ALSEP Performance Summary Reports

1974

ALSEP Performance Summary Reports 1974 Table of Contents

January 4, 1974
January 11, 1974
January 18, 1974
January 25, 1974
February 1, 1974
February 8, 1974
February 15, 1974
February 22, 1974
March 1, 1974
March 8, 1974
March 15, 1974
March 22, 1974
March 29, 1974
April 5, 1974
April 11, 1974
April 19, 1974
April 26, 1974
May 3, 1974
May 10, 1974
May 17, 1974
May 24, 1974
May 31, 1974
June 7, 1974
June 14, 1974
June 21, 1974
June 28, 1974
July 3, 1974
July 12, 1974
July 19, 1974
July 26, 1974
August 1, 1974
August 9, 1974
August 16, 1974
August 23, 1974
August 30, 1974
September 6, 1974
September 13, 1974
September 20, 1974
September 27, 1974
October 4, 1974
October 11, 1974
October 18, 1974

October 25, 1974
November 1, 1974
November 8, 1974
November 15, 1974
November 22, 1974
December 6, 1974
December 13, 1974
December 20, 1974

ALSEP PERFORMANCE SUMMARY REPORT

4 January 1974
G.m.t.: 1300

This report covers the ALSEPs activities and data from the previous two weeks.

Apollo 17 ALSEP

Sunrise of the scientific station's 14th lunation occurred on 29 December 1973. The central station's data subsystem electronics and thermal plate temperatures, as well as the station's external structural temperatures continue to rise within anticipated limits. The downlink received signal is reported between -135.0 dbm and -143.0 dbm . The procedure of inhibiting the package's internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during realtime support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring briage surveys being accomplished. Iunar surface temperature as measured by the HFE thermocouples is $345.5^{\circ} \pm 8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: Seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15 , the coarse and fine screws driven to the extreme lower position, and tilt servo motors in an intermediate position. The experiment sensor temperature remains stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	FBR ON G.m.t.	HBR OFF	$\begin{aligned} & \text { LSPE STBY } \\ & \text { G.m.t. } \end{aligned}$	Geophone Cals	Events
28 Dec	1601	1610	1640	1642	2	None
03 Jan	1054	1100	1130	1131	2	Responses

The Lunar Atmospheric Composition Experiment is currently OFF. The LACE was commanded OFF on 1 January 1974 for the remainder of this lunar day when the electronics temperature (AM-4I) reached $124.0^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The LEAM was commanded OFF on 1 January 1974 when the instrument mirror temperature (AJ-lı) indicated $186.5^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $180.0^{\circ} \mathrm{F}$ at which time the instrument will be commanded ON for the remainder of this Iunation.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Apollo 15 ALSEP

$\begin{array}{r} \text { Operatior } \\ \text { Central station } \end{array}$	status from 21 December 1973, 1300 G.m.t., to 4 January 1974, 1300 G.m.t. Sunrise of the station's 3Ist lunation occurred on 31 December 1973. The transmitter "A" downlink signal strength is reported between -134.0 dbm and -141.0 dbm .
Passive seismic experiment	The instrument is configured for seismic network congruity (Apolio 16 ALSEP). No significant seismic events were noted during real-time support.
Lunar surface magnetometer experiment	The instrument is currently on. The experiment sensors were re-configured to the 100 gamma range on 31 December 1973 for lunar day operation, and flip calibration commands continue to be transmitted to the instrument with no apparent response, although all engineering and science data continue to be incoherent. Investigation of the anomaly, which occurred on 10 December 1973, continues.
Solar Wind spectrometer experiment	The instrument remains in STANDBY (Apollo 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ($0-127$ frames).
Heat flow experiment	The instrument measurement, TREF 1 , is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is $328.6^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are obtained periodically.

Apollo 14 ALSEP

```OperationalNone```	status from 21 December 1973, 1300 G.m.t., to 4 January 1974, 1300 G.m.t.   Sunrise at the Apollo 14 site occurred on 2 January 1974 (37th Iunation). Transmitter "A" signal strength was reported between -137.5 dbm and -144.5 dbm . The DSS-1 heater (10 watts) was commanded OFF for Iunar day operation on 3 January 1974. Data processor "Y" was verified by command on 3 January 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). At 0249 G.m.t. on 1 January 1974 the MILA tracking station reported a spurious functional change of the PSE from ON to STANDBY (no CVW was reported in the downlink). At the direction of mission control, the instmment was commanded ON at 0435 G.m.t., 1 January 1974 (octal 036, PSE ON) and subsequently reconfigured for seismic network congmity (Ref. Apolzo 16 ALSEP) by the HAW site without further incident. No significant seismic events have been noted during this report period.
Active seismic experiment	The experiment is currently in STANDBY. The instrument was commanded to high bit rate select on 3 January 1974 to verify operational status. The output of geophone \#2 appeared abnormal. This anomaly is currently under investigation. The status check was performed per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently operating in the full automatic stepping sequence with Channeltron high voltages commanded ON. The CCGE data continues to be normal.
Charged particle   lunar   environmental   experiment	The CPTEF was commanded to STANDBY earlier today, 4 January 1974, per the present operational plan. The experiment had been in OPERATE select since 17 December 1973.

## Apolio 12 ALSEP

$$
\text { Operational status from } 21 \text { December } 1973,1300 \text { G.m.t., to } 4 \text { January } 1974,1300 \text { G.m.t. }
$$

$$
\text { Sunrise of the 52nd lunar day occurred on } 3 \text { January } 1974 \text { at the ALSEP site in }
$$ the Ocean of Storms. A signal strength of $-140.0 \pm 2.0 \mathrm{dbm}$ from transmitter $B$ was reported by the tracking stations. The DSS-1 heater ( 10 watts) was the average thermal plate temperature was $44.2^{\circ} \mathrm{F}$. Data processor "Y" was verified by command on 3 January 1974.

instrument's long period z-axis failed to respond to calibration commands on December 1973. The output of the z-axis, as observed on the analog helicorder, peared quiescent. The instmument was subsequently commanded from the 0 ab gain ange to the $-10,-20,-30$, and back to 0 db gain, with long period calibration mands sent at each gain level and no calibration responses observed. the inmument again failed to respond to calibration commands during real-time support 31 December 1973 and 1 January 1974. The Long period z-axis returned to normal eration (response to LP cal commands and seismic data observed) during realsupport on 2 January 1974 and has remained functional throughout the rest of report period. The z-axis drive motor was commanded OFF for lunar day operaon 3 January 1974. No significant seismic events were noted during the peri-

## 

The instrument is currently in the normal gain mode and is recording solar wind

[^0]
Passive seismic
Lunar surface
magnetometer
experiment
Solar wind
spectrometer
experiment
Suprathermal ion
detector
experiment
plasma data for subsequent long-term analysis.



Status as of 1400 G.m.t., 3 January 1.974, was as follows:


## TM POINT



## ALSEP PERFORMANCE SUMMARY REPORT

11 January 1974

## G.m.t.: 1300

## Apollo 17 ALSEP

Noon of the scientific station's 14th lunation occurred on 5 January. All experiments and the central station are operating as expected. Downlink signal strength is reported at $-139.5 \pm 2.5 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic se-lection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. Lunar surface temperature as measured by the HFE's thermocouples is $320.0 \pm 6^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth is $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: Seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and tilt servo motors in an intermediate position. The experiment sensor temperature remains stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. The next passive listening period is planned for later today.

The Lunar Atmospheric Composition Experiment is currently in STANDBY for the remainder of this lunar day. The instmument was commanded to STANDBY at 1440 G.m.t., 10 January. The LACE electronic temperature is presently reading $52.7^{\circ} \mathrm{F}$ and is tracking approximately $2^{\circ} \mathrm{F}$ higher than the previous lunation's temperature profile.

The Lunar Ejecta and Meteorites Experiment is presently ons. The instrument was commanded ON at 1442 G.m.t., 10 January, when the mirror temperature (AJ-11) decreased to $173.8^{\circ}$. The mirror temperature profile is tracking approximately $2.5^{\circ} \mathrm{F}$ higher than the previous lunation. The instrument's mirror temperature (AJ-11) currently is reading $173.8^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Apollo 15 ALSEP
Operational status from 4 January 1974 , 1300 G.m.t., to 11 January 1974 , 1300 G.m.t.


$$
\text { Apolio } 14 \text { ALSEP }
$$

Apolio 12 ALISEP

Operation Central station	status from 4 January 1974, 1300 G.m.t., to 11 January 1974 , 1300 G.m.t.   Noon of the 52nd Iunar day occurred on 10 January at the site in the Ocean of Storms. The signal strength is -141.5 $\pm 1.5$ dibm from transmitter "B" as reported by the tracking stations. The DSS-I heater ( 10 watts) is OFF for lunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP) The PSE's sensor temperature (DL-O7) was off-scale HIGH at the beginning of realtime support on 10 January (sun angle $91.4^{\circ}$ ). No significant seismic events were noted during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	Currently the SIDE is OFF. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF is in effect to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

APOLIO 16 ALSEP

 0
$\stackrel{m}{子}$
$\stackrel{y}{4}$




ALSEP PERFORMANCE SUMMARY REPORT
18 January 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not avaitable at the following times:

ALSEPS	Date	GMT   LOS	GMT   $12,14,15,16,17$	12 Jan

## Apollo 17 ATSEP

Sunset of the 14th Iunation occurred on 13 January at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperatuxe profile of previous lunations. The procedure of inhibiting the internally generated 6l-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods. Downink RF signal strength is reported at $-143.0 \pm 4.0 \mathrm{dbm}$ from transmitter "A".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $100.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating in the open loop mode. The instrument is configured to seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. Some apparent activity was noted at 1522 G.m.t., 15 January 1974, as observed on the instmument's seismic output ( $D G-01$ ). The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ONI).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 0012 G.m.t., 12 January, and to ISPE data format processing (high bit rate) at 0049 G.m.t. Two geophone calibration pulses were sent during the listening period. Activity was observed on all geophones during the real-time operation. LSPE processing was terminated at 0123 G.m.t., and the instrument was commanded to STANDBY select at 0126 G.m.t.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to ON at 1342 G.m.t., 12 January, for Iunar night. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The electronics temperature (AM-4I) is currently $3.2^{\circ} \mathrm{F}$. The LACE high voltage will be commanded ON later today to determine if any positive change in instrument status has occurred.
ALSEP PERFORMANCE SUMMARY REPORT (continued)

18 January 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is configured to measure inpact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

dHSTV ST OTLOdF

$$
\text { Operational status from } 11 \text { January } 1974,1300 \text { G.m.t., to } 18 \text { January } 1974,1300 \text { G.m.t. }
$$ tions with 30-foot antenna.


The instrument is currently ON. AII engineering and science data continue to be incoherent. Investigation of the anomaly, which occurred on 10 December 1973,
The instrument remains in STANDBY select (Apollo 15 ALSEP, SMEAR 46). The instrument has been operating with the Channeltron high voltages commanded
ON and in full automatic stepping sequence ( $0-127$ frames). The instrument measurement, TREF 1 , is operating normally. The lunar surface temperature is $95.1^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 in-
 obtained periodically.
Central station
Passive seismic experiment


$$
\text { Sunset of the site's 3Ist Iunation occurred on } 15 \text { January. Transmitter "A" }
$$

$$
\begin{aligned}
& \text { Sunset of the site's 31st Iunation occurred on } 15 \text { January. Transmitter "A" } \\
& \text { downlink signal strength is reported as }-136.8 \pm 5.8 \mathrm{dbm} \text { by the tracking sta- }
\end{aligned}
$$

Apollo 12 AISEP

Operatio   Central station	status from 11 January 1974, 1300 G.m.t., to 18 January 1974 , 1300 G.m.t.   Sunset of the 52nd Iunar day occurred on 17 January. The DSS-1 heater (10 watts) was commanded ON for lunar night operation on 17 January. A signal strength of -138.0 to -144.0 dbm from transmitter "B" was reported by the 30 -foot tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The sensor temperature (DL-07) returned on-scale at the start of real-time support on 17 January. No significant seismic events were noted during the periodic realtime support periods.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind   spectrometer   experiment	The instrument remains in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	Currently the SIDE is in the full automatic stepping sequence with Channeltron high voltages ON. The instrument was commanded to ON at 1342 G.m.t., 15 January, for lunar night operations.



APOLLO 15 ALSEP

APOLLO I 4 ALSEP


1078
10975
$186.4^{\circ}$
$68.5 \mathrm{w}(69$
68.5 w （69．4w）





## 1078


／a．
Invalid
Invalid
0.0202

APOLLO 17 ALSEP


TM POINT


## TM POINT

 Zast Zunation at a similar sun angle．


25 January 1974
G.m.t.: 1300

## Apol10 17 ALSEP

Midnight of the I4th Iunation at the Taurus Littrow Iunar site occurred on 20 January. The central station is operating normally. Downlink signal strength from the 30 foot antenna tracking stations is reported at -139.5 $\pm 3.5 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 , to inhibit automatic selection of the redundant command signal processing chain (by internally generated 6l-hour pulses) continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the $H F E$ thermocouples is $106 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#l and $256.9^{\circ} \mathrm{K}$ at probe \#2 on 23 January.

The Lunar Surface Gravimeter Experiment is operating in the open loop mode. The instrument is configured to seismic high gain, integrator shorted mode, bias OUP, post amplifier gain at increment 15 , the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	$\begin{aligned} & \mathrm{HBR} \text { ON } \\ & \text { G.m.t. } \end{aligned}$	HBR OFF   G.m.t.	LSPE STBY G.m.t.	Geophone Cals	Events
18 Jan	1307	1320	1350	1353	2	None
23 Jan	1444	1500	1530	1532	2	None

The next passive listening period is planned for 1 February 1974.
The Iunar Atmospheric Composition Experiment is currently in Operate Select ON, without processing scientific data. A sequence of operational conmands were executed by the experiment during real-time support on 18 January 1974. The instrument's telemetry data did indicate some signs of change during the 30 minutes that the multiplier high voltage power supply operated, but no significant improvement has resulted from the LACE not being operational since 17 October 1973. The experiment's filament \#2 was not commanded on during the operational status check. The experiment was reconfigured to its lunar night operational mode, and currently remains in this mode. The LACE will be cycled from ON to OFF to maintain the electronics temperature

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

25 January 1974
G.m.t.: 1300
below the previously established $125^{\circ} \mathrm{F}$ limit. No periodic check is planned within the next sixty days. The electronics temperature (AM-41) is currently stabilized at - $2.3^{\circ} \mathrm{F}$, which is $5.5^{\circ} \mathrm{F}$ cooler than the previous lunar night's thermal profize.

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The experiment's periodic calibrate pulses are occurring as anticipated. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Require-ments Branch, TN3, telephone 483-5067.

$$
\text { Apollo } 16 \text { ALSEP }
$$

Apollo 15 ALSEP

Operatio Central station	status from 18 January 1974, 1300 G.m.t., to 25 January 1974 , 1300 G.m.t.   Midnight of the station's 3lst lunation occurred on 23 January. Transmitter "A" downlink signal strength was reported at $-134.7 \pm 2.7 \mathrm{dbm}$ from the 30 foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. During the real-time support periods this past week no significant seismic events were observed.
Lunar surface magnetometer experiment	The experiment is ON with the sensors in the 50 gamma range for lunar night operations. Currently the instrument has executed l225 flip calibration sequences since activation. All engineering and science data continues to be incoherent. Investigation of the anomaly, which occurred on 10 December 1973 , is continuing.
Solar wind spectrometer experiment	The instrument remains in STANDBY select (Apollo 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating continuously with channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames) for the remainder of this lunation (Apollo 15 ALSEP, SMEAR 47).
Heat flow experiment	The instrument measurement, TREF 1 , is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is $87.4^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 indicates a temperature of ically. $250.9^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are being conducted period-


	Apollo 14 ALsEP
Operational	status from 18 January 1974, 1300 G.m.t., to 25 January 1974, 1300 G.m.t.
Central station	Midnight at the Apollo 14 site occurred on 24 January. Transmitter "A" signal strength was reported between -134.0 dbm and -141.5 dbm by the 30 foot antenna tracking stations. The DSS-l heater (10 watts) is ON for lunar night operation.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument heater is operating in the AUTO ON mode for lunar night operation. At the beginning of real-time support of this instmment on 23 January it was observed that the Zong-period z-axis sensor gain indicated-10 db. Review of the ALSEP downlink indicated no command verification word (octal 064). Therefore, this spurious functional change occurred between reaz-time support periods on 21 January and 23 January. The z-axis sensor gain was cormanded back to 0 db gain without incident at 1541 G.m.t., 23 January. During the limited real-time support periods of this week no significant seismic events have been observed.
Active seismic experiment	The experiment is currentiy in SrandBy. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently operating in the full automatic stepping sequence with Channeltron high voltages commanded ON.
Charged particle lunar environmental experiment	The experiment is currently ON in the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of analyzer $A$ voltage, (AC-03), to 2200 vde at which time the instrument will be commanded to STANDBY select.

Apollo 12 ALSEP

Operatio   Central station	status from 18 January 1974, 1300 G.m.t., to 25 January 1974, 1300 G.m.t.   Midnight of the 52nd lunar night occurred today. A signal strength of -135.0 abm to -142.0 dbm from transmitter " $B$ " was reported by the 30 foot antenna tracking stations. The central station DSS-l heater (10 watts) is ON for lunar night operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's long period z-axis failed to respond to calibration commands on 23 January 1974. The output of the $z$-axis, as obsemed on the analog helicorder, appeared quiescent. This anomaly previously occurred on 31 December 1973, however on 2 January and untit this date, the instmument had responded normally to the calibration commands. At 1239 G.m.t., 19 January, the PSE sensor temperature (DL-07) was offscale LOW (sun angle $=200.3^{\circ}$ ). No significant seismic events were observed during real-time support of the instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	The SIDE is in OPERATE select and automatic stepping sequence for the remainder of this lunation.



Status wis of 1600 G.m.t., 23 January 1974, was as follows.


## TM POINT


Total Days of Operation Total Commands to Date
Sun Angle Sun Angle APM Status (AB-13) (AB-14) Power Dump Status (AB-14) Experiment Status Avg Thermal Plate Temp AACE Temp (AM-4I) LEAM Temp (AJ-11) HFE Temp Ref 1 (DH-13) LSG Temp (DG-04)
LSP Temp (AP-01)

## ALSEP PERFORMANCE SUMMARY REPORT

1 February 1974
G.m.t.: 1300

Another type of AISEP data loss has transpired during January 1974. Data loss is in the form of poor quality data and data gaps being processed from the analog range data tapes. Due to the ALSEP data processing plan at JSC, these data losses are just now being determined, although the data may have been recorded several months previously. It must be noted that the ALSEP data losses from these periods is non-recoverable.

It has been determined that the ALSEP packages Iisted herein have been affected:

ALSEP	Date		G.m.t.		Site

## Apo110 17 ALSEP

Sunrise of the scientific station's 15th lunation occurred on 28 January 1974. The central station's data subsystem electronics, thermal plate, and external structural temperatures continue to rise within anticipated limits. The downlink received signal is reported between -133.0 dbm and -141.0 dbm . The procedure of inhibiting the package's internally generated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. Lunar surface temperature as measured by the HFE thermocouples is $224.0 \pm 8 \mathrm{~K}$. Subsurface temperatures at 230 cm depth are $256.4^{\mathrm{K}}$ at probe $\# 1$ and $256.8^{\mathrm{K}} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and tilt servo motors in an intermediate position. The experiment sensor temperature remains stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON ).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. The next passive listening position is planned for later today, 1 February.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

1 February 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment is currently OFF, following Mode 1 commanding by the Canary Island tracking station. The LACE OFF command occurred on 31 January 1974, 1620 G.m.t. The experiment will be in the OFF configuration for the remainder of this lunar day.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The LEAM was commanded OFF on 31 January 1974; 1617 G.m.t., (Mode 1) when the instrument's mirror temperature (AJ-11) increased to $194.0^{\circ} \mathrm{F}$. The LEAM will remain OFF until the mirror temperature decreases to $180.0^{\circ} \mathrm{F}$ at which time the instrument will be commanded ON for the remainder of this lunation.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Operatio Central station	status from 25 January 1974, 1300 G.m.t., to 1 February 1974, 1300 G.m.t.   Sunrise of the 23rd lunation occurred on 29 January 1974. The DSS-1 heater ( 10 watts) was commanded OFF on 29 January 1974. The 18 -hour timer output pulses continue to be inhibited. The 30 -foot antenna tracking stations report a signal strength between -132.0 dbm and -138.3 dbm from transmitter "B".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO 0 N ; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The long period y-axis did not respond to leveling commands from 17 January to 29 January 1974 but did respond on 29 January 1974 when leveling commands were executed. The seismometer's long period y-axis has experienced sluggish leveling since 9 February 1971. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM data have been valid since 17 August 1973. 620 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The active seismic experiment is currently in standby OFF per Apollo 16 ALSEP, SMEAR 27.




	Apol1o 12 ALSEP
Operational	status from 25 January 1974, 1300 G.m.t., to 1 February 1974, 1300 G.m.t.
Central station	Sunrise of the 53rd lunar day will occur on 1 February 1974 at the ALSEP site in the 0cean of Storms. A signal strength of $-141.0 \pm 5.0 \mathrm{dbm}$ from transmitter "B" was reported by the tracking stations. The DSS-1 heater (10 watts) will be commanded OFF for lunar day operations on 2 February 1974. Data processor "ү" will be verified by command on 2 February 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's long period z-axis again failed to respond to calibration cormands on 23 January 1974. The output of the z-axis, as observed on the analog helicorder, appeared quiescent. The instmment had previously failed to respond to calibration commands during real-time support on 28 December 1973. The Iong period z-axis is expected to return to normat operation (response to LP cal commands and seismic data observed) after sunrise on 1 February 1974. The z-axis drive motor will be commanded OFF for lunar day operation on 2 February 1974. No significant seismic events were noted during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	Currently the SIDE is $O N$ in the full automatic stepping sequence with Channeltron high voltages $O N$.

APOLLO 16 ALSEP

anconk
APCLO

APOLLO 12 ALSEP


APOLLO 17 ALSEP


TM POINT


TM POINT
Total Days of Operation
Total Conmands to Date
Sun Angle
Input Power
APM Status (AB-13)
Power Dump Status (AB-14)
Experiment Status
Avg Therwa P Plate Temp
LACE Temp (AM-47)
LEAM Temp (AJ-11)
HFE Temp Ref 1 (DH-13)
LSG Tenp (DG-04)
LSP Temp (AP-01)

# ALSEP PERFORMANCE SUMMARY REPORT 

8 February 1974
G.m.t.: 1300

## Apol10 17 ALSEP

Noon of the scientific station's 15th lunation occurred on 4 February at the Taurus Littrow site. Downlink signal strength is reported at - 140.7 $\pm 4.2 \mathrm{dbn}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.
The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. Lunar surface temperature as measured by the HFE 's thermocouples is $362 \pm 8^{0} \mathrm{~K}$. Sybsurface temperature at 230 cm depth is $256.4^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{0} \mathrm{~K}$ at probe $\# 2$.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and tilt servo motors in an intermediate position. The experiment sensor temperature remains stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY select. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON   G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	LSPE STBY G.m.t.	Geophone   Cals	Events
2 Feb	0211	0223	0253	0255	2	None
7 Feb	1930	1940	2010	2012	2	Response

The next passive listening period is planned for 16 February 1974.
The Lunar Atmospheric Composition Experiment is currently OFF. The instrument will be commanded to STANDBY later today to maintain thermal stability prior to turn ON for the lunar night. The LACE electronic temperature is presently reading $72.1^{\circ} \mathrm{F}$ and is tracking the previous lunation's temperature profile.
The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument will be comnanded ON later today. The mipror temperature profile (AJ-11) is tracking that of the previous lunation and is curpently reading 192.5 ${ }^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Apollo 15 ALSEP

Operational status from 1 February 1974, 1300 G.m.t., to 8 February 1974, 1300 G.m.t.
Central station Noon of the station's 32nd lunation occurred on 6 February. Transmitter "A" between -134.0 dbm and -139.2 dbm . The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The problem encountered with the abnomal calibration response (excessive recovery time) of the long-period z-axis displayed on the mission control Helicorder, 25 January 1974, has been corrected. During real-time support on 2 February 1974 a ground equipment problem here at JSC was discovered and the anomaly has been resolved. All calibration pulses since that date are now normal. The uncage/arm fire circuitry is cycling normally as a result of the central station's data subment's sensor temperature (DL-07) was off-scale HIGH (sun angle 73.6 ). No significant seismic events were observed during this limited real-time support period. The instrument is currently 0 N . The experiment sensors are in the 100 gamma range for lunar day operation, and flip calibration commands continue to be transmitted to the instrument with no apparent response. All LSM engineering and science data continue to be incoherent. Investigation of the anomaly, which occurred on 10 December 1973, continues.

## The instrument remains in STANDBY (Apol10 15 ALSEP, SMEAR 46).

The instrument is currently in STANDBY. At the beginning of reat-time support on 31 January it was noted that the commana regrster contained a master reset (SlDE on 30 January and 31 January. The instrument was commanded to STANDBY and back to ON at 0024 G.m.t., I February, returning the experiment to normal configuration without incident. Cyclic commanding of the experiment was initiated for the re1974, during real-time support, a special scientific data gathering period was conducted to observe those low energy data counts which appear some 33 hours prior to Tunar noon.
avefuns leunt magnetometer experiment

Solar wind spectrometer Suprathermal ion detector/cold cathode gauge experiment

Passive seismic experiment assive sei
-

Central station

Apol1o 15 ALSEP (concluded)
The HFE is operating in the normal gradient mode. The lunar surface temperature
was $370.3^{0} \mathrm{~K}$ on 7 February as indicated by the cable thermocouples. The sub-sur-
face temperature was $253.4^{0} \mathrm{~K}$ at the bottom of the lowest section of probe \#l.
Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge
surveys are obtained periodically. At 2214 G.m.t., 5 February 1974, the Canary
IsZand tracking station observed a spurious functional change in the ALSE'P down-
link signal (Octal 145, sub-sequence \#2 select). The experiment was reconfigured
by command from mission control to full sequence (Octal 141) at 1353 G.m.t.g
6 Febmury, without incident.
Apol1o 12 ALSEP
Operational status from 1 February 1974, 1300 G.m.t., to 8 February 1974, $1300 \mathrm{G.m} . \mathrm{t}$.
Status as of 2000 G.m.t., 07 February 1974, was as follows:






## ALSEP PERFORMANCE SUMMARY REPORT

15 February 1974
G.m.t.: 1300

On 5 Febmary 1974 the ApolZo 14 ALSEP completed three years of unintermipted operations.

Apol10 17 ALSEP
Sunset of the 15th lunation occurred on 12 February at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. The procedure of inhibiting the internally generated 61-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods. Downlink RF signal strength is reported as $-143.0 \pm 4.0 \mathrm{dbm}$ from transmitter "A".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $116.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater $O N$ ).

The Lunar Seismic Profiling Experiment is in STANDBY select. The next passive listening period is planned for 16 February.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to $0 N$ at 1404 G.m.t, 10 February, for lunar night. The instrument is configured to discriminator leve1, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The electronics temperature (AM-41) is currently $4.9^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded ON for the lunar night at 1741 G.m.t., 8 February. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $-17.4{ }^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

$$
\text { Apol1o } 16 \text { ALSEP }
$$

Apollo 15 ALSEP
Operational status from 8 February 1974, 1300 G.m.t., to 15 February 1974, $1300 \mathrm{G.m.t}$.

$$
\text { Apollo } 12 \text { ALSEP }
$$

$$
\begin{aligned}
& \text { APOLLO } 16 \text { ALSEP } \\
& \hline 664 \\
& 10169 \\
& 197.0^{\circ} \\
& 69.4 \mathrm{~W} \\
& \text { DSS-1 ON }(10 \mathrm{~W}) \\
& \text { ASE } 8 \mathrm{FF} \\
& 37.3^{\circ} \mathrm{F} \\
& 126.8^{\circ} \mathrm{F} \\
& -5.4^{\circ} \mathrm{C} \\
& \text { N/A } \\
& \text { OFF } \\
& \text { OFF }
\end{aligned}
$$


Status as of. 1600 G.m.t., 14 February 1974, was as follows:

APOLLO 17 ALSEP


ALSEP PERFORMANCE SUMMARY REPORT
22 February 1974
G.m.t.: 1300

ALSEP data could not be processed by JSC from the analog range data tapes due to excessive noise on the tapes. It must be noted that the ALSEP data losses from these periods are non-recoverable. ALSEP packages affected were:
ALSEP
Apo 27017
Apo 17017
Apol2o 16
Apol10 17 ALSEP

Midnight of the 15 th lunation at the Taurus Littrow lunar site occurred on 19 February. The central station is operating normally. Downlink signal strength from the 30 foot antenna tracking stations is reported at $-139.5+3.5 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues $\overline{\text { to }}$ distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain (by internally generated 61-hour pulses) continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples is $107 \pm 80 \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures are $256.6^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating in the open loop mode. The instrument is configured to seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater $0 N$ ).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1117 G.m.t., 16 February, and to LSPE data format processing (high bit rate) at 1130 G.m.t. Two geophone calibration pulses were sent during the listening period. Activity was observed on all geophones during the real-time operation. LSPE processing was terminated at 1200 G.m.t., and the instrument was commanded to STANDBY select at 1204 G.m.t. The next passive listening period is scheduled for later today.

> ALSEP PERFORMANCE SUMMARY REPORT (continued)

22 February 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment is currently ON without processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON . The electronics temperature (AM-41) is currently $3.2^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) currently is reading-17.4 ${ }^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

	Apol1o 15 ALSEP
Operational	status from 15 February 1974, 1300 G.m.t., to 22 February 1974, 1300 G.m.t.
Central station	Midnight of the station's 32nd lunation occurred on 21 February. Transmitter "A" downlink signal strength was reported at $-136.8 \pm 1.8 \mathrm{dbm}$ from the 30 foot $a n-$ tenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. During the real-time support periods this past week no significant seismic events were observed.
Lunar surface magnetometer experiment	The experiment is 0 N with the sensors in the 50 gamma range for lunar night operations. All engineering and science data continues to be incoherent.
Solar wind spectrometer experiment	The instrument remains in STANDBY select (Apol10 15 ALSEP, SMEAR 46).
Suparthermal ion detector/cold cathode gauge experiment	The instrument is operating continuously with channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames) for the remainder of this lunation (Apollo 15 ALSEP, SMEAR 47).
Heat flow experiment	The instrument measurement, TREF 1, is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is 84.40 K as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicates a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are being conducted periodically.

Apollo 14 ALSEP
status from 15 February 1974, 1300 G.m.t., to 22 February 1974, 1300 G.m.t.
Midnight at the Apollo 14 site occurred on 23 February. At 0828 G.m.t.,
15 February 1974 , the Ascension tracking station reported a loss of downlink
due to a spurious functional change (Octal 014 , transmitter OFF). At the
direction of Mission Control downlink was re-established at 0852 G.m.t.,
15 Febmary, by Mode I command through the Ascension tracking station (Octal
013 , transmitter ON) without incident. Transmitter "A" signal strength was
reported between -135.0 dbm and -142.0 dbm by the 30 foot antenna tracking
stations. The DSS-1 heater (10 watts) is ON for lunar night operation.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument heater is operating in the AUTO ON mode for lunar night operation. At the start of reat-time support on 20 February it was noted that the instrument had experienced a spurious functional change (Octal 102, coarse level sensor IN) without a CVW reported in the downlink. The PSE was re-configured to coarse level sensor OUT (Octal 102) at 1410 G.m.t., 20 February 1974, by Mission Control without incident.

## Present operations are per Apollo 14 The experiment is currently in STANDBY. ALSEP, SMEAR 86.

The experiment is currently operating in the full automatic stepping sequence
with Channeltron high voltages commanded 0 N . with Channeltron high voltages commanded ON .
The experiment is currently $O N$ in the manual mode at the -35 vdc range and autoThe expen it is pland to 7 con figuration pending possible degradation of analyzer $A$ voltage, $(A C-03)$, to 2280 vdc at which time the instrument will be commanded to STANDBY select.
Apol1o 12 ALSEP

Central station	Midnight of the 53 rd lunar night will occur on 23 February. A signal strength of -135.0 dbm to -141.5 dbm from transmitter "B" was reported by the 30 -foot antenna tracking stations. The central station DSS-1 heater (10 watts) is ON for lunar night operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). At 1252 G.m.t., 18 February, the PSE sensor temperature (DL-07) was offscale LOW (sun angle $=205.3^{\circ}$ ). No significant seismic events were observed during realtime support of the instrument.
Lunar surface magnetometer experiment	At the start of real-time support on 20 February 1974 it was noted that the instmment had experienced a spurious functional change (Octal 131, flip/cal initiate) without a CVW reported in the downink. The LSM sensors were re-configured to the $180^{\circ}$ position (Octal 131, flip/cal initiate) by Mission Control at 1412 G.m.t., 20 Febmury, without incident.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	The SIDE is in OPERATE select and automatic stepping sequence for the remainder of this lunation.


APOLLO 14 ALSEP


$\begin{array}{rr}\forall / N & \forall / N \\ 0^{\circ} \cdot 69- & \forall / N \\ \text { pllenui } & \forall / N \\ \text { pllenui } & H O I H\end{array}$


## TM POINT



1 March 1974
G.m.t.: 1300

Apol10 17 ALSEP
Sunrise of the scientific station's 16th lunation occurred on 26 February 1974. The central station's data subsystem electronics, thermal plate, and external structural temperatures continue to rise within anticipated limits. The downlink received signal is reported between -135.0 dbm and -141.0 dbm . The procedure of inhibiting the package's internally generated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. ${ }^{\text {Lunar }}$ surface temperature as measured by the HFE thermocouples is $300^{\circ}+8^{\circ} \mathrm{K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and tilt servo motors in an intermediate position. The experiment sensor temperature remains stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON ).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1425 G.m.t., 27 February, and to LSPE data format processing (high bit rate) at 1440 G.m.t. Two geophone calibration pulses were sent during the listening period. No activity was observed during real-time operation. LSPE processing was terminated at 1515 G.m.t., and the instrument was commanded to STANDBY select at 1517 G.m.t. The next passive listening period is scheduled for 3 March at which time the experiment will remain in high bit rate until 7 March. This four days of extended LSPE operation is scheduLed in order to pursue a study of meteoroid impacts and thermal moonquakes. The station will be commanded to normal bit rate for brief periods during real-time support to monitor the othex experiments operation.

The Lunar Atmospheric Composition Experiment is currently ON without processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) is currently 104.0 F.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface ${ }_{O_{F}}$ The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) currently is reading $159.8^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Apol1o 15 ALSEP

Operational Central station	status from 22 February 1974, 1300 G.m.t., to 1 March 1974, 1300 G.m.t.   Sunrise of the station's 33rd lunation occurred on I March 1974. The transmitter "A" downlink signal steength is reported between -734.0 dbm and -138.5 dbm.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events were noted during real-time support.
Lunar surface magnetometer	The instrument is currently $0 N$. All engineering and science data continue to be incoherent. The instrument continues to be monitored for any change in status.
Solar wind spectrometer experiment	The instrument remains in STANDBY (Apollo 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence ( $0-127$ frames).
Heat flow experiment	The instrument measurement, TREF 1, is operating normally (TREF 2 has been invalid since 29 May 1972). The lunar surface temperature is 84.2 K as indicated by the cable thermocouples. The sub-surface temperature is $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of 251.0 K at its lower-most point. Ring bridge surveys are obtained periodically.

Apollo 14 ALSEP

Central station	Sunrise at the Apollo 14 site will occur on 2 March 1974 (39th lunation). Transmitter "A" signal strength was reported between -140.0 dbm and -143.5 dbm . The DSS-1 heater (10 watts) will be commanded OFF for lunar day operation on 2 March 1974. Data processor " $ү$ " will be verified by command on 2 March 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events have been noted during this report period.
Active seismic experiment	The experiment is currently in STANDBY per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently operating in the full automatic stepping sequence with Channeltron high voltages commanded ON. The CCGE data continues to be normal.
```Charged particle lunar environmental experiment```	The CPLEE will be commanded to STANDBY on 2 March 1974, per the present operational plan. The experiment has been in OPERATE select since 14 February.

