637	2	None
8 Nov	1523	1530	1600	1603	2	Responses

The next passive listening period is planned for 14 November.
The Lunar Atmospheric Composition Experiment is currently OFF for lunar day operation. The LACE electonic temperature is presently reading $80.6^{\circ} \mathrm{F}$ and is tracking approximately $3^{\circ} \mathrm{F}$ higher than the previous lunation temperature profile.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was cormanded OFF by command through the mission control center at 1612 G.m.t., 4 November, when the mirror temperature (AJ-11) increased to 198.0 ${ }^{\circ} \mathrm{F}$. The LEAM will' remain OFF until the mirror temperature decreases to $180.0^{\circ} \mathrm{F}$ at which time the instrument will be commanded oN for the remainder of this lunation. The mirror temperature profite (AJ-11) is tracking approximatley $3^{\circ} \mathrm{F}$ higher than the previous lunation. The instrument's mirror termperature (AJ-ll) currently is reading $186.5^{\circ} \mathrm{F}$.

9 November 1973
G.m.t.: 1300

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Operation Central station	status from 2 November 1973, 1300 G.m.t., to 9 November 1973, 1300 G.m.t. Noon of the 20 th lunar day occurred today, 9 November, at the Descartes Site. The DSS-1 heater (IO watts) is OFF for lunar day operations. The thermoelectric power source output is normal. The 18-hour output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The 30-foot antenna tracking stations report a signal strength between -136.0 dbm and -145.0 dbm from transmitter "B".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The instrument's assembly temperature (DL-07) was off-scale HIGH at 1435 G.m.t., 7 November 1973 (sun angle $=72.5^{\circ}$), at the beginning of real-time support. No significant seismic events wexe noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM science data, observed during real-time support periods, have been valid since l'7 August 1973. The instrument continues to execute flip calibrations (with cal rasters observed) and responds to filter commands. 546 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The experiment is currently in STANDBY OFF. On 5 November, the experiment was commanded to operate select at $0807 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and to high bit rate ON at $0830 \mathrm{G} . \mathrm{m} . \mathrm{t}$

Apol1o 15 ALSEP

Central station	status from 2 November 1973 , 1300 G.m.t., to 9 November 1973 , 1300 G.m.t. Noon of the station's 29th Iunation will occur on 10 November. Power from the RTG continues steady and transmitter "A" downlink signal strength is reported between tioned normally during this period. -134.5 dbm and -140.4 dbm . The data subsystem's 18 -hour timer outputs have func-
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central stapast week no significant events were observed. tion's data subsystem timer outputs. During the real-time support periods this
Iunar surface magnetometer experiment	The experiment sensors are operating in the 100 gamma range for lunar day operation. The y-axis sensor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LOW (static) since 20 September 1972. The instrument has executed 1148 flip calibration sequences since activation.
Solar wind spectrometer experiment	The instrument remains in STANDBY.
Suprathermal ion detector/cold cathode gauge experiment	Currently the SIDE is in STANDBY. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages oN to experiment STANDBY was initiated on 6 November to insure the instrument does not exceed the $85^{\circ} \mathrm{C}$ operational limit during the remainder of the lunar day (Apollo 15 ALSEP, SMEAR 47). An engineering test to investigate the automatic calibration and zero function anomaly is planned for 14 November 1973. The experiment will be commanded to the RESET SIDE FRAME COUNTER at 79 and VELOCITY FILTER at 9 for a period of about 15 hours. This will eliminate the automatic calibration and zero functions of the CCIG for this operation. At the termination of the test the experiment will be commanded back to the full automatic stepping sequence (0-127 frames).