Apol1o 12 ALSEP
Operational status from 22 February 1974, 1300 G.m.t., to 1 March 1974, 1300 G.m.t. Central station
$\begin{aligned} & \text { Passive seismic } \\ & \text { experiment }\end{aligned}$ Lunar surface
magnetometer
experiment
Solar wind
spectrometer
experiment
Suprathermal ion
detector
experiment
Currently the SIDE is $0 N$ in the full automatic stepping sequence with Channeltron high voltages ON. At 1248 G.m.t. on 27 February the Canary Island tracking site reported receipt of a CVW without ground command (Octal 104, SIDE Load 1). The instrument was commanded to STAANDBY and back to ON by Mission Control at 1358 G.m.t., 27 Eebruary, returning the experiment to nomal configuration without incident-

 TM POINT

Status as of 1600 G.m.t., 28 February was was as follows:

8 March 1974
G.m.t.: 1300

Apol10 17 ALSEP
Noon of the scientific station's 16th lunation occurred on 6 March at the Taurus Littrow site. Downlink signal strength is reported at -140.0 $\pm 4.0 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. Lunar surface temperature as measured by the HFE's thermocouples is $383.0 \pm 8^{0} \mathrm{~K}$. Subsurface temperature at 230 cm depth is $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and tilt servo motors in an intermediate position. The experiment sensor temperature remains stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiting Experiment is in STANDBY select. The experiment was commanded ON at 1630 G.m.t., 3 March 1974, and to LSPE data format processing (high bit rate) at 1700 G.m.t. Geophone calibration pulses were sent during the listening period. Activity was observed during real-time operation. LSPE processing was terminated at 0432 G.m.t., 7 March 1974, and the instrument was commanded to STANDBY select at 0439 G.m.t. The four days of extended LSPE operation were scheduled to pursue a study of meteoroid impacts and thermal moonquakes. The station was commanded to normal bit rate for brief periods during real-time support to monitor the other experiments operation.

The Lunar Atmospheric Composition Experiment is currently OFF. The instrument was commanded to 0FF at 1458 G.m.t., 1 March 1974. The LACE electronic temperature is presently reading $83.3^{\circ} \mathrm{F}$ and is tracking the previous lunation's temperature profile.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1456 G.m.t., 1 March 1974. The mirror temperature profile (AJ-11) is tracking that of the previous lunation and is currently reading $189.5^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Central station	Noon of the 24th lunar day occurred on 7 March at the Descartes Site. The DSS-1 heater (10 watts) is OFF for lunar day operations. The 18-hour output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The 30 -foot antenna tracking stations report a signal strength between -133.0 dbm and -139.5 dbm from transmitter " B ".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The instrument's sensor temperature (DL-07) indicated off-scale HIGH at the beginning of real-time support on 5 March (sun angle 68.6°). No significant seismic events were observed during the limited real time support of this instrument.
Lunar surface magnetometer experiment	The LSM continues in the full operational mode and all data have been valid since 17 August 1973. The instrument has accomplished 650 flip calibration sequences since activation.
Active seismic experiment	The Active Seismic Experiment is currently in standby OFF. The instmment was commanded to high bit rate ON, 3 March 1974, to verify operational status. Operation was satisfactory at this time. The check was performed per Apollo 16 ALSEP, SMEAR 27.

Apol10 15 ALSEP
Operational status from 1 March 1974, 1300 G.m.t., to 8 March 1974, 1300 G.m.t.

Operation	status from 1 March 1974, 1300 G.m.t., to 8 March 1974, 1300 G.m.t.
Central station	Noon of the station's 33rd lunation occurred on 8 March. Transmitter "A" downlink signal strength at the 30 -foot antenna tracking stations is reported between -131.5 dbm and -140.0 dbm .
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. At the start of real-time support on 7 March the instrument's sensor temperature (DL-07) was off-scale HIGH (sun angle 73.6). No significant seismic events were observed during this limited real-time support period.
Lunar surface magnetometer experiment	The instrument is currently ON. AII LSM engineering and science data continue to be incoherent.
Solar wind spectrometer experiment	The instmment remains in STANDBY. At 1444 G.m.t., 2 March, the experiment was commanded to operate select for 4 minutes in order to provide additional data on the instrument's anomazous operation. The instmment's telemetry data continuously indicated out of sync data. During the operate select period the experiment continued to demand excessive power (9 watts). Folzowing the operate select period the instrument was commanded back to STANDBY select (Apolzo 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently in STANDBY. Cyclic commanding of the experiment was initiated for the remainder of this lunar day on 5 March (Apollo 15 ALSEP, SMEAR 47) On 7 March 1974, during real-time support, a special scientific data gathering period was conducted to observe those low energy data counts which appear some 33 hours prior to lunar noon.
Heat flow experiment	The HFE is operating in the normal gradient mode. The lunar surface temperature was $368.2^{\circ} \mathrm{K}$ on 7 March as indicated by the cable thermocouples. The subsurface temperature was $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are obtained periodically.

$$
\begin{array}{ll}
\text { Apollo } 14 \text { ALSEP } \\
\text { Operational status from } 1 \text { March 1974, } 1300 \text { G.m.t., to } 8 \text { March 1974, } 1300 \text { G.m.t. } \\
\text { Central station } & \begin{array}{l}
\text { Sunrise of the 39th lunation at the Apollo } 14 \text { site occurred on } 2 \text { March. The } \\
30-f o o t ~ a n t e n n a ~ t r a c k i n g ~ s t a t i o n s ~ r e p o r t ~ a ~ s i g n a l ~ s t r e n g t h ~ f r o m ~ t r a n s m i t t e r ~ " A " ~
\end{array} \\
\text { at -137.5 }+2.5 \text { dbm. The DSS-1 heater (10 watts) is 0FF for lunar day opera- } \\
\text { tions. Data processor "Y" was verified by command on } 3 \text { March 1974. }
\end{array}
$$

Apol10 12 ALSEP

> Scientific and engineering data outputs remain invalid.

> The instrument is currently in the normal gain mode and is recording solar wind
plasma data for subsequent long-term analysis. $\begin{array}{ll}\text { Suprathermal ion } & \text { Cyclic commanding of the instrument in the full automatic stepping sequence with } \\ \text { detector } & \text { Channeltron high voltages oN to experiment power 0FF was initiated for this lunar } \\ \text { experiment } & \text { day on } 5 \text { March in an effort to preclude instrument mode changes at internal tem- } \\ & \text { peratures above } 55^{\circ} \mathrm{C} .\end{array}$ peratures above 55 c. $\begin{aligned} & \text { Lunar surface } \\ & \text { magnetometer } \\ & \text { experiment }\end{aligned}$
Solar wind
spectrometer
experiment
Suprathermal ion
detector
experiment

```
APOLLO 16 ALSEP
```


APOLLO 15 ALSEP

Status as of 0530 G.m.t., 7 March 1974, was as follows:

15 March 1974
G.m.t.: 1300

ALSEP data could not be processed by JSC from the analog range data tapes due to excessive noise on the tapes. It must be noted that the ALSEP data losses from these periods are non-recoverable. ALSEP packages affected were:

ALSEEP		DATE	G.m.t.	SITE
ApoZ20 17	4 Jan 74		$0227-0353$	ROS
ApoZ20 17	5/6 Mar 74	$2122-0113$	MIL	

Apol10 17 ALSEP
Sunset of the 16th lunation occurred on 13 March at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. The procedure of inhibiting the internally generated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during realtime support periods. Downlink RF signal strength is reported as -142.3 $\pm 4.3 \mathrm{dbm}$ from transmitter "A".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $122.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias OUT, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.207^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1427 G.m.t., 13 March, and to LSPE data format processing (high bit rate) at 1430 G.m.t. Two geophone calibration pulses were sent during the listening period. Activity was observed on all geophones during the real-time operation. LSPE processing was terminated at 1500 G.m.t., and the instrument was commanded to STANDBY select at 1501 G.m.t. The next passive listening period is scheduled for 17 March.

15 March 1974

G.m.t.: 1300

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to $0 N$ at 1451 G.m.t., 12 March, for lunar night. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, 0FF; and back-up heater, ON. The electronics temperature (AM-41) is currently 10.1 F .

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded ON for the lunar night at 1514 G.m.t., 10 March. The instrument's mirror temperature (AJ-11) currently is reading $-13.0^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

$$
\text { Apol10 } 16 \text { ALSEP }
$$

Central station	status from 8 March 1974, 1300 G.m.t., to 15 March, 1974, 1300 G.m.t. Sunset at the Descartes Site occurred on 14 March for the 24 th lunar day. The DSS-1 heater (10 watts) was commanded ON at 1323 G.m.t., 14 March for lunar night operations when the average thermal plate decreased to $38.9^{\circ} \mathrm{F}$. The 18 -hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The signal strength from transmitter "B" is reported between -135.0 and -145.0 dbm by the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUT0 ON; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The instrument's assembly temperature returned on-scale, 14 March, at a sun angle of 176.5°. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM data have been valid since 17 August 1973. 656 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The Active Seismic Experiment is currently in STANDBY OFF. Present operations are per Apollo 16 ALSEP, SMEAR 27.

Apol1o 15 ALSEP

Apo110 14 ALSEP

[^1]Apollo 12 ALSEP

Gulyoedz
fo 47buzu7s
$($ S77em 01)

Status as of 1500 G.m.t., 14 March 1974, was as follows:

N/A
Standby
Standby
Standby N/A

Total Days of Operation Total Commands to Date Sun Angle

Input Power APM Status (AB-13) Power Dump Status (AB-14)
Experiment Status Avg Thermal Plate Temp LACE Temp (AM-4I) -EAM Temp HFE Temp Ref 1 (DH-13)

A partial eclipse of the moon occurred between the hours of 2337 G.m.t., 9 December 1973, and 0352 G.m.t., 10 December 1973. Initially it was thought that the Apollo ALSEP instruments would not be significantly affected as the closest approach of the eclipse umbra was about 1050 km south of the most southern ALSEP site (Apollo 16 ALSEP, which has no solar measurement device).

Data analysis of the Apollo 14 ALSEP and Apollo 15 ALSEP Dust, Thermal, and Radiation Engineering Measurements Packages (DTREM) used for measuring space radiation damage to solar cells and indirectly measuring the reflected infrared brightness temperature, show that the December 1973 eclipse did have an effect on, at least, the Apollo 14 and 15 scientific packages. The DTREM data also reflects the December eclipse to be the darkest penumbral eclipse experienced to date.

Prior to the start of the eclipse, the ALSEP instruments were encountering lunar mid-day environment. Listed below are the negative temperature excursions experienced by the Apollo 14 and 15 scientific instruments:

	10 December 1973/Time Group(G.m.t.)			DTREM \triangle Temperature
	Start Of		Return	
	Shadow	Minimum	To Init	
	Crossing	Light	Condit	
Apol1o 14 ALSEP	$00 \mathrm{~h} 14^{\mathrm{m}}$	$01 \mathrm{~h} 39^{\text {m }}$	$03 \mathrm{~h} 21^{\mathrm{m}}$	$60^{\circ} \mathrm{C}$
Apollo 15 ALSEP	$00{ }_{39}{ }^{\text {m }}$	$01{ }_{51}{ }^{\text {m }}$	$02{ }_{56}$	$25^{\circ} \mathrm{C}$

It is requested that any organization having comments, questions, or suggestions concerning this note of interest, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

22 March 1974
G.m.t.: 1300

Apol10 17 ALSEP
Midnight of the 16 th lunation at the Taurus Littrow lunar site occurred on 20 March. The central station is operating normally. Downlink signal strength from the 30 -foot antenna tracking stations is reported at $-139.0 \pm 4.0 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain (by internally generated 61 -hour pulses) continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples is $108 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.4^{\circ} \mathrm{K}$ a $\overline{\mathrm{t}}$ probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe \#2 on 20 March.

It appears that the Lunar Surface Gravimeter Experiment's thermat control circuitry is operating out of regulation. Playback of the ISG's data indicated that the thermal control circuit's anomalous operation occurped at 0116 G.m.t., 15 March 1974. Since that time numerous ground command sequences have been initiated to regain control of the instrument's thermal control switching functions. As part of this procedure the LSG was commanded to STANDBY SEIECT from 1750 G.m.t., 16 March, to 0033 G.m.t., 18 March. Cyclic commanding of the LSG's slave heater was initiated 21 March. On 22 March, it is planned to command the experiment to STANDBY SELECT until 24 March, at which time the next operational steps will be implemented. The LSG is currently ON and configured as follows: seismic gain LOW, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine sorews driven to the extreme lower position, and the tilt servo motors in an intermediate position. Investigation of this anomaly is continuing.

The Lunar Seismic Profiling Experiment is in STANDBY select. The experiment was commanded ON at 0123 G.m.t., 18 March, and to LSPE data format processing (high bit rate) at 0130 G.m.t. Two geophone calibration pulses were sent during the listening period. No activity was observed during the real-time operation. LSPE processing was terminated at 0200 G.m.t., and the instrument was commanded to STANDBY select at 0201 G.m.t. The next passive listening period is scheduled for later today.

ALSEP PERFORMANCE SUMMARY REPORT (continued)

22 March 1974
G.m.t.: 1300

The Iunar Atmospheric Composition Experiment is curpently in OPERATE SELECT ON, without processing scientific data. A sequence of operational commands were executed by the experiment during real-time support 20 March 1974. The LACE's telemetry data again indicated positive signs of change during the 35 minutes that the multiplier high voltage power supply and filament \#2 were operated. Filament \#2 had not been operated successfully since 19 October 1973. The positive sign of this lunar night thermal aycling procedure is that the LACE accomplished one complete scientific data sweep before experiencing a breakdown of the experiment's high voltage power supply. The experiment was reconfigured to its lunar night operational mode, and curpently remains in this mode. The LACE will continue to be cycled from ON to OFF to maintain the electronics temperature below the previously established $125^{\circ} \mathrm{F}$ limit. No periodic thexmal cycling check is planned within the next sixty days.

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature ($\mathrm{AJ}-11$) currently is reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Operational status from 15 March 1974, 1300 G.m.t., to 22 March 1974, $1300 \mathrm{G.m.t}$.	
Central station	This ALSEP experienced midnight of its 24 th lunation today. The DSS-1 heater (10 watts) is ON for lunar night operations. Inhibiting of the 18-hour timer output pulses is continuing. The $30-f o o t ~ a n t e n n a ~ t r a c k i n g ~ s t a t i o n s ~ r e p o r t ~ a ~$
signal strength of -136.5 ± 2.5 dbm from transmitter "B".	