Apollo 14 ALSEP

Operational Central station	status from 2 November 1973, 1300 G.m.t., to 9 November 1973, 1300 G.m.t. Noon of the 35 th Iunation at the Apollo 14 site will occur on 11 November. Power output of the radioisotope source is unvarying; and, transmitter "A." signal strength was reported between -134.5 dbm and -140.4 dbm . The DSS-1 heater (10 watts) is OFF for Iunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater was commanded to FORCED OFF at 1503 G.m.t., 8 November, to minimize heating during lunar day operations. Between support periods of 4 and 5 Novembex, the instrument experienced a spurious functional change (Octal 072, 2 motor ON). No CVW was noted in the ApolZo 14 ALSEP downiink. The Z-motor was commanded OFF at 0618 G.m.t., 5 November, by mission control without incident.
Active seismic experiment	The experiment is currently in STANDBY. On 8 October 1973, the experiment was commanded to ON at $0818 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and to high bit rate ON at $0905 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a 30 -minute passive listening mode. No significant events were observed. Geophone calibration pulses were not sent during the listening period. At 0935 G.m.t. high bit rate operation was terminated. The instrument was commanded to STANDBY at 0937 G.m.t.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is in STANDBY and present plans are to leave it in this configuration for the remainder of this lunar day. The instmment experienced a functhonat change to STANDBY without ground command, as observed during the reat... time support period beginning 4 Hovember 1973.
```Charged particle Iunar environmental experiment```	The CPLEE was commanded to STANDBY at 1117 G.m.t., 6 November, per present plans by mode I command through the Carnarvon Tracking Station (sun angle $=23.0^{\circ}$ ). The experiment had been in OPERATE select since 19 October 1973.

Status as of 1600 G.m.t,, 8 November 1973, was as follows:

APOLLO 16 ALSEP




## TM POINT

TM POINT



	Apollo 12 ALSEP
Operational	status from 2 November 1973, $1300 \mathrm{G} . \mathrm{m} . \mathrm{t.}$,to 9 November $1973,1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
Central station	Noon of the 50th lunar day will occur on 12 November at the Apollo 12 ALSEP site. Power output from the RIG during this report period has been from 66.1 to 65.7 watts. The signal strength is between -132.5 dbm and -142.0 dbm from transmitter "B" as reported by the 30 -foot antenna tracking stations. The DSS-1 heater (IO watts) is OFF for Iunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The z-axis drive motor is OFF for lunar day operation. The PSE's sensor temperature (DL-07) returned on-scale at the beginning of real-time support on 5 November (sun angle $=4.9^{\circ}$ ). No significant seismic events were noted during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	Currently the SIDE is in STANDBY. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF was initiated on 6 November in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

ALSEP PERFORMANCE SUMMARY REPORT
16 November 1973
G.m.t.: 1300

Apol10 17 ALSEP
Sunset of the l2th lunation occurred on 15 November at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previuus lunations. Downlink RF signal strength is reported at $-138.3 \pm 3.3 \mathrm{dbm}$ from transmitter "A". Thermoelectric power source output is 75.4 watts. The procedure of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during realtime support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $125.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#l and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect free mode and tidal data with the instrument configured to seismic high gain, integrator shorted mode, bias IN, and post amplifier gain at increment 15. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1435 G.m.t., 14 November and to LSPE data format processing (high bit rate) at 1440 G.m.t., for a thirty-minute passive listening period. Two geopinone calibration pulses were sent during the listening period. A significant event was observed on all geophones during the real-time operation. LSPE processing was terminated at 1510 G.m.t., and the instrument commanded to STANDBY select at 1513 G.m.t.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at 1537 G.m.t., 15 November for Iunar night. The experiment had been commanded from OFF to STANDBY during this report period at 1420 G.m.t. 11 November to maintain thermal stability of the instrument when the electronics temperature had decreased to $72.9^{\circ} \mathrm{F}$ at a sun angle of $122.5^{\circ}$. It is planned that the LACE be commanded to the OPERATE SELECT mode, 17 November, with the high voltage ON, in an effort to determine if any change in the multiplier high voltage power supply sweep ( $A M-14$ ) has occurped.

16 November 1.973
G.m.t.: 1300

Apollo 17 ALSEP (continued)
The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this lunation at 1615 G.m.t., 12 November, when the mirror temperature (AJ-11) decreased to $165.2^{\circ} \mathrm{F}$ at a sun angle of 149.30. The instrument's mirror temperature (AJ-11) currently is reading $-7.7^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Operational status from 9 November 1973,1300 G.m.t., to 16 November 1973, 1300 G.m.t.


> The instrument remains in STANDBY.
The instrument has been operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames). The instrument was commanded to the RESET SIDE ERAME COUNTER at 79 mode at 1242 G.m.t., 14 November in an attempt to improve the scientific data output of the CCGE. At 0416 G.m.t., 15 November, the instrument was commanded back to ful工 automatic stepping sequence (0-127 fromes). Results of the test wizl be analyzed to determine any change in the performance of the instmment.

Central station

Passive seismic
experiment
experiment
Solar wind
spectrometer
experiment
Suprathermal ion
detector/cold cathode gauge experiment
Apollo 15 ALSEP (continued)
status from 9 November 1973, $1300 \mathrm{G} . \mathrm{m} . t$., to 16 November $1973,1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
The instrument measurement, TREF I, is operating normally (TREF 2 has been in-
valid since 29 May l972). The lunar surface temperature is $303.4^{\circ} \mathrm{K}$ as indicated
by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom
of the lowest section of probe \#l. Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$
at its lower-most point. Ring bridge surveys are obtained periodically.
 The long period y-axis has remained in the on-scale position since 22 March. The instrument's long period z-axis has not displayed valid data nor responded to commands since 17 November 1972. During this limited real-time support period no significant seismic events have been noted.

$$
\begin{aligned}
& \text { The experiment is currently in STANDBY. On l2 November, the experiment was } \\
& \text { commanded to ON at } 1526 \text { G.m.t. and to high bit rate ON at } 1535 \text { G.m.t. for a } \\
& \text { passive listening mode. No significant responses were observed during the } \\
& \text { listening mode, Geophone calibration pulses were not sent during the listen- } \\
& \text { ing mode. At l605 G.m.t. high bit rate operation was terminated. The instru- } \\
& \text { ment was commanded to STANDBY at l723 G.m.t. }
\end{aligned}
$$

## The instrument is currently in STANDBY. The experiment will be commanded to

 OPERATE select on 18 November, and will be operating in the full automatic stepping sequence with Channeltron high voltages commanded ON for the remainder of this lunation.The experiment is currentiy in STANDBY. On 18 November the experiment will be commanded to the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending
possible degradation of AC-03, analyzer A voltage to 2200 vde, at which time the instrument will be commanded to STANDBY select.
(973, 1300 G.m.t., to 16 November

Central station	Sunset at the Apollo 14 site will occur on 18 November. RTG power output is   steady. Transmitter "A" signal strength was reported between -137.0 and
	-I42.5 dbm. The DSS-l heater (lo watts) will be commanded ON for lunar night
operation on l8 November.	

Apollo 12 ALSEP


APOLLO 16 ALSEP

```
 点 号
```



 ASE／SIDE／CPIEEE Stby 92． $1^{\circ} \mathrm{F}$

$M L . L$
$06^{\circ} \mathrm{LE}$
9850
4.2 Invalia
Invalid
Standby Standby宏


APOLLO 17 ALSEP


ALSEP PERFORMANCE SUMMARY REPORT
21 November 1973
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not availabel at the following times:


## Apollo 12 ALSEP

November 19th marked the completion of four full years of continuous operation on the lunar surface by the Apollo 12 AISEP science station. The Iunar scientific station, which was deployed on 19 November 1969, has thus exceeded by three years its original design life specification. The central station continues its successful operation. The Radioisotopic Thermoelectric Generator is expewiencing a progressive but gradual degradation as expected. The signal strength from the package's transmitter is essentially unchanged since its initial activation four years ago. To date more than 18617 commands have been received and executed by the central station and experiments. Currently the Apozzo 12 ALSEP is in its 50th Iunation.

The passive seismometer is operating as in past lunar nights, with the thermal control mode in auto ON, and the feedback loop filter OUT. No significant seismic events have been detected during the intermittent periods of phase II support this past week. The magnetometer experiment science and engineering data have been invalid since 4 June 1972. The solar wind spectrometer continues to record plasma data in the normal range mode. The suprathermal ion detector is operating with the high voltage commanded $O N$ and is in the full automatic stepping sequence. At 0458 G.m.t., 17 November, the Ascension Island Tracking Station observed a spurious functional change in the downlink signal (octal command 134, ISM XYO thermostat control select). The experiment was reconfigured, by command, from "Y" to "X" thermostat control select by mission control on 17 November without incident.

21 November 1973
G.m.t.: 1300

## Apol1o 17 ALSEP

Midnight of the l2th Iunation at Taurus Littrow lunar laboratory will occur on 22 November. The central station is operating normally. Downlink signal strength is reported at $-14.1 .5 \pm 2.5$ dbm from transmitter $A$. Except for small repetitive day/night variations, thermoelectric power source output remains essentially constant since initial operation. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain (by internally generated 6l-hour pulses) continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples is $110 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect free mode and tidal data with the instrument configured to seismic high gain, integrator shorted mode, bias IN, and post amplifier gain at increment 15. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON). On 29 November a reconfiguration of the LSG is planned in an attempt to lower the resonant frequency of the beam in an effect to improve the tidal data and achieve greater sensitivity of the free mode band. The reconfiguration and investigation will be conducted in two 5 -hour time increments.

The Lunar Seismic Profiling Experiment is in STANDBY select. The next 30 -minute passive listeing period is planned for 23 November.

The Lunar Atmospheric Composition Experiment is currently ON and configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The high voltages were commanded ON during real-time support on 17 November for 4 minutes. Cursory analysis of the real-time data concluded that the multiplier high voltage power supply was still affecting the sweep high voltage (AM-44), and cross coupling into the mass data channel outputs (DM-03, DM-04, and DM-05). The high voltage was commanded OFF at 1539 G.m.t., 17 November. The LACE will remain in this present configuration until (AM-4I) the electronics temperature reaches $125^{\circ} \mathrm{F}$, when the experiment will be commanded OFF for this lunar day. Analysis of the anomaly is continuing.