 are being conducted periodically.
Apol10 14 ALSEP

Central station	Midnight at the Apollo 14 site will occur on 23 March. Transmitter "A" signal strength was reported between -135.0 dbm and -143.0 dbm by the 30 -foot antenna tracking stations. The DSS-1 heater (10 watts) is 0 N for lunar night operation. At 0832 G.m.t., 19 March, the Central Station responded to a spurious cormand (octal 056, DSS-2, 5-watt heater ON). The Ascension ground station reported receipt of a CVW in the downtink. After verification during real-time support, the DSS-2 (5 watt) heater was cormanded OFF by transmission of octaL 055 at 1356 G.m.t., 19 March, without incident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP) The instrument heater is operating in the AUTO ON mode for lunar night operation. During the limited real-time support periods of this week no significant seismic events have been observed.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument was commanded $0 N$ at 1251 G.m.t., 16 March, and is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON for the remainder of this lunation.
```Charged particle lunar environmental experiment```	The experiment was commanded $O N$ at 1253 G.m.t., 16 March, and is operating in the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of $A C-03$, analyzer $A$ voltage to 2280 vdc , at which time the instrument will be commanded to STANDBY select.


APOLLO 15 ALSEP

APOLLO 14 ALSEP



APOLLO 17 ALSEP

 during last lunation at a simizar sun angle.

29 March 1974
G.m.t.: 1300

Apol10 17 ALSEP
Sunrise of the scientific station's 17th lunation occurred on 28 March 1974. The central station's data subsystem electronics, thermal plate, and external structural temperatures continue to rise within anticipated limits. The downlink received signal is reported between -134.5 dbm and -144.5 dbm . The procedure of inhibiting the package's internally generated 61 -hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods.

Telemetry parameter $A B-11$, which reports the status of the Lunar Surface Profiling Experiment, has failed (LOW, all zero:s) in the OFF/STANDBY condition. The following table depicts the changes in $A B-11$ since the initial occurpence:

Date/Time(G.m.t.)
26 Sep 73/1338
28 Sep 73/1243
28 Sep 73/1246
02 Oct 73/0344
03 Oct 73/1603
16 Oct 73/2303
06 Nov 73/2216
11 Nov 73/1416
16 Mar 74/1351
17 Max 74/2353

AB-11 LSPE	Status	Lunar Cycle
Indicated	Actual	Day/Night
STANDBY	STANDBY	Night
OT	STANDBY	Night
STANDBY	STANDBY	Night
OT	STANDBY	Night
STANDBY	STANDBY	Day
OT	STANDBY	Night
STANDBY	STANDBY	Day
OT	STANDBY	Day
OT	STANDBY	Night
OFF	STANDBY	Night

The telemetry point still indicates an on status when the experiment is commanded ON and the failure is only in the OFF/STANDBY condition.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. Lunar surface temperature as measured by the HFE thermocouples is $106.0^{0}+8^{0} \mathrm{~K}$. Subsurface temperatures at 230 cm depth are $256.5^{\circ} \mathrm{K}$ at probe \#T and $256.8^{\circ} \mathrm{K}$ at probe \#2 as of 27 March.

The Iunar Surface Gravimeter Experiment was commanded to STANDBY seleet at 1543 G.m.t., 27 March to further investigate the slave heater anomaly. During real-time support on 29 March the LISG will be commanded ON and configured as follows: seismic gain LOW, integrator shorted mode, bias out, post amplifier gain at increment 7, the coarse and fine screws driven to the extreme lower position, the tilt semo motors in an intermediate position, and the slave heater OFF. The instrument will be operated in this configuration for the remainder of this lunar day (Apollo 17 ALSEP, SMEAR 62).

29 March 1974
G.m.t.: 1300

The Lunar Surface Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1457 G.m.t., 27 March, and to LSPE data format processing (high bit rate) at 1500 G.m.t. Two geophone calibration pulses were sent during the listening period. No activity was observed during real-time operation. LSPE processing was terminated at 1530 G.m.t., and the instrument was commanded to STANDBY select at 1535 G.m.t. The next passive listening period is scheduled for 1 April 1974.

The Lunar Atmospheric Composition Experiment is currently ON without processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, 0FF; and backup heater, ON. The electronics temperature (AM-41) was reading $-2.3^{\circ} \mathrm{F}$ on 27 March.

The Lunar Ejecta and Meteorites Experiment is $0 N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature ( $\mathrm{AJ}-11$ ) was reading $-17.4^{\circ} \mathrm{F}$ on 27 March .

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Apol10 15 ALSEP	
Operation	status from 22 March 1974, 1300 G.m.t., to 29 March 1974, 1300 G.m.t.
Central station	Midnight of the station's 33rd lunation occurred on 23 March 1974. The transmitter "A" downlink signal strength is reported between -134.0 dbm and -140.0 dbm.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The seismic event noted duming real-time support on Apollo 16 and 12 ALSEPS was not observed on the Apozzo 15 ALSEP.
Lunar surface magnetometer experiment	The instrument is currently $0 N$. All engineering and science data continue to be incoherent. The instrument continues to be monitored for any change in status.
Solar wind spectrometer experiment	The instrument remains in STANDBY (Apollo 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently operating with the Channeltron high voltages commanded $O N$ and in full automatic stepping seqeunce ( $0-127$ frames).
Heat flow experiment	The instrument measurement, TREF 1, is operating normally. The lunar surface temperature is $84.9^{0} \mathrm{~K}$ as indicated by the cable thermocouples. The sub-surface temperature is 253.5 K at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of 251.0 K at its lower-most point as of 27 March. Ring bridge surveys are obtained periodically. An unexpected functionat change of the HFE occurred at 0020 G.m.t., 23 March, when the Guam tracking station noted a command verification word of octal 142 in the downlink signal. The HFE's probe \#1 select conmand was corrected by ground cormand with no further problems at 1346 G.m.t., 25 Mareh.

Apol10 14 ALSEP

Operational

$$
\begin{aligned}
& \text { Central station } \\
& \text { Passive seismic } \\
& \text { experiment }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lunar surface } \\
& \text { magnetometer } \\
& \text { experiment } \\
& \text { Solar wind } \\
& \text { spectrometer } \\
& \text { experiment } \\
& \text { Suprathermal ion } \\
& \text { detector } \\
& \text { experiment }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Apollo } 12 \text { ALSEP } \\
& \text { status from } 22 \text { March 1974, } 1300 \text { G.m.t., to } 29 \text { March 1974, } 1300 \text { G.m.t. } \\
& \text { Midnight of the } 54 \text { th lunar day occurred on } 25 \text { March } 1974 \text { at the ALSEP site in } \\
& \text { the Ocean of Storms. A signal strength of }-137.0 \pm 2.5 \text { dbm from transmitter "B" } \\
& \text { was reported by the tracking stations. The DSS-1 heater ( } 10 \text { watts) is ON for } \\
& \text { lunar night operations. } \\
& \text { The instrument is configured for seismic network congruity (Ref. Apollo } 16 \text { ALSEP). } \\
& \text { The z-axis drive motor is 0N for lunar night operation. The instrument's long } \\
& \text { period z-axis responded to all calibration commands this lunar night. The in- } \\
& \text { stmument had failed to respond to calibration commands during real-time supportt } \\
& \text { the previous three lunar nights. A seismic event was noted during the periodic } \\
& \text { real-time support periods of this instrument between } 1432 \text { and } 1451 \text { G.m.t., } 25 \\
& \text { March } 1974 \text { (Ref. ApoZlo } 16 \text { ALSEP). } \\
& \text { Scientific and engineering data outputs remain invalid. } \\
& \text { The instrument is currently in the normal gain mode and is recording solar wind } \\
& \text { plasma data for subsequent long-term analysis. } \\
& \text { Currently the SIDE is ON in the full automatic stepping sequence with Channeltron } \\
& \text { high voltages ON. }
\end{aligned}
$$




Status $u$ of 1700 G.m.t., 27 March was as follows:


## ALSEP PERFORMANCE SUMMARY REPORT

5 April 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not available (inadvertent scheduling error) at the following times:

ALSEPS	Date	GMT   $12,14,15,16,17$	LOS	GMT   AOS

Apol10 17 ALSEP
Noon of the scientific station's 17th lunation occurred on 4 April at the Taurus Littrow site. Downlink signal strength is reported at $-140.0+5.0$ dbm from transmitter "A". Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during realtime support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 4 April the lunar surface temperature, as measured by the HFE's thermocouples, was $374.0 \pm 8^{\mathrm{C}} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment was conmanded to ON at I755 G.m.t., 29 March, to further investigate the slave heater anomaly. The instmument is configured as follows: seismic gain LOW, integrator shorted mode, bias out, post amplifier gain at increment 7, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the slave heater OFF. The instrument will be operated in this configuration for the remainder of this lunar day (Apollo 17 ALSEP, SMEAR 62).

The Lunar Surface Profiling Experiment is in STANDBY select. The experiment was commanded ON at 0611 G.m.t., 2 April, and to LSPE data format processing (high bit rate) at 0615 G.m.t. Two geophone calibration pulses were sent during the listening period. No activity was observed during real-time operation. LSPE processing was terminated at 0645 G.m.t., and the instrument was commanded to STANDBY select at 0646 G.m.t. The next passive listening period is scheduled for 12 April 1974.

The Lunar Atmospheric Composition Experiment is currently OFF. The instrument was commanded OFF at 2159 G.m.t., 31 March 1974.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

5 Apri1 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is presently 0FF. The instrument was commanded 0FF at 2159 G.m.t., 31 March 1974.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol10 16 ALSEP

Central station	Sunrise of the 25th Tunar day occurred on 30 March at the Descartes Site. The DSS-1 heater (10 watts) is OFF for lunar day operations. The 18-hour output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The 30 -foot antenna tracking stations report a signal strength between -135.0 dbm and -139.5 dbm from transmitter " B ".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The instrument's sensor temperature (DL-07) indicated 8 ff-scale HIGH at the beginning of real-time support on 4 April (sun angle $73.2^{\circ}$ ). No significant seismic events were observed during the limited realtime support of this instrument.
Lunar surface magnetometer experiment	The LSM continues in the full operational mode and all data have been valid since 17 August 1973. The instrument has accomplished 672 flip calibration sequences since activation.
Active seismic experiment	The Active Seismic Experiment is currently in standby OFF. The instrument was commanded to high bit rate ON, 2 April 1974, to verify operational status. Operation was satisfactory at this time. The check was performed per Apollo 16 ALSEP, SMEAR 27.


Operation	status from 29 March 1974, 1300 G.m.t., to 5 April 1974, 1300 G.m.t.
Central station	Sunrise of the station's 34 th lunation occurred on 30 March. Transmitter "A" downlink signal strength at the 30 -foot antenna tracking stations is reported between -133.0 dbm and -138.5 dbm . At 0932 G.m.t., 4 Apriz, the station experienced a functional change from transmitter "A" to Transmitter "B" (octal 015). A CVW was not observed in the ApolZo 15 AISEP downiink, however, a 14.8 KHZ frequency shift was observed by the Goldstone tracking station. At 1408 G.m.t., 4 April, Transmitter "A" (octal 012) was reselected by command through mission control without incident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. No significant seismic events were observed during this limited real-time support period.
Lunar surface magnetometer experiment	The instrument is currently ON. All LSM engineering and science data continue to be incoherent.
Solar wind spectrometer experiment	The instrument remains in STANDBY (Apol10 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument is currently in STANDBY. Cyclic commanding of the experiment was initiated for the remainder of this lunar day on 3 April (Apol10 15 ALSEP, SMEAR 47).
Heat flow experiment	The HFE is operating in the normal gradient mode. On 4 April the lunar surface temperature was $360.2^{0} \mathrm{~K}$ as indicated by the cable thermocouples. The subsurface temperature was $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.0^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are obtained periodically.

Apollo 14 ALSEP

Apol1o 12 ALSEP




Status as of 1400 G.m.t., 4 April 1974, was as follows:


11 Apri1 1974
G.m.t.: 1300

Apo 11017 ALSEP
Sunset of the scientific station's 17th lunation will occur on 12 April at the Taurus Littrow site. Downlink signal strength is reported at $-142.5+3.5 \mathrm{dbm}$ from transmitter " A ". Automatic power management continues $\overline{\text { to }}$ distribute power for optimum thermal control. Transmission of command octal 174, to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 10 April the lunar surface temperature, as measured by the HFE's thermocouples, was $226+8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.4^{0} \mathrm{~K}$ at probe \#T and $256.7^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Profiling Experiment is currently in STANDBY select. The next passive listening period is scheduled for 12 April 1974.

The Lunar Atmospheric Composition Experiment is in STANDBY. The experiment had been commanded from OFF to STANDBY during this report period at 1414 G.m.t., 9 April, to maintain thermal stability of the instrument. At this time the electronics temperature had decreased to $45.1^{\circ} \mathrm{F}$ at a sun angle of $137.1^{\circ}$. The instrument will be commanded 0 N for the remainder of this lunation later today. The LACE electronics temperature (AM-41) was 102.2 F on 10 April .

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded ON for the remainder of this lunation at 1436 G.m.t., 8 April, when the mirror temperature (AJ-11) decreased to $180.5^{\circ} \mathrm{F}$ (Apo110 17 ALSEP, SMEAR $49 \mathrm{R}-3$ ) at a sun angle of $137.1^{\circ}$. The instrument's mirror temperature (AJ-11) was $166.3^{\circ} \mathrm{F}$ on 10 April.

On 10 Aprit an attempt was made to configure the Innar Surface Grovimeter Experiment for lunar night operation. The intent of the change was to drive the beam to a new position (approximately +5.8 vac as indicated by $D G-01$ at $49^{\circ} \mathrm{C}$ ) using the coarse/vernier slew motors. It was expected that the instrument would stabilize at about $79^{\circ} \mathrm{C}$ during lunar night and the accompanying temperature drift of the sensor would eventually recenter the beam at 0.0 volts. This operational mode would provide a means of measuring gravity wave coincident signals during some portion of lunar night.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

11 April 1974
G.m.t.: 1300

The attempt to drive the beam to a seismic output ( $D G-01$ value) of +5.8 Vac was not successful. Four gross slew up commands were executed. These commands changed the seismic output from a value of -1.03 Vdc to +0.92 Vdc in successively smaller increments. It was decided to delay any further attempts to change the beam position until a more efficient method of change could be proposed and agreed upon.

The LSG is operating and configured as follows: seismic low gain, integrator shorted mode, bias OUT, post amplifier gain at increment seven (7), the coarse screw driven to the fourth gross siew up from the bottom, the fine screw driven to the extreme lower position, the titt servo motors in an intermediate position, and slave heater ON.

The ISG will remain in this operational configuration pending analysis resulting from the unsuccessful sensor beam re-centering attempt.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apo110 16 ALSEP

Apo110 15 ALSEP

Central station	Noon of the station's 34 th lunation occurred on 6 April at the Hadley Rille site. Transmitter "A" downlink signal strength at the 30 -foot antenna tracking stations is reported between -133.0 dbm and -138.4 dbm .
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire and short period calibration circuitry is cycling normally as a result of the central station's data subsystem timer outputs. On 5 April the instrument's sensor temperature (DL-07) was offscale HIGH (sun angle 75.8 ${ }^{\circ}$ ) and returned on-scale ( $\mathrm{DL}-07=138.2^{\circ} \mathrm{F}$ ) (sun angle $133.9^{\circ}$ ) on 10 April. No significant seismic events were observed during this limited real-time support period.
Lunar surface magnetometer experiment	The instrument is currently $O N$. All LSM engineering and science data continue to be incoherent.
Solar wind spectrometer experiment	The instrument remains in STANDBY select (Apolio 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument has been operating with the Channeltron high voltages commanded $O N$ and in full automatic stepping sequence ( $0-127$ frames) since 1405 G.m.t., 9 April 1974.
Heat flow experiment	The HFE is operating in the normal gradient mode. The lunar surface temperature was $345.6^{\circ} \mathrm{K}$ on 10 April as indicated by the cab7e thermocouples. The subsurface temperature was $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $250.1^{\circ} \mathrm{K}$ at its lower-most point. Ring bridge surveys are obtained periodically.

$$
\begin{aligned}
& \text { Central station } \\
& \text { Passive seismic } \\
& \text { experiment } \\
& \text { Active seismic } \\
& \text { experiment } \\
& \text { Suprathermal ion } \\
& \text { detector/cold } \\
& \text { cathode gauge } \\
& \text { experiment } \\
& \text { Charged particie } \\
& \text { lunar } \\
& \text { environmental } \\
& \text { experiment }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Apollo } 14 \text { ALSEP } \\
& \text { status from } 5 \text { April 1974, } 1300 \text { G.m.t., to } 11 \text { April 1974, } 1300 \text { G.m.t. } \\
& \text { Noon of the 40th lunation at the Apollo } 14 \text { site occurred on } 8 \text { April. The } 30-f 00 t \\
& \text { antenna tracking stations report a signal strength from transmitter "A" at }-138.0 \\
& \pm 4.0 \text { dbm. The DSS-1 heater ( } 10 \text { watts) is 0FF for lunar day operations. } \\
& \text { The instrument is configured for seismic network congruity (Ref. Apollo } 16 \text { ALSEP). } \\
& \text { The instrument's heater is operating in the FORCED OFF configuration to minimize } \\
& \text { heating during lunar day. No significant seismic events have been observed dur- } \\
& \text { ing the limited real-time support periods of this report. } \\
& \text { The experiment is currently in STANDBY per Apollo } 14 \text { ALSEP, SMEAR } 86 \text {. } \\
& \text { The experiment remains in STANDBY and present plans are to leave it in this con- } \\
& \text { figuration the remainder of the lunar day to preclude instrument mode changes at } \\
& \text { elevated temperatures. } \\
& \text { The CPLEE is currently in STANDBY select. Present plans are to leave the experi- } \\
& \text { ment in STANDBY select until after sunset of this lunation, } 16 \text { April } 1974 \text {. }
\end{aligned}
$$






786




TM POINT
APOLLO 12 ALSEP

#  



19 Apri1 1974
G.m.t.: 1300

On 21 April 1974 the Apollo 16 ALSEP will have completed two years of unintermpted operation.

Apol10 17 ALSEP
Midnight of the 17 th lunation occurs today, 19 April, at Taurus Littrow. The central station is operating normally with the automatic power management circuit functioning as designed. The structural components temperatures are tracking the temperature profile of previous lunations. The procedure of inhibiting the internally generated 61-hour pulse continues with the command (octal 174) being sent to the command decoder switch during real-time support periods. Downlink RF signal strength is reported as $-138.0 \pm 3.0 \mathrm{dbm}$ from transmitter "A".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 18 April lunar surface temperature, as measured by the HFE thermocouples, was $109.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The LSG is operating and configured as follows: seismic low gain, integrator shorted mode, bias OUT, post amplifier gain at increment seven (7), the coarse screw driven to the fourth gross slew up from the bottom, the fine screw driven to the extreme lower position, the tilt servo motors in an intermediate position, and slave heater 0 N . The experiment's sensor temperature (DG-04) has remained offscale HIGH since 11 April 1974.

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON   G.m.t.	HBR ON   G.m.t.	HBR 0FF   G.m.t.	LSPE STBY   G.m.t.	Geophone   Cals	}{}	
12 Apr	1501	1515	1545	1547			Responses   16 Apr   1351
1400	1430	1432		2	Responses		

The next passive listening period is planned for 26 April 1974.
The Lunar Atmospheric Composition Experiment was commanded from STANDBY to $0 N$ at 1418 G.m.t., 11 April, but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, 0 FF ; and back-up heater, ON. The electronics temperature (AM-41) was $3.2^{\circ} \mathrm{F}$ on 18 April.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

19 Apri1 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol10 16 ALSEP

Apol1o 15 ALSEP


$$
\begin{aligned}
& \text { Apollo } 14 \text { ALSEP } \\
& \text { Operational status from } 11 \text { April } 1974,1300 \text { G.m.t., to } 19 \text { April 1974, } 1300 \text { G.m.t. }
\end{aligned}
$$

Central station
Passive seismic
experiment
Active seismic
experiment
Suprathermal ion
Charged particle
lunar
environmental
experiment





APOLLO 14 ALSEP


APOLLO 17 ALSEP


## ALSEP PERFORMANCE SUMMARY REPORT

26 Apri1 1974
G.m.t.: 1300

Apoilo 16 ALSEP, the fourth nuclear-powered scientific data station installed on the moon, began its third year of operation on 21 April 1974.

## Apol10 17 ALSEP

Midnight of the 17th lunation at the Taurus Littrow lunar site occurred on 19 April. The central station is operating normally. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain (by internally generated 61-hour pulses), continues during real-time support periods. Downlink signal strength from the 30 -foot antenna tracking stations was reported at $-137.0 \pm 3.0 \mathrm{dbm}$ from transmitter "A".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples was $106.4 \pm 8{ }^{0} \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures were $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2 on 24 April.

The Lunar Surface Gravimeter regained thermal stabilization at 1200 G.m.t., 20 April. The instrument's sensor temperature was onscale at the start of reat-time support on $19 \mathrm{April}\left(D G-04=52.3^{\circ} \mathrm{C}\right.$ at 1425 G.m.t.) and continued to decrease until 1200 G.m.t., 20 April, when the temperature stabilized at $49.2^{\circ} \mathrm{C}$. The LSG remained at this stable temperature through the start of real-time support on 22 April. The instrument was successfully re-configured to its operational mode prior to the 15 March 1974 anomaly per Apollo 17 Smear ALSEP 66. The LISG configuration is: seismic gain high, integrator shorted (open loop), bias out, post amplifier gain at increment 15, slave heater ON, coarse and fine screws driven to the extreme lower position, tilt servo motors in an intermediate position and sensor beam near center.

The Lunar Seismic Profiling Experiment is in STANDBY. The next passive listening period is scheduled for later today.

The Lunar Atmospheric Composition Experiment is 0 N , without processing scientific data due to high voltage power supply and filament \#2 OFF. The electronics temperature (AM-41) was $3.2^{\circ} \mathrm{F}$ on 24 April and is tracking the previous lunar night temperature profile.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) was reading $-17.4^{\circ} \mathrm{F}$ and tracking the previous lunar night temperature profile on 24 April.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Eranch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Operational	status from 19 April 1974, 1300 G.m.t., to 26 April 1974, 1300 G.m.t.   On 21 April 1974 the Apolto 16 ALSEP completed its second year of uninterpupted operation as a scientific data gathering station on the Iunar surface.
Central station	This ALSEP experienced midnight of its 25 th lunation on 20 April. The DSS-1 heater ( 10 watts) is $0 N$ for lunar night operations. Inhibiting of the 18 -hour timer output pulses is continuing. The 30 -foot antenna tracking stations report a signal strength of $-136.5 \pm 1.5 \mathrm{dbm}$ from transmitter " B ".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The uncage/arm fire circuit is configured to the OT state. The long period y-axis, which has experienced sluggish leveling since 9 Febmary 1972 did not respond to leveling commands on 22 April. The $y$-axis had been leveled since 29 January 1974. No significant seismic events were noted during the limited real-time support of this instrument.
magnetometer experiment	The LSM data have been valid since 17 August 1973. 690 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
experiment	The Active Seismic Experiment is currently 0FF. Present operations are per Apollo 16 ALSEP, SMEAR 27.

Apollo 15 ALSEP

Apol1o 14 ALSEP


$$
\begin{array}{ll}
\text { Apollo } 12 \text { ALSEP } \\
\text { Operational status from } 19 \text { April } 1974,1300 \text { G.m.t., to } 26 \text { April } 1974,1300 \text { G.m.t. } \\
\text { Central station } & \begin{array}{l}
\text { Midnight of the } 55 \text { th lunar night occurred on } 23 \text { April. The central station DSS-1 } \\
\text { heater (10 watts) is ON for lunar night operations. A signal strength of - } 137.5 \\
\text { dbm to }-142.5 \text { dbm from transmitter "B" was reported by the } 30-f o o t ~ a n t e n n a ~ t r a c k-~
\end{array} \\
\text { ing stations. }
\end{array}
$$

Status as of 1600 G.m.t., 24 April 1974, was as follows:
APOLLO 16 ALSEP
 *Value in parentheses indicates RTG output

APOLLO 17 ALSEP

Total Days of Operation
Total Commands to Date
Sun Angle
63.5w(63.8w) DSS-1 ON(10w)
$\qquad$


TM POINT

[^2]3 May 1974
G.m.t.: 1300

ALSEP data could not be processed by JSC from the analog range data tapes during the following times:

ALSEP	DATE	G.m.t.	SITE	REMARKS
Apolzo 14	04 Mar	1327/1502(193 ${ }^{\text {m }}$ )	TAN	Station Problem
Apolzo 16	09 Mar	0011/0245 (2h34 ${ }^{\text {m }}$ )	MAD	Station Problem
Apolzo 17	09 Mar	1040/1118(38 ${ }^{m}$ )	ROS	Hoisy Data

It must be noted that these data losses are non-recoverable.
Apol10 17 ALSEP
Noon of the scientific station's 18th lunation will occur on 4 May at the Taurus Littrow site. Downlink signal strength is reported at $-140 \pm 5.0$ dbm from transmitter "A". Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 2 May the lunar surface temperature, as measured by the HFE's thermocouples, was $360 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near genter. The experiment sensor temperature remains stabilized at $49.2^{\mathrm{C}} \mathrm{C}$ (slave heater ON ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	LSPE STBY G.m.t.	Geophone Cals	Events
26 Apr	1449	1515	1545	1547	2	None
01 May	1740	1742	1812	1816	2	Respons

The next passive listening period is planned for 10 May 1974.
The Lunar Atmospheric Composition Experiment is currently 0FF. The instrument was commanded 0FF at 1440 G.m.t., 29 April 1974. The LACE electronic temperature (AM-41) was reading $72.1^{\circ} \mathrm{F}$ on 2 May.

3 May 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1418 G.m.t., 30 April 1974, when the mirror temperature (AJ-11) was $192.5^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 16 ALSEP

Central station	Sunrise of the 26th lunation occurred on 28 Apri1 1974. The DSS-1 heater ( 10 watts) was commanded OFF on 28 April when the average thermal plate temperature was $56.7^{\circ} \mathrm{F}$. The 18 -hour timer output pulses continue to be inhibited. The 30 -foot antenna tracking stations report a signal strength between -135.0 dbm and -138.0 dbm from transmitter "B".
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The long period $y$-axis did not respond to leveling commands from 22 April to 26 April 1974 but did respond on 28 April 1974 when leveling commands were executed. The seismometer's long period y-axis has previously experienced this leveling anomaly during lunar night operations. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM data have been valid since 17 August 1973. 696 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The Active Seismic Experiment is currently OFF. The instrument was commanded to high bit rate ON, 1 May 1971, to verify operational status. Operation was satisfactory at this time. The check was performed per Apollo 16 AISEP, SMEAR 27.


	Apollo 1
Operational	status from 26 Apri1 1974, 1300 G.m.t., to 3 May 1974, 1300 G.m.t.
Central station	Sunrise of the 41 st lunation at the Apollo 14 site occurred on 30 April. The 30-foot antenna tracking stations report a signal strength from transmitter "A" at $-138.5 \pm 4.5 \mathrm{dbm}$. The DSS -1 heater ( 10 watts) is OFF for lunar day operations. Data processor " $Y$ " was verified by command on 1 May 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater will be commanded to FORCED OFF on 5 May to minimize heating during lunar day operations. During the limited real-time support periods no significant seismic events have been observed.
Active seismic experiment	The experiment is currently in STANDBY. The instrument was commanded to high bit rate ON, 1 May 1974 to verify operational status. The output of geophones \#2 and \#3 appeared abnormal as had initially been observed on 3 Janaiary 1974. The status check was performed per Apozto 11 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently in STANDBY. At 0737 G.m.t, 26 Aprit, the SIDE experienced a spurious functional change from ON to STANDBY (without a CVW reported in the downink) as reported by the Guam Tracking Station. The SIDE was re-initialized to the full automatic stepping sequence with Channeltron high voltages ON at 1008 G.m.t., 26 April, by mode 1 command from the Carnarvon Tracking Station. The SIDE again experienced a spurious functional change to STANDBY (without a CVW in the downlink) at 0136 G.m.t., 1 May, as reported by the Hawaii Tracking Station. Present plans are to leave it in this configuration the remainder of the lunar day.
```Charged particle lunar environmental experiment```	The CPLEE is currently in STANDBY. The experiment was commanded to STANDBY at 1238 G.m.t., 2 May. Present plans are to leave the experiment in STANDBY until after sunset of this lunation, 15 May 1974.

Apol1o 12 ALSEP

Central station	Sunrise of the 56th lunation occurred on 1 May at the ALSEP site in the Ocean of Storms. The signal strength is between -136.0 dbm and -142.0 dbm from transmitter "B" as reported by the 30 -foot antenna tracking stations. The DSS-1 heater (10 watts) was commanded OFF for lunar day operations on 1 May when the average thermal plate temperature was $38.8^{6} \mathrm{~F}$. Data processor " Y " was verified by command on 1 May 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The z-axis drive motor was commanded OFF for lunar day operation on 1 May 1974. At the beginning of real-time support on 1 May jt was noted that the PSE sensor temperature had returned onscale ($D L-07=126.3^{\circ} \mathrm{F}$, sun angle $=4.2^{\circ}$). No significant seismic events were observed during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid. At the start of real-time support on 26 April 1974 it was noted that the instrument had experienced a spurious functional change (Octal 131, fiip/cal initiate) without a CVV reported in the downlink. The ISM sensors were re-configured to the 180° position (Octal 131, flip/cal initiate) by mission control at 1347 G.m.t., 26 ApriI, without incident.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	The SIDE is currently $O N$ and in the automatic stepping sequence. On 4 May it is planned to start cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages 0 N to experiment power OFF in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$ during the lunar day.

Status as of 1400 G.m.t., 2 May 1974, was as follows:
APOLLO 15 ALSEP

$310.2^{\circ} \mathrm{K}$

ALSEP PERFORMANCE SUMMARY REPORT

10 May 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not avaitable at the following times:

ALSEP	DATE	G.m.t.	LOSS		SITE		
12,14,15,16,17	REMARKS						
12	27 Mar 74	$0906 / 1030$	$1_{1}^{h} 4_{m}^{m}$		GWM		Station Problem
:---							
16							

It must be noted that these data losses are non-recoverable.
Apol10 17 ALSEP
Sunset of the scientific station's 18th lunation will occur on 11 May at the Taurus Littrow site. Downlink signal strength is reported at -142.0 ± 3.0 dbm from transmitter "A". Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 9 May the lunar surface temperature, as measured by the HFE's thermocouples, was $258 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{0} \mathrm{~K}$ at probe $\# 1$ and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at 49.2 C (slave heater 0 N).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next passive listening period is planned for later today.

The Lunar Atmospheric Composition Experiment is currently in STANDBY. The instrument was commanded to STANDBY at 1402 G.m.t., 9 May 1974. The LACE electronic temperature (AM-41) was reading $32.7^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is $0 N$. The instrument was commanded 0 N at 1357 G.m.t., 9 May 1974, when the mirror temperature ($\mathrm{AJ}-11$) was 151.2 F .

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 15 ALSEP

ALSEP PERFORMANCE SUMMARY REPORT

17 May 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downtink data was not available during the following period. It should be noted that this data loss is non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS
14	15 May 74	0150/0200	$0^{h} 10^{m}$	ACN	Station Problem

Apo110 17 ALSEP
Midnight of the scientific station's 18th lunation will occur on 18 May at the Taurus Littrow site. Downlink signal strength is reported at $-142.0 \pm 3.3 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 16 May lunar surface temperature, as measured by the HFE thermocouples, was $111.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.4^{\circ} \mathrm{K}$ at probe \# 1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	LSPE STBY G.m.t.	Geophone Cals	Events
10 May	1412	1415	1445	1445	2	Responses
16 May	0255	0300	0330	0332	2	None

The next passive listening period is planned for 24 May 1974.