```
21 November 1973
G.m.t.: 1300
```

Apollo 17 ALSEP
The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperatue profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact $R$. Miley, Science Requirements Branch, IN3, telephone 483-5067.
ApO1.10 16 ALSEP

The RTG output power remains steady. Transmitter "A" downlink signal strength is reported at $-134.5 \pm 2.5 \mathrm{dbm}$ by the tracking stations with 30 -foot antenna. Sunset of the site's 29th Iunation occurred on 17 November. system's 18-hour timer outputs are occurring as expected.

The instrument is configured for seismic network congruity (Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. During the intermittent real-time support periods this past week no significant seismic events were noted.

The experiment sensors were commanded to the 50 gamma range at 1416 G.m.t., $y$-axis sensor head remains fixed at a 180 degree position, not responding to
 1972. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

## The instrument remains in Staind.

Lunar surface

experiment
Solar wind spectrometer

Suprathermal ion detector/cold. cathode gauge experiment

Heat flow
Central station

## Passive seismic experiment

-experiment experiment

The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames). The CCGE data continues to be noisy and the automatic zero and calibration functions are not operating properly. -

$$
\begin{aligned}
& \text { The instrument measurement, TREF. I, is operating normally (TREF } 2 \text { has been in- } \\
& \text { valid since } 29 \text { May } 1972 \text { ). The lunar surface temperature was } 92.9^{\circ} \mathrm{K} \text { on } 20 \text { Novem- } \\
& \text { ber as indicated by the cable thermocouples. The sub-surface temperature was } \\
& 253.4 \mathrm{~K} \text { at the bottom of the lowest section of probe \#l. Probe \#2 indicated a } \\
& \text { temperature of } 251.0^{\circ} \mathrm{K} \text { at its lower-most point. Ring bridge surveys are obtained } \\
& \text { periodically. }
\end{aligned}
$$



APOLLO 16 ALSEP



APOLLO 14 ALSEP


APOLLO 17 ALSEP


TM POINT


## TM POINT

Total Days of Operation Total Commands to Date Sun Angle

Input Power
APM Status
APM Status (AB-13)
Power Dump Status (AB-14)
Experiment Status
Avg Thermal Plate Temp
LACE Temp (AM-4I)
LEAM Temp (AJ-11)
HFE Temp Ref 1

LSP Temp (AP-01)

## ALSEP PERFORMANCE SUMMARY REPORT

30 November 1973
G.m.t.: 0400

Remote site coverage for recording of ALSEP downink data was not avaizable at the following times:

	Date	$\begin{aligned} & G M T \\ & L O S \\ & \hline \end{aligned}$	$\begin{aligned} & G M T \\ & A O S \\ & \hline \end{aligned}$	Data Loss
Apoz2o 12	26 NOv	0948	1100	$1^{h} 12^{m}$
Apolzo 16	26 NOV	1100	1200	1 h 00 m
Apolzo 14	26 NOV	1200	1300	1 l \% 00 m
Apol2o 15	26 NOV	1300	1352	$0^{n} 52^{m}$
Apol20 14	28 Nov	1347	1442	$0^{h} 55^{m}$
Apol2o 12	28 Mov	1442	1520	$0^{h} 3.38^{m}$
Apol2o 12	29 Nov	0023	0040	$0^{n} 17^{m}$
Apol20 15	29 Nov	0023	0040	$o^{h} 17^{m}$

## Apol10 17 ALSEP

Sunrise of the scientific station's l3th lunation occurred 29 November. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG is 76.9 watts. The downlink received signal is reported between -136.0 dbm and -I44.5 dbm. The procedure of inhibiting the package's internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring bridge surveys being accomplishea. The HFE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature, as measured by the HFE thermocouples, is $105.0 \pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment continues to collect free mode and tidal data with the instrument configured to seismic high gain integrator shorted mode, bias IN, and post amplifier gain at increment 15. The experiment sensor temperature is presently fluctuating between $49.203^{\circ} \mathrm{C}$ and $49.207^{\circ} \mathrm{C}$ (slave heater ON). Later today, a reconfiguration of the ISG is planned in an attempt to lower the resonant frequency of the beam to improve the tidal data and achieve greater sensitivity of the free mode band. The reconfiguration and investigation will be conducted in two 5-hour time increments.

30 November 1973
G.m.t.: 0400

The Lunar Seismic Profiling Experiment is currently in STPANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	$\begin{aligned} & \text { LSPE ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR ON } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { HBR OFF } \\ & \text { G.m.t. } \end{aligned}$	LSPE STBY G.m.t.	Geophone $\qquad$	Events
24 Nov	0144	0155	0225	0226	2	None
28 Nov	2216	2225	2255	2257	2	None

The next passive listening period is planned for 7 December.
The Lunar Atmospheric Composition Experiment is currently ON and configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The LACE will remain in the present configuration until (AM-41) the electronics temperature reaches $125^{\circ} \mathrm{F}$, when the experiment will be commanded OFF for this Iunar day.

The Lunar Ejecta and Meteorites Experiment continues to collect data of impact flux rates on the lunar surface. The instrument will remain ON until the mirror temperature (AJ-11) reaches $196.0^{\circ} \mathrm{F}$, at which time it will be cycled per Apollo 17 SMEAR, ALSEP 49 R-2.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, $\mathbb{T N} 3$, telephone 483-5067.
Apollo 16 ALSEP

Apollo 15 ALSEP

Apollo 14 ALSEP

Apollo 12 ALSEP


Status as of 1800 G.m.t., 28 November 1973, was as follows:


## TM POINT


Total Days of Operation Total Commands to Date Sun Angle Input Power APM Status (AB-13)
Power Dump Status (AB-14) Experiment Status Avg Thermal Plate Temp LACE Temp (AM-4I) LEAM Temp (AJ-11)


## APOLLO 17 LSG EXPERIMENT RESULTS

FOURTH LSG EXPERIMENT, 0400-0930 G.m.t., 30 November 1973

OBJECTIVE: To obtain a lower resonant frequency by positioning the coarse and fine screws to their extreme lower position, and also by re-positioning the mass change mechanism and/or $\mathrm{E} / \mathrm{W}-\mathrm{N} / \mathrm{S}$ tilt servo position.

OPERATIONS: The coarse and fine screws were driven to the extreme lower position. The LSG was then configured to the open loop operation by shorting the integrator and removing the blas, and setting the post amplifier gain to the third step in seismic low gain.

The masses were then re-adjusted to all masses $0 N$, with the beam moving to the upper stop as previously noted. Re-adjustment of the mass change mechanism followed to re-center the beam. With the beam centered at this point the LSG frequency response was approximately 1.5 Hz . The beam was re-centered several times using this technique with consistent results.

The E/W-N/S tilt servo motors were then exercised in an attempt to further reduce the instrument's resonant frequency. During these exercises frequencies as low as 1.2 Hz were noted. Real-time analysis indicated the lower frequencies were due to a beat frequency between the beam and gimbal periods.

The beam was then re-centered to its final position by using the mass change mechanism. A frequency check was performed (1630 G.m.t., 30 November) and observed to be 1.5 Hz by using the bias command with the integrator normal.

CONCLUSION: The resonant frequency appeared to decrease from a determined 2.2 Hz to an estimated 1.5 Hz . If the estimated 1.5 Hz resonant frequency is correct, then the LSG sensitivity will have been improved by a factor of 2 .

The reading of vertical tides at the conclusion of the experiment was 65 ugals which is close to the value for theoretical tides of "this point in time" for Taurus-Littrow. Lunar tide readings resulting from the present reconfiguration will be tracked to evaluate improvements in instrument operation.

The subsequent support periods should provide evidence of thermal seismic events and a data point to evaluate the increase in lunar tides.

## APOLLO 17 L.SG EXPERIMENT RESULTS (concluded)

Final LSG configuration is seismic high gain, integrator nomal mode, bias IN, post amplifier gain at increment 15, and the tilt servo motors in an intermediate position.

Magnetic tapes subsequent to this reconfiguration will be expedited to the Principal Investigator to insure quantitative analysis of resulting scientific data. The report of the operations and results will be prepared by the PI and submitted to JSC for review.

W. F. Eichelman

Experiments Manager

7 December 1973
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available at the following times:

	Date	$\begin{aligned} & G M T \\ & \text { LOS } \\ & \hline \end{aligned}$	$\begin{aligned} & G M T T \\ & A O S \\ & \hline \end{aligned}$	Data Loss
Apol2o 12	29 NOV	1306	1450	$1 \mathrm{I}_{4} 4^{m}$
Apolzo 12	30 NOV	1225	1342	$1^{h} 1_{1} \mathrm{~m}$
Apol20 14	30 Nov	1342	1500	$1^{h} 18^{m}$
Apoz20 14	01 Dee	1249	1308	$0^{h} 19^{m}$
Apoz20 15	01 Dec	1249	1308	$0^{h} 19^{m}$
Apol2o 16	01 Dec	1249	1308	$0^{h} 19^{m}$
Apozzo 17	01 Dec	1249	1308	$0^{h} 19^{m}$
Apolzo 12	01 Dec	1249	1515	$2^{h} 26^{m}$
ApoZ2o 11	01 Dec	1515	1607	$0^{h} 52^{m}$

## Apolio 17 ALSEPP

Sunrise of the scientific station's l3th lunation occurred 29 November. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. Power from the RTG is 75.0 watts. The downlink received signal is reported between -135.0 dbm and -139.5 dbm . The procedure of inhibiting the package's internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues to operate normally, with periodic ring briage surveys being accomplished. The HFE is currently operating in the gradient mode, with all sensors being sampled in full sequence. Lunar surface temperature, as measured by the HFE thermocouples is $388.0 \pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe $\overline{\#} 1$ and $256.8^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment (Reference attached ApoIIo 17 LSG Test Results). The experiment's sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The next 30 -minute passive listening period is planned for later today.

The Lunar Atmospheric Composition Experiment is currently OFF. The LACE was commanded OFF for lunar day operation on 2 December when the electronics temperature, AM-4I, reached $109.3^{\circ} \mathrm{F}$ (sun angle $=32.6^{\circ}$ ).

7 December 1973
G.m.t.: 1300

The Iunar Ejecta and Meteorites Experiment is presently OFF. Further operation of the LEAM will be per Apollo 17 ALSEP SMEAR 49 R-3 (instrument turn-on when mirror temperature, Ad-11, is $180.0^{\circ} \mathrm{F}$, turn-off when AJ- 11 reaches $196.0^{\circ} \mathrm{E}$ ).

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol10 16 ALSEP

Operatio	status from 30 November 2973, 0400 G.m.t., to 7 December 1973, 1300 G.m.t.   Sunrise of the 21st lunation occurred 1 December 2973. The DSS-1 heater (10 watts) was commanded OFF on l December. The thermoelectric power source output is normal. The l8-hour timer output pulses continue to be inhibited. The 30-foot antenna tracking stations report a signal strength between -134.0 dbm and -141.0 dbm from transmitter " $B$ ".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 dib; and feedback loop filter OUT). At the start of real-time support on 6 December it was noted that the instrument's sensor temperature, DL-07, was indicating offscale high (sun angle $=66.3^{\circ}$ ). The uncage/arm fire circuit is configured to the OT state. The long period y-axis again responded to leveling commands on 1 December 1973. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM science data, observed during real-time support periods, have been valid since 17 August 1973. The instrument continues to execute flip calibrations (with cal rasters observed) and responds to filter commands. 572 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The experiment is currently STANDBY OFF. The 30 -minute passive listening periods have been terminated per Apollo 16 AISEP SMEAR 27. The experiment will remain in STANDBY OFF with periodic checks (ASE ON, HBR ON, HBR OFE, ASE STANDBY OFF' to verify instrument operation.

Apollo 15 ALSEP


Operational status from 30 November 1973, 0400 G.m.t., to 7 December 1973, 1300 G.m.t.

## Sunrise at the Apollo 14 site occurred on 3 December (36th lunation). RTG power

 output is steady. Transmitter "A" signal strength was reported between -139.0 dbm and -144.0 dbm. Data processor "Y" was verified by command and DSS-1 heater was commanded OFF for lunar day operation on 3 December 1973. At 1110 G.m.t., on 30 November the Centraz Station responded to a spurious command (octal 24, Contingency Heater ON). The Guam tracking station reported receipt of a CVW in the downiink. The heater was commanded OFF by mission control at 1521 G.m.t., 2 December, without incident.

## The experiment is currently in STANDBY. The 30 -minute passive listening periods have been terminated (Apollo 14 ALSEP SMEAR 86). The experiment will remain in STANDBY with periodic checks (ASE ON, HBR ON, HBR OFF, ASE STANDBY) to verify instrument operation.

The instrument is in STANDBY and current plans are to leave it in this configuration for the remainder of this lunar day. The instmument expexienced a functional change to STANDB. 4 at 0505 G.m.t., 4 December without ground conmand, as observed by the Howaii tracking site. The instmunt has experienced this functional change during previous lunations at approximately the same sun angle.

Passive seismic
experiment

Active seismic
experiment
Suprathermal ion
detector/cold
cathode gauge experiment
Central station