ALSEP PERFORMANCE SUMMARY REPORT (continued)

17 May 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to $0 N$ at 1407 G.m.t., 10 May, but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was $3.2^{\circ} \mathrm{F}$ on 16 May.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature ($\mathrm{AJ}-11$) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 15 ALSEP

Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. No significant seismic events were observed during the limited real-time support periods.
Lunar surface magnetometer experiment	The instrument is currently $0 N$. All engineering and science data continue to be incoherent.
Solar wind spectrometer experiment	The instrument remains in STANDBY due to excessive power consumption (Apol10 15 ALSEP, SMEAR 46).
Suprathermal ion detector/cold cathode gauge experiment	The instrument has been operating with the Channeltron high voltages commanded $O N$ and in full automatic stepping sequence ($0-127$ frames) since 1337 G.m.t., 8 May 1974.
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was $93.8^{\circ} \mathrm{K}$ on 16 May as indicated by the cable thermocouples. The subsurface temperature was $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.1^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Apol10 14 ALSEP

	Apol10 14 ALSEP
Operational status from 10 May 1974, 1300 G.m.t., to 17 May 1974, 1300 G.m.t.	
Central station	Sunset at the Apollo 14 site occurred on 15 May. Transmitter A signal strength was reported as -138.0 to -143.5 dbm from the 30 -foot tracking stations. The DSS-1 heater (10 watts) was commanded ON for lunar night operation on 14 May.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in AUTO ON for lunar night operations. No significant seismic events were observed during the periodic real-time support periods.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument was commanded ON at 1355 G.m.t., 14 May, and is operating in the full automatic stepping sequence with Channeltron high voltages commanded $O N$ for the remainder of this lunation.
Charged particle lunar environment experiment	The experiment was commanded $0 N$ at 1446 G.m.t., 14 May, and is operating in the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of $\mathrm{AC}-03$, analyzer A voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY.

APOLLO 15 ALSEP

ALSEP PERFORMANCE SUMMARY REPORT

24 May 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downtink data was not available during the following period. It should be noted that this data loss is non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS
14	01 April 74	1928/2125	$i^{h} 57^{m}$	CYI	Station problem
$\begin{aligned} & 12,14,15, \\ & 16,17 \end{aligned}$	15 May 74	2040/2044	$0^{h} 04^{m}$	HAW	Station problem
$\begin{aligned} & 12,14,15, \\ & 16,17 \end{aligned}$	20 May 74	0955/0958	$0^{n} 03^{m}$	MAD	Station problem

Apo110 17 ALSEP

Sunrise of the 19th lunation at the Taurus Littrow lunar site will occur on 26 May. The central station is operating normally. Automatic power management continues to distribute power for optimum thermal control.
Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain (by internally generated 61 -hour pulses), continues during real-time support periods. Downlink signal strength from the 30 -foot antenna tracking stations was reported at $-137.7 \pm 2.7 \mathrm{dbm}$ from transmitter " A ".

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples was $108 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2 on 22 May.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY. The next passive listening period is scheduled for later today.

The Lunar Atmospheric Composition Experiment is ON, without processing scientific data due to high voltage power supply and filament \#2 OFF. A sequence of operational commands were executed by the experiment during real-time support 20 May 1974. The LACE's telemetry data indicated no signs of change from the previous operational check of 20 March 1974 (multiplier high voltage power supply and filoment \#2 were operated).

ALSEP PERFORMANCE SUMMARY REPORT (CONTINUED)

The experiment was reconfigured to its lunar night operational mode, and cumently remains in this mode. The LACE will continue to be cycled from ON to OFF to maintain the electronics temperature below the previously established $125^{\circ} \mathrm{F}$ limit. No periodic thermal cycling check is planned within the next sixty doys. The electronics temperature (AM-41) was $-2.3^{\circ} \mathrm{F}$ on 22 May.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) was reading $-17.4^{\circ} \mathrm{F}$ on 22 May.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Apol10 16 ALSEP	
Operational status from 17 May 1974, 1300 G.m.t., to 24 May 1974, 1300 G.m.t.	
Central station	This ALSEP experienced midnight of its 26 th lunation on 20 May. The DSS-1 heater (10 watts) is $O N$ for lunar night operations. Inhibiting of the 18 -hour timer output pulses is continuing. The 30 -foot antenna tracking stations report a signal strength of $-136.5 \pm 7.5^{\circ} \mathrm{dbm}$ from transmitter " B^{\prime}.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON: component gains, 0 db ; and feedback loop filter OUT). No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM data have been valid since 17 August 1973. 714 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The Active Seismic Experiment is currently OFF. Present operations are per Apollo 16 ALSEP, SMEAR 27.

Apol10 15 ALSEP
Operational status from 17 May 1974, 1300 G.m.t., to 24 May 1974, 1300 G.m.t.

	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18hour timer output pulse functions. During the real-time support periods this past week no significant seismic events were observed.
	The experiment is $0 N$, however, all engineering and science data continue to be incoherent.
	The instrument remains in STANDBY due to excessive power consumption (Apollo 15 ALSEP, SMEAR 46).
	The instrument is operating continuously with channeltron high voltages commanded ON and in full automatic stepping sequence ($0-127$ frames) for the remainder of this lunation (APOLLO 15 ALSEP, SMEAR 47).
	The instrument is presently operating in the gradient mode and all sensors are being sampled in full sequence. On 22 May the lunar surface temperature was $86.8^{\circ} \mathrm{K}$ as indicated by the cable thermocouples. The subsurface temperature was $253.5^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.1^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Apol10 14 ALSEP

Status as of 1600 G.m.t., 22 May 1974, was as follows:

APOLLO 14 ALSEP

APOLLO 17 ALSEP

TM POINT

NASA-JSC

$$
\begin{aligned}
& 1202 \\
& 11678 \\
& 2667^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 67.1 \mathrm{~W}(67.6 \mathrm{w}) \\
& \text { DSS-1 ON(10w) }
\end{aligned}
$$

$$
67 . \text { iw }(67.6 \mathrm{w})
$$

ASE Stby

$$
27.0^{\circ} \mathrm{F}
$$

$$
\begin{aligned}
& 124.3^{\circ} \mathrm{F} \\
& \mathrm{~N} / \mathrm{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { N/A } \\
& \text { Invalid }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Invalid } \\
& \text { Invalid }
\end{aligned}
$$

$$
\begin{aligned}
& \text { *Value in parentheses indicates RTG output } \\
& \text { during last Iunation at a similar sun angle. }
\end{aligned}
$$

$$
\begin{aligned}
& 00 \\
& \stackrel{0}{0} \\
& \stackrel{0}{2}
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \text { APOLLO } 16 \text { ALSEP } \\
& 767 \\
& 11352 \\
& 299.7^{\circ} \\
& 68.9 \mathrm{w}(68.9 \mathrm{w}) \\
& \text { DSS }-1 \text { ON(10 } \mathrm{W}) \\
& \text { ASE OFF } \\
& 34.7^{\circ} \mathrm{F} \\
& 125.8^{\circ} \mathrm{F} \\
& -8.9^{\circ} \mathrm{C} \\
& \text { N/A } \\
& \text { OFF } \\
& \text { OFF }
\end{aligned}
$$

$$
\begin{aligned}
& 00 \\
& 0^{\circ} \\
& \stackrel{\circ}{0} \frac{1}{2} \frac{1}{z}
\end{aligned}
$$

$$
\begin{aligned}
& \text { APOLLO } 15 \text { ALSEP } \\
& \text { A11 OFF }
\end{aligned}
$$

$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{m}}$

31 May 1974
G.m.t.: 0100

A partial eclipse of the Moon will occur on 4 and 5 June 1974. As the Moon passes through the Earth's shadow, all ALSEPS will pass through the umbral phase and experience total darkness. This is the first occurrence of a total eclipse for all ALSEPS at the same time. A real-time support period is planned for this event.

Remote site coverage for recording of ALSEP downlink data was not available during the following periods. It should be noted that the data losses are non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS
14,15, $12-13$ Apr 74 $2354 / 0318$ $3^{h} 24^{m}$ ACN	Station Problem				
16,17					
$16,14,15$,	23 May 74	$2215 / 2228$	$0^{h} 13^{m}$	GDS	Station Problem

Apol10 17 ALSEP

Noon of the scientific station's 19th lunation will occur on 2 June at the Taurus Littrow site. Downlink signal strength is reported at -141.5 ± 4.5 dbm from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 29 May the lunar surface temperature, as measured by the HFE's thermocouples, was $295 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operation was accomplished during this reporting period as follows:

31 May 1974
G.m.t.: 0100

Date	LSPE ON G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	LSPE STBY G.m.t.	Geophone Cals	Events 1448
1500	1530	1532		2	None	

The next passive listening period is planned for 31 May 1974.
The Lunar Atmospheric Composition Experiment is currently OFF. The instrument was commanded 0FF at 2007 G.m.t., 29 May 1974, when electronic temperature (AM-41) was reading $116.1^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteriorites Experiment is presently OFF. The instrument was commanded OFF at 1504 G.m.t., 30 May 1974, when the mirror temperature (AJ-11) was $196.0^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 15 ALSEP
status from 24 May 1974,1300 G.m.t., to 31 May 1974,0100 G.m.t.
Sunrise of the station's 36 th lunation occurred on 28 May. Transmitter A
downlink signal strength was reported at $-136.0 \pm 2.5 \mathrm{dbm}$ from the $30-$ foot
antenna tracking stations.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP).
The instrument's uncage/arm fire circuitry has been cycling per the normal 18-hour
timer output pulse functions. During the real-time support periods this past week
no significant seismic events were observed.
The experiment is on, however, all engineering and science data continue to be
incoherent.
The instrument remains in STANDBY due to excessive power consumption (Apollo 15
ALSEP, SMEAR 46).
The instrument is operating continuously with channeltron high voltages commanded
ON and in full automatic stepping sequence (Apollo 15 ALSEP, SMEAR 47).
The instrument is presently operating in the gradient mode and all sensors on
being sampled in full sequence. The lunar surface temperature was $286.4^{\circ} \mathrm{K}$ on
29 May as indicated by the cable thermocouples. The subsurface temperature was
$253.3^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#l. Probe \#2 indicated a
temperature of $251 . l^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained
periodically.
Central station
Passive seismic
experiment

[^3]Apol10 14. ALSEP

Central station	Sunrise of the 42 nd 7 unation at the Apollo 14 site occurred on 30 May. The 30 -foot antenna tracking stations report a signal strength from transmitter A at $-138.0 \pm 3.0 \mathrm{dbm}$. The DSS -1 heater (10 watts) is OFF for lunar day operations. Data processor " Y " will be verified by command on 37 May 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater will be commanded to FORCED OFF on 3 June to minimize heating during lunar day operations. During the limited real-time support periods no significant seismic events have been observed.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apol10 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently in STANDBY. Present plans are to leave it in this configuration the remainder of the lunar day.
```Charged particle lunar environmental experiment```	The CPLEE is currently ON. The experiment will be commanded to STANDBY on 1 June until after sunset of this lunation, 14 June 1974.

Apol10 12 ALSEP

```Operational Central station```	status from 24 May 1974, 1300 G.m.t., to 31 May 1974, 0100 G.m.t.   Sunrise of the 57 th lunation occurred on 30 May at the ALSEP site in the Ocean of Storms. The signal strength is between -135.0 dbm and -142.0 dbm from transmitter B as reported by the 30 -foot antenna tracking stations. The DSS-1 heater (10 watts) will be commanded OFF for lunar day operations on 31 May. Data processor Y will be verified by command on 31 May 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The Z-axis drive motor will be commanded OFF for lunar day operation on 31 May 1974. No significant seismic events were observed during the periodic real-time support periods of this instrument.
Lunar surface magnetometer experiment	Scientific and engineering data outputs remain invalid.
Solar wind spectrometer experiment	The instrument is currently in the normal gain mode and is recording solar wind plasma data for subsequent long-term analysis.
Suprathermal ion detector experiment	The SIDE is currently $O N$ and in the automatic stepping sequence. On 1 June it is planned to start cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$ during the lunar day.

APOLLO 14 ALSEP

APOLLO 17 ALSEP

follows:

TM POINT

TM POINT

7 June 1974
G.m.t.: 1300

A partial eclipse of the Moon occurred on 4 and 5 June 1974. As the Moon passed through the Earth's shadow, all ALSEPs were in the umbral phase and experienced total darkness. This was the first occurrence of a total eclipse of all AISEPS at the same time. A real-time support period was conducted for this event.

Remote site coverage for recording of ALSEP downlink data was not available during the following period. It should be noted that the data loss is nonrecoverable.

ALSEP	DATE	G.m.t.	LOSS	SITPE	REMARKS
12	5 Jun 74	0352/0411	$0^{h_{1}} 9^{m}$	ACN	ion

Apol10 17 ALSEP
Noon of the scientific station's 19th lunation occurred on 2 June at the Taurus Littrow site. Downlink signal strength is reported at -142.0 ± 4.0 dbm from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 6 June the lunar surface temperature, as measured by the HFE's thermocouples, was $329 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and 256.80 K at probe \#2. The HFE was operated in the thermocouple only mode during the eclipse.
The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater $O N$).

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operation was accomplished during this reporting period as follows:

Date	LSPE ON 31 May G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	LSPE STBY G.m.t.	Geophone Cals

The next passive listening period is planned for 7 June 1974.
The Lunar Atmospheric Composition Experiment is currently in STANDBY. The LACE was commanded to STANDBY at 1925 G.m.t., 6 June, when the electronic temperature (AM 41) was reading $55.7^{\circ} \mathrm{F}$.

7 June 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is presently ON and configured to measure impact flux rates on the lunar surface. The instrument was commanded ON at 1924 G.m.t., 6 June, when the mirror temperature was reading 173.80F.
During the lunar eclipse the IEAM was commanded ON at 1949 G.m.t., 4 June. The instrument operated normally throughout the period. The mirror temperature (AJ-11) experienced a temperature from 188.50 to 118.40. The LEAM was commanded OFF by mode I through the Hawaii Tracking Station at 1045 G.m.t.,

It is requested that any organization having comments, questions, or suggestions concerning this report, contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

$$
\text { Apollo } 16 \text { 'EP }
$$

Apol10 ALSEP	
Operational status from 31 May 1974, 0100 G.m.t., to 7 June 1974, 1300 G.m.t.	
Central station	Noon of the station's 36 th lunation occurred on 4 June. Transmitter A downlink signal strength was reported at $-136.3 \pm 2.3 \mathrm{dbm}$ from the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's uncage/arm fire circuitry has been cycling per the normal 18-hour timer output pulse functions. During the real-time support periods this past week no significant seismic events were observed.
Lunar surface magnetometer experiment	The experiment is $0 N$, however, all engineering and science data continue to be incoherent.
Solar wind spectrometer experiment	The instrument remains in STANDBY. At 2134 G.m.t., 4 June, the experiment was commanded to operate for 4 minutes in order to provide additional data on the instmment's anomazous operation. During the operate period the experiment contimued to demand excessive power (9 watts). Folzowing the operational period the instmment was commanded back to STANDBY (ApolZo 15 ALSEPP, SMEAR 46).
Suprathermal detector/cold cathode gauge experiment	The instrument is currently in STANDBY. Cyclic commanding of the experiment was initiated for the remainder of this lunar day on 2 June (Apollo 15 ALSEP, SMEAR 47) On 3 June 1974, a special scientific data gathering period was conducted during real-time support to observe those low energy data counts which appear some 33 hours prior to lunar noon.
Heat flow experiment	The instrument is operating in the normal gradient mode. On 6 June the lunar surface temperature was 360.80 K as indicated by the cable thermocouples. The subsurface temperature was $253.4^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of 251.10 K at its lower-most point. Ring bridge surveys are conducted periodically. During the lunar eclipse the experiment was operated in the themocouples only mode.

Apol1o 14 ALSEP
 Data processor Y was verified by command on 31 May 1974.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater was commanded to FORCED OFF on 5 June to minimize heat-
ing during lunar day operations. At 2124 G.m.t., 2 June, the PSE experienced a spurious functional change in the long period z-axis sensor gain (octal 064) to -10 db as verified in the ALSEP downtink by the Madrid Tracking Station. The z-axis sensor gain was commanded back to 0 db without incident at 2218 G.m.t.,
2 June, by the Madrid Iracking Station at the direction of mission control. During the limited real-time support periods no significant seismic events have been observed.
The experiment is currently in STANDBY. The instrument was commanded to high bit rate ON, 31 May 1974, to verify operational status. The output of geophones \#2 and \#3 appeared abnormat as had initially been observed on 3 January 1974. The status check was performed per Apollo 14 ALSEP, SMEAR 86.
 The CPLEE is currently in STANDBY. The experiment was commanded ON at 1936 G.m.t., 4 June, in the -35 vde mode for the eclipse of the moon. The experiment was commanded to STANDBY at 112 G.m.t., 4 June. Present plans are to line live Central station
Passive seismic
experiment
Active seismic
experiment
Suprathermal ion
detector/cold
cathode gauge
experiment
Charged particle
lunar
environmental
experiment
Apol10 12 ALSEP
Operational status from 31 May 1974, 0100 G.m.t., to 7 June 1974,1300 G.m.t.

14 June 1974
G.m.t.: 1300

Later today it is planned to terminate the operation of the Apolzo 12 Lunar Surface Magnetometer and the Apollo 15 Lunar Surface Magnetometer and Solar Wind Spectrometer. These instruments have not returned valid scientific data for an extended period of time. The experiments will be commanded to the power OFR mode. This reconfiguration will increase the level of the available reserve power to the Apollo 12 and Apollo 15 ALSEPs and insure the continued successful return of science data from the lunar surface.

A partial eclipse of the Moon occurped on 4 and 5 June 1974. As the Moon passed through the Earth's shadow, all ALSEPS were in the umbral phase and experienced total darkness.

Apo 11017 ALSEP

Midnight of the scientific station's 19th lunation will occur on 17 June at the Taurus Littrow site. Downlink signal strength is reported at $-138.0 \pm 3.0 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 13 June Tunar surface temperature, as measured by the HFE thermocouples, was $106.3 \pm 80 \mathrm{~K}$. At a depth of 230 cm , the subsurface temperatures were 256.50 K at probe $\# 1$ and 256.90 K at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Surface Profiling Experiment is in STANDBY select. The experiment was commanded ON at 1527 G.m.t., 7 June, and to LSPE data format processing (high bit rate) at 1540 G.m.t. Two geophone calibration pulses were sent during the listening period. Seismic activity was observed on all data channels. LSPE processing was terminated at 1610 G.m.t., and the instrument was commanded to STANDBY select at 1612 G.m.t. The next passive listening period is scheduled for later today.

14 June 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to $0 N$ at 1313 G.m.t., 9 June, but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was $3.2^{\circ} \mathrm{F}$ on 13 June.

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

$$
\text { Apo110 } 16 \text { ALSEP }
$$

Central station	Sunset at the Descartes Site occurred on 11 June for the 27 th lunation. The DSS-1 heater (10 watts) was commanded ON at 1914 G.m.t., 10 June, for lunar night operations when the average thermal plate decreased to 50.1 OF . The 18 -hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The signal strength from transmitter B is reported between -136.0 and -140.0 dbm by the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The instrument's assembly temperature ($\mathrm{DL}-07$) returned onscale 11 June at a sun angle of 182.60. No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM continues in the full operational mode and all data have been valid since 17 August 1973. The instrument has accomplished 734 flip calibration sequences since activation.
Active seismic experiment	The Active Seismic Experiment is currently in standby OFF. Present operations are per Apollo 16 ALSEP, SMEAR 27.