Apollo 12 ALSEP

Operatio   Central station	status from 30 November 1973, 0400 G.m.t., to 7 December 1973, 1300 G.m.t.   Sunrise of the 5lst lunar day occurred on 4 December at the ALSEP site in the Ocean of Storms. Power output from the RTG during this report period has been a constant 65.7 watts. A signal strength between -135.5 dbm and -141.5 dbm from transmitter "B" was reported by the tracking stations. The DSS-1 heater (10 watts) was commanded OFF for lunar day operations on 4 December.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The z-axis drive motor was commanded OFF for lunar day operation on 4 December. The PSE sensor temperature (DL-07) was on-scale at the start of real-time support operations on 4 December (sun angle $=2.5^{\circ}$ ). No significant seismic events were noted during the periodic real-time support periods.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	Currently the SIDE is STANDBY OFF. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages oN to experiment power OFF was initiated on 5 December in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.



## APOLTO 15 ALSEP



$$
\begin{aligned}
& \text { All OFF }
\end{aligned}
$$

$\begin{aligned} & 77.9^{\circ} \mathrm{F} \\ & 126.4^{\circ} \mathrm{F}\end{aligned}$
$\begin{aligned} & \sigma \\ & r \\ & r \\ & \text { d } \\ & b \\ & b \\ & b\end{aligned}$
APOILO 14 AISEP
1035
10712
$33.4^{\circ}$
$67.7^{W}$
AII OFF
ASE/SIDE/CPLEE Stby
$84.6^{\circ} \mathrm{F}$
$125.3^{\circ} \mathrm{F}$
N/A
N/A
Invalid
Invalid
Standby
$35.4^{\circ} \mathrm{C}$
N/A

## APOLLO 17 ALSEP



## ALSEP PERFORMANCE SUMMARY REPORT

I4 December 1973
G.m.t.: 1300

The Apolzo 17 ALSEP started into its second year of Zunar operation on December 12th. The scientific package which was designed to operate on the moon for a minimum of two years, complimenting the four other operational AISEPS, continues to transmit an unintermpted flow of data to earth.

## Apol10 17 ALSEP

The Heat Flow Experiment (HFE) continues operating in the gradient mode with all sensors being sampled in full sequence, and periodic ring bridge surveys being accomplished. Lunar surface temperature, as measured by the HFE thermocouples is $204 \pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe \#7 and $256.8^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment (ISG) was exercised 7 and 8 December to test whether or not the instrument's high gain amplifier system was going into oscillation. The tests appeared to have little, if any effect, on the output of the LSG's tidal and free modes data. Each test was accomplished without incident, and the experiment functioned properly to those commands requested.

The initial test, 7 December, was to verify the post amplifier gain effects on the instrument's feedback Zoop. The LSG post amplifier gain was commanded to increment 8. The LSG's tidal and free modes data oscillations appeared unchanged. The experiment's centering point voltage also continued to oscilzate. The ISG was subsequently operated at post amplifier gain of increment 15 on 8 December.

The instrument was then commanded to its integrator short mode twice during a 90 minute period. The integrator appeared to be functioning properly, removing the long time constant that effects the integrator circuit. The test of the integrator circuit also indicated no change to the output of the LSG's tidal and free modes data.

The conclusion was that the LSG be re-configured to its open loop mode of operation (seismic high gain operation). This re-configuration was accomplished at 1525 G.m.t., 11 December, per Apolzo 17 ALSEP, SMEAR 59. The ISG is to be operated in the open loop mode for an indefinite period of time. Interpretation of real-time data samples (i.e., analog and Helicorder strip chart recordings) by the PI will be the determining factor in this mode of operation.

The ISG is operating and configured for seismic data collection as folzows: Seismic high gain, integrator shorted mode, bias ouT, post complifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt sevvo motors in an intermediate position.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

14 December 1973
G.m.t.: 1300

The Lunar Seismic Profiling Experiment (LSPE) is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	$\begin{aligned} & \text { HBR OFF } \\ & \text { G.m.t. } \end{aligned}$	$\begin{aligned} & \text { LSPE STBY } \\ & \text { G.m.t. } \end{aligned}$	Geophone Cals	Events
07 Dec	1724	1730	1800	1806	2	Responses
12 Dec	1601	1615	1645	1648	2	None

The next passive listening period is planned for 18 December 1973.
The Lunar Atmospheric Composition Experiment (LACE) is in STAIDDBY. The experiment had been commanded from OFF to SrAMDBY during this report period at 1534 G.m.t., 11 December, to maintain thermal stability of the instrument. At this time the electronics temperature had decreased to $56.7^{\circ} \mathrm{F}$ at a sun angle of $141.7^{\circ}$. The instrument will be commanded ON for the remainder of this lunation on 15 December. The IACE electronics temperature (AM-41) is currently $97.0^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment (IFAM) is configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The LEAM was commanded ON for the remainder of this lunation at 1536 G.m.t., 11 December, when the mirror temperature (AJ-11) decreased to $179.0^{\circ} \mathrm{F}$ (Apollo 17 ALSEP, SMEAR 49 $\mathrm{R}-3$ ) at a sun angle of $141.7^{\circ}$. The instrument's mirror temperature (AJ-11) currently is reading $156.6^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

dasity ST ottody



$$
\text { Apollo } 14 \text { ALSEP }
$$

status from 7 December 1973,1300 G.m.t., to 14 December $1973,1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
Noon of the $36 t h$ Iunation at the Apollo 14 site occurred on 11 December. Trans-
mitter "A" signal strength was reported at $-138.4 \pm 2.9 \mathrm{dbm}$. The DSS-I heater
(10 watts) is OFF for Iunar day operations.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP) The instrument's heater was commanded to FORCED OFF at 1605 G.m.t., 7 December, to minimize heating during lunar day operations. During this limited real-time support period no significant seismic events have been noted.

[^23] ine trument currentis in slan select. At 0146 G.m.t., 10 December 1973, the
 link signal. The CPLEE was returned to STANDBY by Mode I command at 0227 G.m.t., 10 December 1973, without incident. Present plans are to leave the experiment in STANDBY select until after sunset of this lunation (18 December 1973).
 Passive seismic
experiment Active seismic Suprathermal ion cathode gauge experiment
Charge particle
environmental experiment
Apollo 12 ALSEP

```Operatio \\ Central station```	status from 7 December 1973, 1300 G.m.t., to 14 December 1973, 1300 G.m.t.   Noon of the 5lst lunar day occurred on 11 December at the site in the Ocean of Storms. The signal strength is $-139.5 \pm 2.5 \mathrm{dbm}$ from transmitter "B" as reported by the tracking stations. The DSS-I heater (10 watts) is OFF for lunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALsEP). The PSE's sensor temperature (DI-O7) was off-scale HIGH at the beginning of realtime support on 11 December (sun angle 87.7°). No significant seismic events were noted during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
```Suprathermal ion detector experiment```	Currently the SIDE is OFF. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF is in effect to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$. During real-time support on 8 December, the instrument ex-. perienced an unexpected mode register load of $X 10$ at an intemal temperature of $54.6^{\circ} \mathrm{C}$ and a sun angle of $48^{\circ}$. The experiment was commanded to OFF at 0928 G.m.t., 8 December, and remained OFF until real-time support on 9 December to altow the instrment to cool down.

APOLLO 16 ALSEP



Status as of 1700 G.m.t., 13 December 1973, was as follows:


## TM POINT



## TM POINT

Total Days of Operation Total Com Sun Angle Input Power APM Status (AB-13) $(A B-14)$ Power Dump Status Experiment Status Avg Thermal Plate LMS Temp (AM-41) LACE Temp (AM-41) HFE Temp Ref 1 (DH-13)


# ALSEP PERFORMANCE SUMMARY REPORT 

21 December 1973
G.m.t.: 1300

An ALSEP status report will not be published on 28 December in observance of the holidays. The report to be published on 4 January 1974 will include the previous two weeks of ALSEP operations.

Apolio 17 ALSEP
Sunset of the l3th Iunation occurred on 14 December at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. The procedure of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods. Downlink RF signal strength is reported at $-141.5 \pm 3.5$ dbm from transmitter "A".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $110.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating in the open loop mode. The instrument is configured to seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 0623 G.m.t., 19 December, and to LSPE data format processing (high bit rate) at 0630 G.m.t., for a thirtyminute passive listening period. Two geophone calibration pulses were sent during the listening period. A significant event was observed on all geophones during the real-time operation. LSPE processing was terminated at 0700 G.m.t., and the instrument was commanded to STANDBY select at 0701 G.m.t.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at 1440 G.m.t., 14 December, for lunar night. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The electronics temperature (AM-41) is currently $3.2^{\circ} \mathrm{F}$.

21 December 1973
G.m.t.: 1300

Apollo 17 ALSEP (continued)
The Lunar Ejecta and Meteorites Experiment is configured to measure impect flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Apolio 15 ALSEP
Operational status from 14 December 1973, 1300 G.m.t., to 21 December 1973, 1300 G.m.t.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP).
The uncage/arm fire circuitry is cycling normally as a result of the central.
station's data subsystem timer outputs. The PSE's sensor temperature (DI-o7) re-
turned on-scale on I4 December. During the real-time support period of 17 Decem-
ber a significant short period seismic event was noted beginning at 1432 G.m.t.
(Ref. Apollo I4 ALSEP).
The instrument is currently ON. All engineering and science data continue to be
incoherent. Investigation of the anomaly, which occurred on lo December l973,
continues.
The instrument remains in STANDBY.
The instrument measurement, TREF I, is operating normally. The lunar surface temperature is $92.2^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are obtained periodically.
Apollo 14 ALSEP

Operatio   Central station	status from 14 December 1973, 1300 G.m.t., to 21 December 1973, 1300 G.m.t.   Sunset at the Apollo 14 site occurred on 18 December. Transmitter "A" signal strength was reported as -135.0 to -141.5 dbm from the 30 -foot tracking stations. The DSS-1 heater ( 10 watts) was commanded ON for lunar night operation on 17 December.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater was commanded to ON at $1515 \mathrm{G} . \mathrm{m} . t ., 15$ December, for lunar night operations. During the real-time support pexiod of 17 December a significant short period seismic event was noted beginning at 1411 G.m.t. (Ref. APOZ20 15 ALSEP).
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument was commanded ON at 1413 G.m.t., 17 December, and is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON for the remainder of this lunation.
```Charged particle lunar environmental experiment```	The experiment was commanded ON at 1418 G.m.t., 17 December, and is operating in the manual mode at the -35 vde range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of $\mathrm{AC}-03$, analyzer A voltage to 2280 vdc, at which time the instrument will be commanded to STANDBY select.