Apollo 15 ALSEP
Operational status from 07 June 1974,1300 G.m.t., to 14 June 1974,1300 G.m.t. Sunset of the site's 36th lunation occurred on 12 June. Transmitter A downlink signal strength is reported as $-137.0 \pm 2.0 \mathrm{dbm}$ by the tracking stations with 30 -foot antennas. At 0545 G.m.t., 8 June, the Central Station responded to a spurious command (octal 024, DSS-1, 10-watt heater ON). The Madrid ground station reported receipt of a CVW in the downiink. After verification during real-time support, the DSS-1 (10 watt) heater was commanded OFF by transmission of octal 025 at 1321 G.m.t., 8 June, without incident.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. No significant seismic events were observed during the real-time support periods.
The instrument is currently ON. All engineering and science data continue to be incoherent.
Passive seismic
experiment
Central station

$$
\begin{aligned}
& \text { Lunar surface } \\
& \text { magnetometer } \\
& \text { experiment } \\
& \text { Solar wind } \\
& \text { spectrometer } \\
& \text { experiment } \\
& \text { Suprathermal ion } \\
& \text { detector/cold } \\
& \text { cathode gauge } \\
& \text { experiment } \\
& \text { Heat flow } \\
& \text { experiment }
\end{aligned}
$$

The instrument is presently operating in the gradient mode and all sensors being
sampled in full sequence. The lunar surface temperature was 97.90 K on 13 June as
indicated by the cable thermocouples. The subsurface temperature was 253.50 K at
the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature
of $251.1^{0} \mathrm{~K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Central station	Sunset at the Apollo 14 site occurred today, 14 June. Transmitter A signal strength was reported at -139.0 to -145.5 dbm from the 30 -foot tracking stations. The DSS-1 heater (10 watts) was commanded ON for lunar night operation on 13 June.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in AUTO ON for lunar night operations. No significant seismic events were observed during the periodic real-time support periods.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
```Suprathermal ion detector/cold cathode gauge experiment```	The instrument was commanded ON at 1346 G.m.t., 13 June, and is operating in the full automatic stepping sequence with Channeltron high voltages commanded 0 N for the remainder of this lunation.
Charged particle lunar environment experiment	The experiment was commanded On at 1347 G.m.t., 13 June, and is operating in the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradabe commanded to STANDBY. tion of $A C-03$, analyzer $A$ voltage, to 2280 vdc , at which time the instrument will

Apollo 12 ALSEP
Sunset of the 57 th lunation occurred on 14 June. The DSS-1 heater ( 10 watts) will
be commanded ON for lunar night operation later today. A signal strength of -139.5 to -144.5 dbm from transmitter B was reported by the 30 -foot tracking stations.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). he sensor temperature was onscale $(D L-07=140.2$, start of real-time support 12 June 1974. No significant seismic events were noted during the periodic real-time support periods.
Scientific and engineering data outputs remain invalid.
The instrument remains in the normal gain mode and is recording solar wind plasma data.
$\begin{array}{ll}\text { Suprathermal ion } & \text { Currently the SIDE is in the full automatic stepping sequence with Channeltron } \\ \text { detector } & \text { high voltages ON. The instrument was commanded to ON at } 1343 \text { G.m.t., } 12 \text { June, } \\ \text { experiment } & \text { for lunar night operations. }\end{array}$


$$
\text { APOLLO } 15 \text { ALSEP }
$$



Status as of 1600 G.m.t., 13 June 1974, was as follows:



TM POINT
Total Days of Operation Tota. Conma

Sun Angle
Input Power APM Status $(A B-13)$
Power Dump Status $(A B-14)$

Experiment Status
Avg Thermal Plate Temp
LEAM Temp (AJ-1])
HFE Temp Ref 1 (DH-13)
LSG Telip (DG-04)

```
JUNE 4 - 5, 1974
 LUNAR EVENTS
```

	CDT	GMT
Moon enters penumbra	1424/4 Jun	1924/4 Jun
Moon enters umbra	1539	2039
Middle of eclipse	1717	2217
Moon exits umbra	1853	2353
Moon exits penumbra	2009	0109/5 Jun
Duration of eclipse (hrs + mins)	$5+45$	
Magnitude of eclipse	(0.832)	


	1		2		3	
				4	5	
ALSEP enters penumbra	1449		1454		1511	


		Date/Time G.m.t.	
Parameter	04/1911	04/2143	05/0026
CS1	63.40 w	65.96 w	61.70 w
CS2	19.15w	15.99w	17.80 w
AT01	$171.1{ }^{\circ} \mathrm{F}$	$-51.50 \mathrm{~F}$	120.20 F
AT02	$171.1^{\circ} \mathrm{F}$	$-49.0^{\circ} \mathrm{F}$	$120.2^{\circ} \mathrm{F}$
AT08	202.10 F	$34.7{ }^{\circ} \mathrm{F}$	131.50F
AT09	$67.4{ }^{\text {O }}$ F	$13.3{ }^{\circ} \mathrm{F}$	-2.50F
Avg TP	89.820 F	$71.78{ }^{\circ} \mathrm{F}$	$54.38{ }^{\circ} \mathrm{F}$
PSE DL07	$128.91{ }^{\circ} \mathrm{F}$	$128.84{ }^{\circ} \mathrm{F}$	$126.74{ }^{\circ} \mathrm{F}$
SWS Mod 300	$62.58{ }^{\circ} \mathrm{C}$	55.050 C	$42.86{ }^{\circ} \mathrm{C}$
Snsr	$59.71{ }^{\circ} \mathrm{C}$	$-3.46{ }^{\circ} \mathrm{C}$	$6.39^{\circ} \mathrm{C}$
SIDE T2	$43.19^{\circ} \mathrm{C}$	$49.15^{\circ} \mathrm{C}$	$38.39{ }^{\circ} \mathrm{C}$
LSM invalid			

Apol1o 14 ALSEP
Date/Time G.m.t.

Parameter	04/1943	04/1950	04/2115	04/2306	05/0100
CS1	66.64w	66.64 w	69.48w	68.04w	66.29 w
CS2	38.29w	38.50 W	41.50 w	34.68w	42.64w
AT01	$185.2^{\circ} \mathrm{F}$	$185.2{ }^{\circ} \mathrm{F}$	$10.7^{\circ} \mathrm{F}$	$-126.1^{\circ} \mathrm{F}$	$179.6^{\circ} \mathrm{F}$
AT02	$188.1^{\circ} \mathrm{F}$	$185.2{ }^{0} \mathrm{~F}$	13.30 F	$-126.1^{\circ} \mathrm{F}$	176.80 F
AT08	$190.9^{\circ} \mathrm{F}$	$193.7^{\circ} \mathrm{F}$	$81.2^{\circ} \mathrm{F}$	$-7.8{ }^{\circ} \mathrm{F}$	$142.8{ }^{\circ} \mathrm{F}$
AT09	117.40 F	114.60 F	70.10 F	-2.50F	59.10 F
Avg TP	$107.488^{\circ} \mathrm{F}$	$107.62{ }^{\circ} \mathrm{F}$	$97.38{ }^{\text {F }}$	$78.78{ }^{\circ} \mathrm{F}$	$80.98{ }^{\circ} \mathrm{F}$
PSE DL07	$134.39^{\circ} \mathrm{F}$	$134.43^{\circ} \mathrm{F}$	$134.53{ }^{\circ} \mathrm{F}$	$132.68{ }^{\circ} \mathrm{F}$	$130.46^{\circ} \mathrm{F}$
CPLEE AC-5	$54.28{ }^{\circ} \mathrm{C}$	$54.89{ }^{\circ} \mathrm{C}$	$33.93{ }^{\circ} \mathrm{C}$	4.440 C	$34.58{ }^{8} \mathrm{C}$
AC-6	$53.69{ }^{\circ} \mathrm{C}$	$54.28{ }^{\circ} \mathrm{C}$	$46.00^{\circ} \mathrm{C}$	$22.86^{\circ} \mathrm{C}$	$30.38{ }^{\circ} \mathrm{C}$
ASE AS02	$73.4{ }^{\circ} \mathrm{C}$	$73.4{ }^{\circ} \mathrm{C}$	$73.4{ }^{\circ} \mathrm{C}$	$55.3{ }^{\circ} \mathrm{C}$	$44.1{ }^{\circ} \mathrm{C}$
AS03	$69.8{ }^{\circ} \mathrm{C}$	$69.8{ }^{\circ} \mathrm{C}$	$68.3{ }^{\circ} \mathrm{C}$	$57.8{ }^{\circ} \mathrm{C}$	$55.4{ }^{\circ} \mathrm{C}$
ASO4	$59.8{ }^{\circ} \mathrm{C}$	$59.8{ }^{\circ} \mathrm{C}$	$41.3{ }^{\circ} \mathrm{C}$	$12.6{ }^{\circ} \mathrm{C}$	$35.9{ }^{\circ} \mathrm{C}$


	Apollo 15 ALSEP			
Parameter	04/1911	Date/Time	G.m.t.	
CS1	69.29w		04/2332	05/0122
CS2	24.64w	24.36 w	70.84w	68.79 w
AT01	$151.3{ }^{\circ} \mathrm{F}$	$81.2^{\circ} \mathrm{F}$	$-135.90 \mathrm{~F}$	134.30 F
AT02	$179.6{ }^{\circ} \mathrm{F}$	$100.6{ }^{\circ} \mathrm{F}$	$-131.0^{\circ} \mathrm{F}$	$162.6^{\circ} \mathrm{F}$
AT08	$123.1{ }^{\circ} \mathrm{F}$	$81.2{ }^{\circ} \mathrm{F}$	-28.50F	61.90 F
AT09	$86.7{ }^{\circ} \mathrm{F}$	$64.6{ }^{\circ} \mathrm{F}$	$-31.1^{\circ} \mathrm{F}$	48.205
Avg TP	$111.5{ }^{\circ} \mathrm{F}$	$107.28{ }^{0} \mathrm{~F}$	$77.82{ }^{\circ} \mathrm{F}$	$80.84{ }^{5}$
PSE DL07	$142.14{ }^{\circ} \mathrm{F}$	$142.14{ }^{\circ} \mathrm{F}$	$137.45{ }^{\circ} \mathrm{F}$	$134.33{ }^{\circ} \mathrm{F}$
SIDE CCIG	$364.01{ }^{\circ} \mathrm{K}$	$355.62{ }^{\circ} \mathrm{K}$	$249.20^{\circ} \mathrm{K}$	$301.58{ }^{\circ} \mathrm{K}$
T2	$59.43{ }^{\circ} \mathrm{C}$	$64.53{ }^{\circ} \mathrm{C}$	$56.51{ }^{\circ} \mathrm{C}$	$51.84{ }^{\circ} \mathrm{C}$
HFE TREF1	$327.925^{\circ} \mathrm{K}$	$322.970^{0} \mathrm{~K}$	$290.388^{\circ} \mathrm{K}$	$302.979^{0} \mathrm{~K}$
TC12	$351.536^{\circ} \mathrm{K}$	$280.013^{\circ} \mathrm{K}$	$149.550^{\circ} \mathrm{K}$	$351.199^{\circ} \mathrm{K}$
TC22	$366.721^{\circ} \mathrm{K}$	$287.265^{\circ} \mathrm{K}$	$157.916^{\circ} \mathrm{K}$	$365.417^{\circ} \mathrm{K}$
	and LSM i	id		

Apollo 16 ALSEP
Date/Time G.m.t.

Parameter	04/1923	04/2222	05/0032
CS1	68.14w	70.01 w	66.74 w
CS2	36.54w	38.64 w	36.02w
AT01	$182.3{ }^{\circ} \mathrm{F}$	$-59.1{ }^{\circ} \mathrm{F}$	$72.9^{\circ} \mathrm{F}$
AT02	$171.1^{\circ} \mathrm{F}$	-61.70F	64.60 F
AT08	$140.0{ }^{\circ} \mathrm{F}$	8.00 F	61.90 F
AT09	$83.9{ }^{\circ} \mathrm{F}$	$18.6{ }^{\circ} \mathrm{F}$	$10.7{ }^{\circ} \mathrm{F}$
Avg TP	$100.32^{\circ} \mathrm{F}$	$83.30^{\circ} \mathrm{F}$	$72.54{ }^{\circ} \mathrm{F}$
PSE DL07	H	H	H
LSM $X$ axis	$77.58{ }^{\circ} \mathrm{C}$	$60.59{ }^{\circ} \mathrm{C}$	$36.86{ }^{\circ} \mathrm{C}$
$Y$ axis	$77.58{ }^{\circ} \mathrm{C}$	$60.59^{\circ} \mathrm{C}$	$36.11^{\circ} \mathrm{C}$
$Z$ axis	$79.62{ }^{\circ} \mathrm{C}$	$62.04{ }^{\circ} \mathrm{C}$	$37.63{ }^{\circ} \mathrm{C}$
Base	$37.63{ }^{\circ} \mathrm{C}$	$29.79^{\circ} \mathrm{C}$	$21.22{ }^{\circ} \mathrm{C}$
Intrn 1	$43.52{ }^{\circ} \mathrm{C}$	$38.29{ }^{\circ} \mathrm{C}$	$30.32^{\circ} \mathrm{C}$

ASE and HFE OFF
Apollo 17 ALSEP

		Date/Time	G.m.t.		
Parameter	04/1924	04/1950	04/2200	04/2342	05/0118
CS36	74.17w	74.48w	77.04 w	76.18W	73.63w
CS61	47.56 w	44.43w	45.63W	38.83 W	43.24W
AT01	$202.1{ }^{\circ} \mathrm{F}$	$202.1{ }^{\circ} \mathrm{F}$	$-31.1{ }^{\circ} \mathrm{F}$	$-118.8{ }^{0} \mathrm{~F}$	$157.0{ }^{\circ} \mathrm{F}$
AT02	$199.3{ }^{\circ} \mathrm{F}$	$199.3{ }^{\circ} \mathrm{F}$	$-33.7^{\circ} \mathrm{F}$	$-121.2 \mathrm{~F}$	$159.8{ }^{\circ} \mathrm{F}$
AT08	100.60 F	$100.6{ }^{\circ} \mathrm{F}$	$34.7{ }^{\circ} \mathrm{F}$	$-15.6{ }^{\circ} \mathrm{F}$	$34.7{ }^{\circ} \mathrm{F}$
AT09	$196.5{ }^{\circ} \mathrm{F}$	$196.5{ }^{\circ} \mathrm{F}$	$48.2{ }^{\circ} \mathrm{F}$	$-5.10 \mathrm{~F}$	$145.8{ }^{\circ} \mathrm{F}$
Avg TP	$111.7^{\circ} \mathrm{F}$	$111.6^{\circ} \mathrm{F}$	$96.0^{\circ} \mathrm{F}$	$78.5^{\circ} \mathrm{F}$	$75.8{ }^{\text {F }}$
LSG DG01	$-1.6121 \mathrm{vdc}$	1.9879 vdc	-0.9505 vdc	-0.0165 vdc	- 0.2500 vdc
DG03	-0.0235 vdc	-0.0235 vdc	0.0738 vdc	0.0155 vdc	0.2684 vdc
DG04	$49.199^{\circ} \mathrm{C}$				
HFE TREF1	$322.783{ }^{0} \mathrm{~K}$	$322.713^{\circ} \mathrm{K}$	$305.742{ }^{0} \mathrm{~K}$	$289.588{ }^{\circ} \mathrm{K}$	$295.305{ }^{\circ} \mathrm{K}$
TC12	$364.840{ }^{\circ} \mathrm{K}$	$364.227^{\circ} \mathrm{K}$	$173.215^{\circ} \mathrm{K}$	$152.216^{\circ} \mathrm{K}$	$361.528{ }^{\circ} \mathrm{K}$
TC22	$366.009^{\circ} \mathrm{K}$	$365.488{ }^{\circ} \mathrm{K}$	$174.428^{\circ} \mathrm{K}$	$151.838^{\circ} \mathrm{K}$	$362.480^{\circ} \mathrm{K}$
LACE AM41	$75.8{ }^{\circ} \mathrm{F}$	$75.8{ }^{0}{ }^{\text {F }}$	$50.6{ }^{\circ}{ }^{\text {F }}$	$19.7{ }^{\circ} 5$	$18 .{ }^{2} 5$
LEAM AJ06	OFF	$151.5{ }^{\circ} \mathrm{F}$	$138.0^{\circ} \mathrm{F}$	$114.0{ }^{\circ} \mathrm{F}$	$112.5{ }^{\circ} \mathrm{F}$
AJ07	OFF	$154.0{ }^{0} \mathrm{~F}$	$142.5{ }^{\circ} \mathrm{F}$	$120.0{ }^{\circ} \mathrm{F}$	$114.0{ }^{0} \mathrm{~F}$
AJ08	OFF	$164.0{ }^{\circ} \mathrm{F}$	$144.0{ }^{\circ} \mathrm{F}$	$120.0{ }^{\circ} \mathrm{F}$	$124.5{ }^{\circ} \mathrm{F}$
AJ09	OFF ${ }^{\text {a }}$	$177.3{ }^{\circ} \mathrm{F}$	$166.5{ }^{\circ} \mathrm{F}$	$141.0{ }^{0} \mathrm{~F}$	$130.5{ }^{\circ} \mathrm{F}$
LSP AP011	$188.0{ }^{\circ} \mathrm{F}$ 113.5	188.0 113.50 F	${ }_{162.0}{ }^{8} 0^{0} \mathrm{~F}$	${ }^{124} 2.20^{\circ} \mathrm{F}$	${ }^{136.80 .6 F}$

LACE OFF, LSPE STANDBY

ALSEP PERFORMANCE SUMMARY REPORT
21 June 1974
G.m.t.: 1300

The operations of the Apollo 12 ALSEP Lunar Surface Magnetometer and the ApoLTo 15 ALSEP Lunar Surface Magnetometer and Solar Wind Spectrometer were terminated on 14 June 1974 as per the agreed implementation plan without incident. The experiments had not yielded any scientific data for an extended period of time and had very little probability of recovery. To insure the continued successful return of science data from the other experiments and to eliminate a potential critical reserve power level situation of the Apollo 12 and 15 ALSEPs the subject experiments were commanded to the power OFF mode. These were the first experiments in the Apollo ALSEP program to be terminated by command. The reconfiguration provided the following results:

	RESERVE	AVERAGE THERMAL
ALSEP	POWER INCREASE	PLATE TEMPERATURE INCREASE
12	+8.67w	$+11.250 \mathrm{~F}$
15	$+13.71 w$	$+20.60 \mathrm{~F}$

Remote site coverage for recording of ALSEP downlink data was not available during the following periods. It should be noted that the data losses are non-recoverable.

ALSEP	DATA		G.M.T.	LOSS	SITE	REMARKS
15	13 June	74	1836/1844	$0^{h} 08^{m}$	HAW	Transmitter Switch, $A$ to $B$
12	18 June	74	1430/1455	$0^{h} 25^{m}$	ACN/MAD	Higher Priority
14, 15						
16, 17	18 June	74	1430,1438	$0^{h} 08^{m}$	$A C N / M A D$	Higher Priority

Apo 11017 ALSEP
Midnight of the scientific station's 19th lunation occurred on 17 June at the Taurus Littrow site. Downlink signal strength is reported at -138.0土 2.0 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 19 June lunar surface temperature, as measured by the HFE thermocouples, was $108.5 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N ).

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

21 June 1974
G.m.t.: 1300

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	$\begin{aligned} & \text { HBR ON } \\ & G_{m}+ \end{aligned}$	HBR OFF G.m.t.	LSPE STBY   G.m.t.	Geophone Cals	
14 June	1358	1400	1430	1432	2	None
19 June	1436	1445	1515	1517	2	None

The next passive listening period is planned for 28 June 1974.
The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was $3.2^{\circ} \mathrm{F}$ on 19 June.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Central Station	Midnight at the Descartes Site occurred on 18 June for the 27 th lunation. The DSS-1 heater (10 watts) is ON for lunar night operations. The 18-hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The signal strength from transmitter B is reported between -134.0 and -139.0 dbm by the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM continues in the full operational mode and all data have been valid since 17 August 1973. The instrument has accomplished 738 flip calibration sequences since activation.
Active seismic experiment	The Active Seismic Experiment is currently OFF. Present operations are per Apollo 16 ALSEP, SMEAR 27.

Apol1o 15 ALSEP

Central Station	onal status from 14 June 1974, 1300 G.m.t., to 21 June 1974, 1300 G.m.t.   Midnight of the site's 36 th lunation occurred on 19 June. Transmitter A downlink signal strength is reported as $-137.0 \pm 3.0 \mathrm{dbm}$ by the tracking stations with 30-foot antennas. At 1836 G.m.t., 13 June 1974, the Hawaii Tracking Station reported a loss of lock on the ApOZlo 15 ALSEP downlink. Lock was re-established at 1844 G.m.t., 13 June. During real-time support on 14 June it was determined that the loss of lock was caused by a switch from Transmitter $A$ to Transmitter $B$ (octal 015). At 1553 G.m.t., 14 June, Transmitter A was reselected (octal 012) by mission control without ineident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. No significant seismic events were observed during the limited real-time support periods.
Lunar surface magnetometer experiment	The instrument was permanently commanded OFF at 1537 G.m.t., 14 June 1974.
Solar wind spectrometer experiment	The instrument was permanently commanded OFF at 1524 G.m.t., 14 June 1974.
Suprathermal ion detector/cold	The instrument has been operating with the Channeltron high voltages commanded $O N$ and in full automatic stepping sequence ( $0-127$ frames) since 1406 G.m.t., 7 June 1974.
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was $87.8^{\circ} \mathrm{K}$ on 19 June as indicated by the cable thermocouples. The subsurface temperature was $253.5^{0} \mathrm{~K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.1^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Operational status from 14 June 1974, 1300 G.m.t., to 21 June 1974, 1300 G.m.t.

Central Station	Midnight at the Apollo 14 site occurred on 21 June. Transmitter A signal strength was reported as -136.0 to -145.5 dbm from the 30 -foot tracking stations. The DSS-1 heater ( 10 watts) is ON for lunar night operation. At the start of real-time support on 15 June it was noted that the DTREM had responded to a spurious functional change without a CVW noted in the downlink (Octal O31, DTREM OFF). Review of central station data revealed that the change occurred between the end of real-time support on 14 June ( 1600 G.m.t.) and the start of real-time operations on 15 June (1440 G.m.t.). The DTREM was subsequently reconfigured to ON (Octal O27) during real-time support at 1526 G.m.t., 19 June, without incident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in AUTO ON for lunar night operations. No significant seismic events were observed during the periodic real-time support periods.
Active seismic experiment	The experiment is currently in STA,NDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode experiment	The instrument is operating in the full automatic stepping sequence with Channeltron high voltages commanded 0 N for the remainder of this lunation. At 1509 G.m.t., 13 June, the SIDE experienced a functional change from ON to STANDBY as reported by the Hawaii Tracking Station. Five attempts were made on 13 June to command the experiment $O N$. The SIDE was re-initialized to the full automatic stepping sequence with ChanneItron high voltages ON at 1159 G.m.t., II June. The SIDE again experienced a functional change to STANDBY at 0927 G.m.t., 16 June, and was re-initialized at 1238 G.m.t., 16 June, through mission controz. Previously seven attempts had been made by the Goldstone Tracking Station to command the expeximent on.
Charged particle lunar environment experiment	The experiment is operating in the manual mode at the -35 vdc range and automatic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of AC-03, analyzer A voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY.

Apol1o 12 ALSEP

Central station	Midnight of the 57 th lunation will occur later today, 21 June. The DSS-1 heater (10 watts) was commanded ON for lunar night operation on 14 June. A signal strength of -135.0 to -144.0 dbm from transmitter $B$ was reported by the 30 -foot tracking stations. Between 1330 G.m.t., 3 June, and 1400 G.m.t., 4 June 1974 the centrai station responded to a spurious command (octal 022, 14 watt PDR ON). None of the tracking stations confirmed receipt of the command in the Apolzo 12 ALSEP downtink. The 14-watt PDR was returned to OFF (octal O23) by command through mission control at 1809 G.m.t., 14 June, without incident.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apo 11016 ALSEP). The sensor temperature was offscale LOW (sun angle $=217.6^{\circ}$ ) at the start of realtime support 17 June 1974. No significant seismic events were noted during the periodic real-time support periods.
Lunar surface magnetometer experiment	The instrument was permanently commanded OFF at 1514 G.m.t., 14 June 1974.
Solar wind spectrometer experiment	The instrument remains in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	Currently the SIDE is in the full automatic stepping sequence with Channeltron high voltages $0 N$. The instrument was commanded to $0 N$ at 1343 G.m.t., 12 June, for lunar night operations. At 1543 G.m.t., 14 June, the SIDE responded to a spurious OFF command (octal 054). Receipt of a CVW was not confirmed in the Apollo 12 ALSEP downink. The SIDE was re-initialized at 1549 G.m.t., 14 June, by command (octal 052, operational power ON) through mission control without incident.

Status as of 1600 G.m.t., 19 June 1974, was as follows:
APOLLO 16 ALSEP

APOLLO 17 ALSEP
 Value in parentheses indicates RTG output during last lunation at a similar sun angle.

28 June 1974
G.m.t.: 1200

Remote site coverage for recording of ALSEP downink data was not available during the following period. It should be noted that the data losses are non-recoverable.


16, 17
Apollo 17 ALSEP
Sunrise of the scientific station's 20th lunation occurred on 24 June at the Taurus Littrow site. Downlink signal strength is reported at 140.5 $\pm 3.5 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 27 June the lunar surface temperature, as measured by the HFE's thermocouples, was $240 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and 256.80 K at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for seismic data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next LSPE passive listening mode operation is planned for later today.

The Lunar Atmospheric Composition Experiment was commanded to OFF for lunar day operation at 1500 G.m.t., 27 June, when the electronics temperature (AM-41) was $118.0^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) was 174.90 F on 27 June.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP


$$
\text { Apol } 1015 \text { ALSEP }
$$



```
APOLLO 16 ALSEP
```


APOLLO 15 ALSEP


APOLLO 14 ALSEP


Status as of 1600 G.m.t., 27 June 1974, was as follows:


## TM POINT



## ALSEP PERFORMANCE SUMMARY REPORT

3 July 1974
G.m.t.: 1300

On 29 June 1974 all AISEP Passive Seismometer Experiments and the Lunar Surface Profiling Experiment exhibited a marked increase in the levels of response. This was noted initially at 1617 G.m.t., during real-time support operations, and continued until approximately 1730 G.m.t. An increase of significant energy counts in the Solar Wind Spectrometex and Iunar Surface Magnetometer Experiments fluw were also experienced at this time.

Remote site coverage for pecording of ALSEP downink data was not available during the following period. It should be noted that the data loss is non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS
14	27 Jun 74	$1345 / 1417$	$32^{m}$	ACN	Station Problem

Apo 11017 ALSEP
Noon of the scientific station's 20th lunation occurred on 2 July at the Taurus Littrow site. Downlink signal strength is reported at $-142.5 \pm$ 2.5 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 2 July the lunar surface temperature, as measured by the HFE's thermocouples, was $375 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Surface Profiling Experiment is in STANDBY. The experiment was commanded ON at 1623 G.m.t., 29 June, and to LSPE data format processing (high bit rate) at 1700 G.m.t. Two geophone calibration pulses were sent during the listening period. Seismic activity was observed on all data channels. LSPE processing was terminated at 1730 G.m.t., and the instrument was commanded to STANDBY select at 1732 G.m.t. The next passive listening period is scheduled for later today, 3 July.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

3 July 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment is currently OFF. The electronic temperature (AM-41) was $80.0^{\circ} \mathrm{F}$ on 2 July.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1355 G.m.t., 28 June 1974, when the mirror temperature (AJ-11) was $189.5^{\circ} \mathrm{F}$. The temperature was $176.0^{\circ} \mathrm{F}$ on 2 July .

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Operational
Central Station
Passive seismic
Lunar surface
magnetometer
experiment
Active seismic
experiment
Apol1o 15 ALSEP

Apollo 14 ALSEP

Central station	Sunrise of the 43 rd lunation at the Apollo 14 site occurred on 28 June. The 30-foot antenna tracking stations report a signal strength from transmitter A at $-140.0 \pm 3.0 \mathrm{dbm}$. The DSS-1 heater ( 10 watts) is OFF for lunar day operations. Data processor Y was verified by command on 29 June 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP) The instrument's heater will be commanded to FORCED OFF on 3 July to minimize heating during lunar day operations. During the limited real-time support periods a significant seismic event was observed on 29 June.
Active seismic experiment	The experiment is currently in STANDBY. The instmment was conmanded to high bit rate ON, 29 June, to verify operational status. The output of geophones \#2 and \#3 appeared abnormal as had initially been obsemed on 3 January 1974. The status check was performed per Apolzo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently in STANDBY. At 2346 G.m.t., 28 June the SIDE experienced a functional change from ON to STANDBY as reported by the Ascension Tracking Station. Present plans are to leave it in this configuration the remainder of the lunar day.
Charged particle lunar environmental experiment	The CPLEE is currently in STANDBY. The experiment was commanded to STANDBY on 30 June for the remainder of this lunar day.

Status as of 1600 G.m.t., 2 July 1974, was as follows:

APOLLO 16 ALSEP

TM POINT

APOLLO 17 ALSEP


## ALSEP PERFORMANCE SUMMARY REPORT

12 July 1974
G.m.t.: 1300

Remote site coverage for recording of AISEP downink data was not available during the following period. It should be noted that the data loss is non-recoverable.

| ALSEP | DATE | G.m.t. | LOSS | SITE | REMARKS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | 8 JuLy 74 | $0129 / 0148$ | $19^{m}$ | $A C N$ | Transmitter OFF (spuxious <br> conmand octal 014) |

Apollo 17 ALSEP
Sunset of the scientific station's 20th lunation occurred on 9 July at the Taurus Littrow site. Downlink signal strength is reported at $-139.2 \pm$ 3.2 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $107 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are 256.50 K at probe $\# 1$ and 256.80 K at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is in STANDBY. The experiment was commanded ON at 1532 G.m.t., 5 July, and to LSPE data format processing (high bit rate) at 1540 G.m.t. Two geophone calibration pulses were sent during the listening period. Activity was observed on all geophones during the real-time operation. LSPE processing was terminated at 1609 G.m.t., and the instrument was commanded to STANDBY at 1611 G.m.t. The next passive listening period is scheduled for 13 July.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to $0 N$ at 1431 G.m.t., 8 July, but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament OFF; high voltage power supply, OFF; and back-up heater, ON. The electronics temperature (AM-41) was $4.9^{\circ} \mathrm{F}$ on 11 July.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

12 July 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded ON for the lunar night at 1613 G.m.t., 5 July. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Operational
Central station
Passive seismic
experiment
Suprathermal ion cathode gauge
Heat flow
experiment
period
Apol1o 12 ALSEP

Status as of 1600 G.m.t., 11 July 1974, was as follows:


APOLLO 17 ALSEP



# ALSEP PERFORMANCE SUMMARY REPORT 

19 July 1974
G.m.t.: 1300

Apol10 17 ALSEP
Midnight of the scientific station's 20th lunation occurred on 16 July at the Taurus Littrow site. Downlink signal strength is reported at $-138.0 \pm 3.0 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 17 July lunar surface temperature, as measured by the HFE thermocouples, was $108.5 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	HBR OFF   G.m.t.	LSPE STBY   G.m.t.	Geophone Cals	Events
14 Juty	0054	0100	0113	0115	0	No Decom Lock
14 July	0116	0117	0119	0120	0	No Decom Lock
14 July	0125	0130	0200	0203	2	None

The next passive listening period is planned for 19 July 1974.
The Lunar Atmospheric Composition Experiment is 0 N but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was reading $3.2^{\circ} \mathrm{F}$ on 17 July.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.
Apo 11015 ALSEP

Operation	status from 12 July 1974, 1300 G.m.t., to 19 July 1974, 1300
Central station	Midnight of the site's 37th lunation occurred on 19 July. Transmitter A downlink signal strength is reported as $-135.5 \pm 3.0 \mathrm{dbm}$ by the tracking stations with 30-foot antennas.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. No significant seismic events were observed during the limited real-time support periods.
Suprathermal ion detector/cold cathode gauge experiment	The instrument has been operating with the Channeltron high voltages commanded $O N$ and in full automatic stepping sequence ( $0-127$ frames) since 1242 G.m.t., 6 July 1974. At 0005 G.m.t., 12 July, the Carnarvon Tracking Station noted a command octal 107 (SIDE Load 4) in the ALSEP downink. Later, during real-time support on 12 July, the spurious functional was verified and cleared without incident at 1341 G.m.t.
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was $89.1^{\circ} \mathrm{K}$ on 17 July as indicated by the cable thermocouples. The subsurface temperature was $253.5^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Apol1o 14 ALSEP

Central station	Sunset at the Apollo 14 site occurred on 13 July. Transmitter A signal strength was reported as -136.0 to -144.5 dbm from the 30 -foot tracking stations. The DSS-1 heater ( 10 watts) is ON for lunar night operation.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in AUTO ON for lunar night operations. No significant seismic events were observed during the periodic real-time support periods.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON since 1344 G.m.t., 12 July.
Charged particle lunar environment experiment	The experiment is operating in the manual mode at the -35 vdc range and automatic thermal control mode since 1346 G.m.t., 12 July. It is planned to leave the experiment in this configuration pending possible degradation of $A C-03$, analyzer $A$ voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY.

 $\quad$ Operational
Central station
Passive seismic
experiment
Solar wind
spectrometer
experiment
Suprathermal ion
detector
experiment
Status as of 1600 G.m.t., 17 July 1974, was as follows:


## APOLLO 14 ALSEP


APOLLO 12 ALSEP
APOLLO 17 ALSEP


## ALSEP PERFORMANCE SUMMARY REPORT

26 July 1974
G.m.t.: 1300

This reporting period culminates an aggregate total of 15 years that the Apollo 12 through 17 ALSEP lunar laboratories have returned scientific data of the moon and its associated solar phenomena to the earth for interpretation and evaluation. During this operational time period the various experiment packages and central stations have responded to 84,599 functional changes as a result of ground commands which have resulted in the ultimate collection of the scientific data.

Apo110 17 ALSEP
Sunrise of the scientific station's 21st lunation occurred on 24 July at the Taurus Littrow site. Downlink signal strength is reported at -140.7 $\pm 4.7 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 24 July the lunar surface temperature, as measured by the HFE's thermocouples, was $143 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. LSPE passive listening mode operations were accomplished during this reporting period as follows:

Date	LSPE ON G.m.t.	HBR ON G.m.t.	HBR OFF G.m.t.	LSPE STBY	Geophone Cals	S
19 July	1527	1530	1600	1601	2	None
24 July	1525	1530	1600	1602	2	None

The next passive listening period is planned for 28 July 1974.
The Lunar Atmospheric Composition Experiment is $O N$ but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was reading $3.2^{\circ} \mathrm{F}$ on 24 July .

26 July 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) was reading -14.0 F on 24 July.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.
Apollo 15 ALSEP

Central station	status from 19 July 1974, 1300 G.m.t., to 26 July 1974, 1300 G.m.t.   Sunrise of the station's 38th lunation occurred today at the Hadley Rille lunar site. The transmitter $A$ downlink signal strength is reported between -133.0 dbm and -137.0 dbm .
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events were noted during real-time support.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating continuously with channeltron high voltages commanded ON and in full automatic stepping sequence (Apollo 15 ALSEP, SMEAR 47).
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors are being sampled in full sequence. On 24 July the lunar surface temperature was $84.5^{\circ} \mathrm{K}$ indicated by the cable thermocouples. The subsurface temperature was $253.5^{0} \mathrm{~K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Apol1o 14 ALSEP

Operational	status from 19 July 1974, 1300 G.m.t., to 26 July 1974, 1300 G.m.t.
Central station	Sunrise at the Apollo 14 site will occur on 28 July ( 44 th lunation). Transmitter A signal strength was reported between -135.0 dbm and -140.0 dbm . DSS-1 heater ( 10 watts) will be commanded OFF for lunar day operation on 28 July 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events have been noted during this report period.
Active seismic experiment	The experiment is currently in STANDBY per Apollo 14 ALSEP, SMEAR 86,
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON for the remainder of this lunation.
```Charged particle lunar environmental experiment```	The experiment is operating in the manual mode at the -35 vdc range and auto matic thermal control mode. It is planned to leave the experiment in this configuration pending possible degradation of $A C-03$, analyzer $A$ voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY.


Status as of 1700 G.m.t., 24 July 1974, was as follows:

APOLLO 17 ALSEP

1 August 1974
G.m.t.: 2000

On 29 July 1974 the Lunar Surface Magnetometer and the Solar Wind Spectrometer Experiments of Apollo 15 ALSEP were commanded ON. The instruments had been OFF for two successive lunar nights. Neither instrument downlinked valid scientific or engineering data and are still considered to be ineffective. The instruments were commanded back to OFF after a few minutes of observation.

Remote site coverage for recording of ALSEP downlink data was not available during the following periods. It should be noted that the data losses are non-recoverable.

ALSSEP		DATE	G.m.t.	LOSS	SITE	REMARKS
15		JuL 74	1606/1623	17 m	$A C N$	Station Problem
16		Jut 74	1638/1705	27 m	ACN	Station Problem
12	29	JuL 74	0000/0009	ogm	GDS	Station Problem

APOLLO 17 ALSEP
Noon of the scientific station's 21 st lunation occurred on 31 July at the Taurus Littrow site. Downlink signal strength is reported at - 142.0 $\pm 3.0 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 37 July the lunar surface temperature, as measured by the HFE's thermocouples, was $373 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater $0 N$).

The Lunar Surface Profiling Experiment is in STANDBY. The experiment was commanded ON at 0257 G.m.t., 29 July, and to LSPE data format processing (high bit rate) at 0300 G.m.t. Two geophone calibration pulses were sent during the listening period. Seismic activity was observed on all data channels. LSPE processing was terminated at 0330 G.m.t., and the instrument was commanded to STANDBY at 0331 G.m.t. The next passive listening period is scheduled for 8 August.

1 August 1974
G.m.t.: 2000

The Lunar Atmospheric Composition Experiment is currently OFF. The instrument was commanded OFF at 1439 G.m.t., 28 July 1974, when the electronic temperature (AM-41) was $126.8^{\circ} \mathrm{F}$. The temperature was $80.0^{\circ} \mathrm{F}$ on 31 July.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1441 G.m.t., 28 July 1974, when the mirror temperature (AJ-11) was $183.5^{\circ} \mathrm{F}$. The temperature was $170.6^{\circ} \mathrm{F}$ on 31 July.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch, TN3, telephone 483-5067.
Apol10 16 ALSEP

Opera	status from 26 July 1974, 1300 G.m.t., to 1 August 1974, 2000 G.m.t.
Central Station	Noon of the 29th lunation will occur today, 1 August 1974. The DSS-1 heater (10 watts) is OFF for lunar day operation. The 18-hour timer output pulses continue to be inhibited. The 30 -foot antenna tracking stations report a signal strength between -135.5 dbm and -139.0 dbm from transmitter B.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The Zong period y-axis has responded to leveling commands since 28 April 1974. The lunar night leveling anomaly has not been experienced for the past three (3) lunations (26th - 28th). On 30 July, the Zong period Z-axis drove in the positive direction on the first leveling attempt atthough the negative direction had been selected. This anomaly has been observed previously. The instrument's sensor temperature (DL-07) indicated offscale HIGH at the beginning of real-time support on 31 July (sun angle 74.1°). No significant seismic event was noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM data have been valid since 17 August 1973. 774 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The Active Seismic Experiment is currently OFF. The instrument was commanded to high bit rate ON, 29 July 1974, to verify operational status. Operation was satisfactory at this time. The check was performed per Apolzo 16 ALSEP, SMEAR 27.