Apollo 12 ALSEP

APOLLO 16 ALSEP

GVAT MHN TddVH
SHWITSIYHS THYAN

APOLLO 17 ALSEP

[^0]: Total Days of Operation
 Total Commands to Date
 Sun Angle
 Input Power
 APM Status (AB-13)
 Power Dump Status (AB-14)
 Experiment Status
 Avg Thermal Plate Temp
 LMS Temp (AM-41)
 LEAM Temp (AJ-11)
 HFE Temp Ref 1 (DH-13)
 LSG Temp (DG-O4)
 LSP Temp (AP-O1)

[^1]: Passive seismic experiment

[^2]: This experiment continues to return scientific data on solar wind plasma, magnetosphere plasma and magnetopause crossings, by sensing the direction and energies of both electrons and positive ions. The instrument has been in the normal gain mode since 14 April following the solar flare activity.

 The instrument was commanded to operate select and full automatic stepping sequence (0-127 frames) at 1340 G.m.t. 25 April. for Iunar night opexation. During real-time support on 19 April the instrument experienced an unexpected mode register load of X10. The instrumen' was commanded to OFF at 1616 G.m.t., 19 April without incident and remained OFF until real-time support on 20 April to allow the instrument to cool below $55^{\circ} \mathrm{C}$.

[^3]: Heat flow
 experiment

[^4]: The CPIEE is currently in STANDB select. The experiment has been commanded to
 OPERATF select only during real-time support periods, as listed bejow:
 The CPIEE is currently in STANDBY select. The experiment has been commanded to
 OPERATE select only during real-time support periods, as listed below:

 e support periods, as listed below:

 Analyzer A Analyzer A | $\begin{array}{c}\text { Operational } \\ \text { Mode }\end{array}$ |
 | :---: |

[^5]: Central station

[^6]: Suprathemal ion rathode gauge
 experiment
 Heat flow
 experiment

[^7]: Lunar surface magnetometer
 experiment

 ## Active seismic

 experiment

[^8]: 号
 EF 2 has been in-

[^9]: Channeltron high voltage ON. The experiment remains ON for continuous

 HOT Teutouqexdns
 PToo/roq2eq90
 cathode gauge
 experiment

[^10]: Total Days of Operation Total Comma Sun Angle APM Status (AB-13) Power Dump Status ($\mathrm{AB}-14$) Experiment status Avg Thermal Plate Temp LMS Temp (AM-4I) LEAM Temp (AJ-11)
 HFE Temp Ref 1 (DH-13)

[^11]: Suprathermal ion detector experiment

[^12]: Qte
 $\frac{4}{5}$

 © w

[^13]: Total Days of Operation
 Total Commands to Date
 Sun Angle
 Input Power
 APM Status (AB-13)
 Power Dump Status (AB-14)
 Experiment Status
 Avg Thermal Plate Temp
 LMS Temp (AM-41)
 LEAM Temp (AJ-11)
 HFE Temp Ref 1 (DH-13)
 LSG Temp (DG-O4)
 LSP Temp (AP-O1)

[^14]: The instrument is operating in full automatic stepping sequence with the Channel-

[^15]: Total Days of Operation Total Com

 Sun Angle APM Status (AB-13) APM Status (AB-1 Power Dump Status (AB-14)

 Experiment Status Avg Thermal Plate Temp Avg Thermal Plate LEAM Temp (AJ-11) HFE Temp Ref 1 (DH-13) | Э |
 | :--- |
 | 0 |
 | 1 |
 | 5 |

[^16]: Lunar surface magnetometer

[^17]: Heat flow
 experiment

[^18]: dition and no data were available from either the SIDE or CCGE. If the situa-
 tion continues unahanged, it appears that no daytime SIDE on CCGF data wizt tion continues unchanged, it appears that no daytime SIDE or CCGE data will be obtainable in the future and the nighttime CCGE data will probably be in-
 termittent. Currently no plans are anticipated for continued investigation
 of the above anomalies, as t scientific data are useable when obtainable.
 termittent. Cumpently no plans are anticipated for continued investigation
 of the above anomalies, as t scientific data are useable when obtainable.

[^19]: Heat flow
 experiment

[^20]: The instrument measurement, TREF I, is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is $364.2^{\circ} \mathrm{K}$ as indicated

 at its lower-most point. Ring bridge surveys are obtained periodically.

[^21]: The experiment sensors were commanded to 100 gamma range on 1 October for Iunar day operation. The y-axis sensor head is fixed at the 180 degree position; does not respond to flip cal commands; and has indicated off-scale LOW (static) since 20 September 1972. The instrument has executed 1104 flip calibration sequences since activation.

[^22]: At 1350 G.m.t., 18 October, the SIDE was commanded to OPERATE select and automatic stepping sequence for the remainder of this lunation. The instrument had previously been cycled by command to the full automatic stepping sequence with
 Channeltron high voltages oN to experiment power ofr to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$ during the lunar day.

 Suprathermal ion
 detector/cold
 cathode gauge
 experiment
 Suprathermal ion
 detector/cold
 cathode gauge
 experiment
 Suprathermal ion
 detector/cold
 cathode gauge
 experiment
 Suprathermal ion
 detector/cold
 cathode gauge
 experiment previously been vyoled by changes at internal temperatures above $55^{\circ} \mathrm{C}$ during the lunar day.

[^23]: The experiment is currently in STANDBY and present operations are per Apollo 14 ALSEP, SMEAR 86.