Apol10 14 ALSEP	
Operatio	status from 26 July 1974, 1300 G.m.t., to 1 August 1974, 2000 G.m.t.
Central station	Sunrise of the 44th lunation at the Apollo 14 site occurred on 28 July. The 30 -foot antenna tracking stations report a signal strength from transmitter A at $-139.0 \pm 4.0 \mathrm{dbm}$. The DSS-1 heater (10 watts) is OFF for lunar day operations. Data processor Y was verified by command on 29 July 1974.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apol10 16 ALSEP) The instrument's heater will be commanded to FORCED DFF on 1 August to minimize heating during lunar day operations. On 30 and 31 July, the long period Y-axis was noisy because one bit was not setting and is apparently an internat instrument problem. This anomaly is intermittent and had been observed previously by the Principal Investigator and during real-time support on 14 April 1973. During the limited real-time support periods, no significant seismic events were observed.
Active seismic experiment	The experiment is currently in STANDBY. The instmment was commanded to high bit rate ON, 29 July, to vemify operational status. The output of geophones \#2 and \#3 appeared abnormal as had initially been observed on 3 January 1974. The status check was performed per ApolZo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The experiment is currently in STANDBY. At 1100 G.m.t., 28 Juty, the SIDE experienced a functional change from ON to STAADBY as reported by the Guam tracking station. Present plans are to leave it in this configuration the remainder of the lunar day.
```Charged particle Tunar environment experiment```	The CPLEE is currently in STANDBY. The experiment was commanded to STANDBY on 30 July for the remainder of this lunar day.


	Apol10 12 ALSEP
Operational	status from 26 July 1974, 1300 G.m.t., to 1 August 1974, 2000 G.m.t.
Central station	Sunrise of the 59th lunation occurred on 28 July at the ALSEP site in the
	Ocean of Storms. The signal strength is between -137.0 dbm and -143.5 dbm
	from transmitter $B$ as reported by the 30 -foot antenna tracking stations.
	The DSS-1 heater (10 watts) was commanded OFF for lunar day operations on
	29 July.
Passive seismic	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP).
experiment	The Z-axis drive motor was commanded OFF for lunar day operation on 29 July.
	No significant seismic events were observed during the periodic real-time support
	periods of this instrument.
Solar wind	The instrument is currently in the normal gain mode and is recording solar wind
spectrometer	plasma data for subsequent long-term analysis.
experiment	
Suprathermal ion	The SIDE is currently OFF. On 30 July, cyclic commanding of the instrument in
detector	the full automatic stepoing sequence, with Channeltron high voltages $O N$ to
experiment	experiment power OFF, in an effort to preclude instrument mode changes at
	internal temperatures above $55^{\circ} \mathrm{C}$ during the lunar day, was initiated.

APOLLO 16 ALSEP
831
12151
$75.2^{\circ}$
$67.7 W$
AT OFF
ASE OFF
$99.5^{\circ} \mathrm{F}$
OffsCale HIGH
$42.4^{\circ} \mathrm{C}$
N/A
N/A
N/A
N/A
OFF
OFF

July 1974, was as follows:




## ALSEP PERFORMANCE SUMMARY REPORT

9 Aug 1974
G.m.t.: 0000

On 5 August 1974 the Lunar Surface Magnetometer Experiment of the Apolzo 12 ALSEP was commanded ON. The instmment had been OFF for two successive lunar nights. The instminent did not downlink valid scientific or engineering data but the status bits are functioning properly to the inhibit, flip calibration, and science/calibration modes. The instmment was commanded back to OFF after a few minutes of obsemation.

Apollo 17 ALSEP
Sunset of the scientific station's 21st lunation occurred on 8 August at the Taurus Littrow site. Downlink signal strength is reported between -134.0 and -139.5 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $103.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON ).

The Lunar Seismic Profiling Experiment is in STANDBY. The next passive listening period is scheduled for 12 August at which time the experiment will remain in high bit rate until 16 August. The four days of extended ISPE operation are scheduled in order to pursue a study of meteroid impacts and thermal moonquakes. The station will be commanded to normal bit rate for brief periods during real-time support to monitor the other experiments operation. This will be the third (3rd) of eight (8) segmented HBR listening periods to obtain data for one complete lunation.

The Lunar Atmospheric Composition Experiment was commanded from STANDBY to 0 N at 1443 G.m.t., 7 August, but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and back-up heater, ON. The electronics temperature (AM-41) was $79.3^{\circ} \mathrm{F}$ on 7 August.

ALSEP PERFORMANCE SUMMARY REPORT (continued)
9 August 1974
G.m.t.: 0000

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded ON for the lunar night at 1321 G.m.t., 4 August, when the instrument's mirror temperature (AJ-11) was reading $176.0^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Apol10 15 ALSEP

Central station	Sunset of the site's 38 th lunation will occur on 10 August. Transmitter A downlink signal strength is reported as $-136.5 \pm 1.5 \mathrm{dbm}$ by the tracking stations with 30-foot antennas. The data subsystem's 18 -hour timer outputs are occurring normally.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. A significant seismic event was observed during the limited real-time support period on 4 August 1974 beginning at 1254 G.m.t. The event was also observed on the Apollo 12, 14, and 16 AISEPP PSE instruments but it was most active on the Apolzo 15 ALSEP instrument.
Suprathermal ion detector/cold cathode gauge experiment	The instrument has been operating with the Channeltron high voltages commanded $O \mathbb{N}$ and in full automatic stepping sequence ( $0-127$ frames) since 1339 G.m.t., 5 August 1974.
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was $296.1^{\circ} \mathrm{K}$ on 8 August as indicated by the cable thermocouples. The subsurface temperature was $253.5^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.1^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

Apollo 14 ALSEP

Apol1o 12 ALSEP


Status as of 1600 G.m.t., 8 August 1974, was as follows:
APOLLO 15 ALSEP

```
岂
```




APOLLO 12 ALSEP
1723
208610
$133.8^{\circ}$
62.6 W
A11 OFF
LSM/SIDE OFF
$87.0^{\circ} \mathrm{F}$
Offscale HIGH
OFF
$59.2^{\circ} \mathrm{C}$
$39.2^{\circ} \mathrm{C}$
Inalid
N/A
N/A
N/A



TM POINT


16 August 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not available during the following period. It should be noted that the data losses are non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS
14	12 Aug 1974	$1805 / 1816$	$11^{m}$	MIL	Station Problem

Apollo 17 ALSEP
Midnight of the scientific station's 21st lunation occurred on 15 August at the Taurus Littrow site. Downlink signal strength is reported at $-139.2 \pm 4.2 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to ininibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 14 August lunar surface temperature, as measured by the HFE thermocouples was $108.5 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N ).

The Lunar Seismic Profiting Experiment is ON. The experiment was commanded ON at 1016 G.m.t., 12 August 1974, and to LSPE data format processing (high bit rate) at 1025 G.m.t. Geophone calibration pulses were sent during the Iistening period. Activity was observed during real-time operation. LSPE processing will be terminated on 16 August 1974. The four days of extended LSPE operation were scheduled to pursue a study of meteroid impacts and thermaz moonquakes. The station was commanded to normal bit rate for brief periods during real-time support to monitor the other experiments operation. The next passive Iistening mode is planned for 6 September 1974.

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, 0FF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was reading $3.2^{\circ} \mathrm{F}$ on 14 August 1974.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

16 August 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) currently is reading $-17.4^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.
Apollo 16 ALSEP

Central station	Midnight at the Descartes Site will occur on 16 August for the 29th lunation. The DSS-1 heater ( 10 watts) is ON for lunar night operations. The 18-hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The signal strength from transmitter B is reported between -135.0 and -139.5 dbm by the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM continues in the full operational mode and all data have been valid since 17 August 1973. The instrument has accomplished 786 flip calibration sequences since activation.
Active seismic experiment	16 ALSEP, SMEAR 27.   The Active Seismic Experiment is currently OFF. Present operations are per Apollo


 during the limited real-time support periods.
The instrument has been operating with the Channeltron high voltages commanded 5 August 1974. 5 August 1974.

$$
\begin{aligned}
& \text { The instrument is presently operating in the gradient mode and all sensors being } \\
& \text { sampled in full sequence. The lunar surface temperature was } 90.7^{\circ} \mathrm{K} \text { on } 14 \text { August as } \\
& \text { indicated by the cable thermocouples. The subsurface temperature was } 253.5^{\circ} \mathrm{K} \text { at } \\
& \text { the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature } \\
& \text { of } 251.2^{\circ} \mathrm{K} \text { at its lowermost point. Ring bridge surveys are obtained periodically. } \\
& \text { Commanded 0FF } 14 \text { June } 1974 \text {. }
\end{aligned}
$$

Commanded OFF 14 June 1974.
Operational
Central station
Passive seismic
experiment
Suprathermal ion
cathode gauge
experiment

## Heat flow experiment

Solar wind
spectrometer
experiment
Lunar surface
magnetometer
experiment

$$
\text { Apol } 1015 \text { ALSEP }
$$

Apollo 14 ALSEP


	Apollo 12 ALSEP
Operational	status from 9 August 1974, 0000 G.m.t., to 16 August 1974, 1300 G.m.t.
Central station	Sunset of the 58th lunation occurred on 12 August. The DSS-1 heater ( 10 watts) was commanded 0 N for lunar night operation on 12 August. A signal strength of -137.0 to -144.5 dbm from transmitter $B$ was reported by the 30 -foot tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The z-axis drive motor was commanded $0 N$ at 0952 G.m.t., 12 August, to maximize heating in the instrument during lunar night. No significant seismic events were noted during the periodic real-time support periods.
Solar wind spectrometer experiment	The instrument remains in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	Currently the SIDE is in the full automatic stepping sequence with Channeltron high voltages $0 N$ since 1238 G.m.t., 10 August.
Lunar surface magnetometer experiment	Commanded OFF 14 June 1974.


APOLLO 16 ALSEP


## ALSEP PERFORMANCE SUMMARY REPORT

23 August 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available during the following periods. It must be noted that these data losses are non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS		
15	26 June 74	$0331 / 0407$	36		ORR		Station Problem
:---							
16							

Apollo 17 ALSEP
Sunrise of the scientific station's 22nd lunation occurred on 22 August at the Taurus Littrow site. Downlink signal strength is reported at -141.7 $\pm 4.7 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods. On 16 August, prior to termination of the LSPE four day listening period, three (3) geophone calibrate commands (octal \#170) were sent with no functional reponses or CVWs received in the downlink. Uplink $A$ was in use at this time. On 19 August, during real-time support thirty three (33) commands were sent to the AISEP package with only four (4) functional verifications. Uplink $B$ was selected by transmitting conmand octal \#122 (switch uplink). Subsequently, thirty one (31) commands were sent during the 19 August real-time support with no further problems. Investigation of this anomaly is in progress.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 21 August the lunar surface temperature, as measured by the HFE's thermocouples, was $105 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was 256.5 K at probe \#1 and $256.9^{0} \mathrm{~K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. A 4-day passive listening period was conducted from 12 August to 16 August 1974 in
ALSEP PERFORMANCE SUMMARY REPORT (continued)

23 August 1974
G.m.t.: 1300
order to pursue a study of meteroid impacts and thermal moonquakes. Several significant events were noted during the real-time support periods when the LSP high bit rate was observed for one (1) hour. These events occurred during lunar night time (Sun Angle 233.7 ${ }^{\circ}$ to $285.6^{\circ}$ ). The next 4-day passive listening period is planned for 6 to 10 September 1974.

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, 0FF; high voltage power supply, 0FF; and backup heater, ON. The electronics temperature (AM-41) was reading 1.4 ${ }^{\circ} \mathrm{F}$ on 21 August.

The Lunar Ejecta and Meteorites Experiment is $0 N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) was reading $-17.4^{\circ} \mathrm{F}$ on 21 August.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.
Apol 1016 ALSEP

Ope	status from 16 August 1974, 1300 G.m.t., to 23 August 1974, 1300 G.m.t.
Central station	Sunrise of the 30 th lunation will occur today, 23 August 1974. The DSS-1 heater ( 10 watts) will be commanded OFF for 7 unar day operations. The 18-hour timer output pulses continue to be inhibited. The 30 -foot antenna tracking stations report a signal strength between -135.0 dbm and -137.5 dbm from transmitter B .
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control AUTO ON; component gains, 0 db ; and feedback loop filter OUT). No significant seismic events were noted during the limited real-time support of this instrument.
Lunar surface magnetometer experiment	The LSM data have been valid since 17 August 1973. 802 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The Active Seismic Experiment is currently OFF per Apollo 16 ALSEP, SMEAR 27.

Apollo 15 ALSEP

Central station	Sunrise of the station's 39th lunation will occur at the Hadley Rille lunar site on 24 August 1974. The transmitter A downlink signal strength is reported between -132.0 dbm and -138.0 dbm .
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events were noted during real-time support.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating continuously with channeltron high voltages commanded ON and in full automatic stepping sequence (Apollo 15 ALSEP, SMEAR 47).
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors are being sampled in full sequence. On 21 August the lunar surface temperature was 85.1 K indicated by the cable thermocouples. The subsurface temperature was $253.5^{\circ} \mathrm{K}$ at the bottom 8 f the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.
Solar wind spectrometer experiment	Commanded OFF 14 June 1974.
Lunar surface magnetometer experiment	Commanded OFF 14 June 1974.

Apol1o 14 ALSEP

Apollo 12 ALSEP


APOLLO 14 ALSEP


APOLLO 17 ALSEP


[^4]

## ALSEP PERFORMANCE SUMMARY REPORT

30 August 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not available duwing the following period. It should be noted that the data losses are non-recoverable.

ALSEP	$\frac{\text { DATE }}{15}$	G.mt.	LOSS	SITE	REMARKS
11 JUL 74	$1855 / 2322$	$4^{h} 27^{m}$	CRO	Station Problem	

APOLLO 17 ALSEP
Noon of the scientific station's 22nd lunation occurred today at the Taurus Littrow site. Downlink signal strength as reported from the 30 -foot antenna tracking stations was $-141.0 \pm 4.0 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 29 August the lunar surface temperature, as measured by the HFE's thermocguples, was $376 \pm 8{ }^{0} \mathrm{~K}$. Subsurface temperature at 230 cm depth was 256.4 K at probe \#1 and $256.8^{0} \mathrm{~K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON ).

The Lunar Surface Profiling Experiment is in STANDBY. The next passive listening period is scheduled from 6 September through 10 September 1974, to achieve the third segment of one complete lunar cycle by the experiment.

The Lunar Atmospheric Composition Experiment is currently OFF. The instrument was commanded 0FF at 1633 G.mot., 25 August 1974, when the electronic temperature ( $\mathrm{AM}-41$ ) was $121.3^{\circ} \mathrm{F}$. The temperature was $80.0^{\circ} \mathrm{F}$ on 29 August.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1533 G.m.t., 26 August 1974, when the mirror temperature (AJ-11) was $192.5^{\circ} \mathrm{F}$. The temperature was $168.4^{\circ} \mathrm{F}$ on 29 August.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch, TN3, telephone 483-5067.
 SMEAR 27.
status from 23 August 1974, 1300 G.m.t., to 30 August 1974, 1300 G.m.t.
Noon of the station's 39 th lunation will occur on 1 September. Transmitter A
downlink signal strength was reported at $-135.5 \pm 3.5 \mathrm{dbm}$ from the 30 -foot
antenna tracking stations.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument is configured for seismic network congruity (Ref. Apolio 16 ALSEP).
The instrument's uncage/arm fire circuitry has been cycling per the normal 18 hour
timer output pulse functions. During the real-time support periods this past week, no significant seismic events were observed.

The instrument is presently operating in the gradient mode and 211 sensors being sampled in full sequence. The lunar surface temperature was $354.2^{\circ} \mathrm{K}$ on 29 August at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of $251.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.
Commanded OFF 14 June 1974.
Commanded OFF 14 June 1974. Operational
nolqeqs Leıquəう
Passive seismic
experiment
Suprathermal ion
cathode gauge
experiment
Heat flow
experiment

Lunar surface magnetometer experiment
Status as of 1600 G.m.t., 29 August 1974, was as follows:
APOLLO 15 ALSEP APOLLO 16 ALSEP

 $\frac{-}{\circ}$
$o$
$\infty$
$\frac{0}{m}$
TM POINT
Total Days of Operation
Total Commands to Date

## 21093

1301
12260
$36.5^{8}$
64.9 w
A11 OFF
SIDE, CPLEE, ASE STBY
$84.7^{\circ}$ F
$125.4^{\mathrm{G}}$
N/A
N/A
STBY
STBY
STBY
$34.6^{\circ} \mathrm{C}$
N/A
APOLLO 17 ALSEP
625
16730
34.7
73.3 W
ON
A11 OFF
LSPE STBY/LACE \& LEAM OFF
$111.6^{\circ} \mathrm{F}$
$80.0^{\circ} \mathrm{F}$
$168 . \mathrm{b}^{\circ} \mathrm{F}$
$326.2^{\circ} \mathrm{K}$
$49 . \mathrm{O}^{\circ} \mathrm{O}$
112.8 F

## ALSEP PERFORMANCE SUMMARY REPORT

6 September 1974
G.m.t.: 1300

On 4 September 1974 the Guam tracking station noted that a satellite placed in earth synchronous orbit was transmitting signats on 2277.5 MHz with sidebands of 1.024 MHz . The maximum signal strength at the center frequency was -122.0 dbm. The satellite could interfere with the support of ALSEP by the Guam tracking station. The ALSEP frequencies range from 2275.5 to 2279.5 MHz .

On 3 September 1974 the Lunax Surface Magnetometer Experiments of the Apollo 12 and 15 ALSEPS and the Solar wind Spectrometer Experiment of Apollo 15 ALSEP were commanded ON. The instruments had been OFF for three successive lunar nights. Neither instrument downinked valid scientific or engineering data and are still considered to be ineffective. The instruments were commanded back to OFF after a few minutes of observation.

## Apol10 17 ALSEP

Sunset of the scientific station's 22nd lunation will occur later today at the Taurus Littrow site. Downlink signal strength is reported between -134.0 and -139.5 dbm from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods. Over 300 commands have been received and executed by the central station through uplink $B$ since the switch from uplink $A$ on 19 August 1974.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. Lunar surface temperature, as measured by the HFE thermocouples, is $289.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures are $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON ).

The Lunar Seismic Profiling Experiment is in STANDBY. The next passive listening period is scheduled for 6 September at which time the experiment will remain in high bit rate until 10 September (sun angles, $181.5^{\circ}$ to $235.0^{\circ}$ ). The four days of extended LSPE operation are scheduled in order to pursue a study of meteroid impacts and thermal moonquakes. The station will be commanded to normal bit rate for brief periods during real-time support to monitor the other experiments operation. This will be the

6 September 1974
G.m.t.: 1300
fourth (4th) of eight (8) segmented $H B R$ listening periods to obtain data for one complete lunation (Apollo 17 ALSEP, SMEAR 68).

The Iunar Atmospheric Composition Experiment was commanded to STANDBY with the survival heater on at 1345 G.m.t., 30 August, at the request of the Principal Investigator. The purpose of this operation during lunar day was to increase the temperature (bake-out) in the electronics section, and therefore the outgassing, in an attempt to corpect the Multiplier High Voltage Power Supply problem which exists in the experiment (Apollo 17 ALSEP, SMEAR 70). The maximum temperature observed by the electronic temperature (AM-4.1) was 142.3º during this operation. The LACE was commanded ON at 1407 G.m.t., 5 September, but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF: high voltage power supply OFF; and backup heater, ON. The electronics temperature (AM-41) was reading $90.6^{\circ} \mathrm{F}$ at this time.

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded 0 N for the lunar night at 1438 G.m.t., 3 September, when the instrument's mirror temperature ( $\mathrm{AJ}-11$ ) was reading $169.5^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Apol1o 15 ALSEP
Operational status from 30 August 1974, 1300 G.m.t., to 6 September 1974, 1300 G.m.t.
Noon of the station's 39th Iunation occurred I September Transmitter A downlink signal strength was reported at $-139.0 \pm 2.0 \mathrm{dbm}$ from the 30 -foot antenna tracking stations.
 observed.
The instrument is currently ON. Automatic sequencing of the experiment was initiated for the remainder of this lunation on 3 September (Apollo 15 ALSEP, SMEAR 47).
The instrument is presently operating in the gradient mode and all sensors being
sampled in full sequence. The lunar surface temperature was $337.2^{\circ} \mathrm{K}$ on 5 September
as indicated by the cable thermocouples. The subsurface temperature was $253.5^{\circ} \mathrm{K}$
at the bottom of the lowest section of probe \#l. Probe \#2 indicated a temperature
of $257.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.

$$
\text { Commanded OFF } 14 \text { June 1974. At } 1515 \text { G.m.t., } 3 \text { September, a command was sent to }
$$ turn the experiment $O N$ with no valid engineering or scientific data being returned in the downink. It was noted that the SWS electronics drew 1.5 watts of power and that the heater turned On and used 4.5 watts of power. The instrument was commanded OFF after a few minutes of operation. Central station

Passive seismic
Suprathermal ion
detector/cold
cathode gauge
experiment
Heat flow

[^5]
Apol1o 14 ALSEP
The CPLEE is currently in STANDBY. Operational
Central station
Passive seismic
experiment

$\begin{aligned} & \text { Active seismic } \\ & \text { experiment }\end{aligned}$
Suprathernal ion
detector/cold
cathode gauge
experiment
Charged particle
lunar
environmental
experiment

Central station
Passive seismic
experiment Solar wind spectrometer Suprathermal ion detector/cold cathode gauge
status from 30 August 1974, 1300 G.m.t., to 6 September 1974, 1300 G.m.t.

Operatio	status from 30 August 1974, 1300 G.m.t., to 6 September 1974, 1300 G.m.t.
Central station	Noon of the 60th lunar day occurred on 3 September. The DSS-1 heater ( 10 watts) is OFF for lunar day operations. A signal strength of -140.0 to -144.0 dbm from transmitter B was reported by the 30 -foot tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). At the start of real-time support on 4 September, the instrument's sensor temperature (DL-07) was offscale HIGH (sun angle $=102.3^{\circ}$ ). It is predicted that the temperature will return onscale on 8 September 1974. No significant seismic event was observed during the real-time supports this report period.

[^6]The instrument is $O N$ and in the normal gain mode recording solar wind plasma data.
The experiment was operated in the extended range mode due to observation of high
particle counts from 29 Aug $/ 1410$ to 30 Aug/1409 G.m.t.
The SIDE is currently OFF. The instrument was commanded OFF during real-time support on 28 August when the internal temperature was $41.6^{\circ} \mathrm{C}$. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high to preclude instrument mode changes at internal 4 September the SIDE experienced a reduction of high energy calibrations and data counts probably due to a loss of amplifier gain. During the support period on 4 September the data appeared to return to normal. On 5 September after the ex periment was commanded ON all SIDE engineering and scientific data appeared normal during the real-time support period.


13 September 1974
G.m.t.: 1300

Apol10 17 ALSEP
Midnight of the scientific station's 22nd lunation will occur later today at the Taurus Littrow site. Downlink signal strength is reported at $-138.0 \pm 4.0 \mathrm{dbm}$ from transmitter $A$. Automatic power management continues to distribute power for optimuri thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 12 September lunar surface temperature, as measured by the HFE thermocouples was $109 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. A 4-day passive Iistening period was conducted from 1415 G.m.t., 6 September, to 2355 G.m.t., 10 September 1974, in order to continue a study of meteroid impacts and thermal moonquakes. Several significant events were noted duwing the real-time support periods when the LSP high bit rate was obsemed for one (1) hour. These events occurred during lunar night time (Sun Angle 181.4 ${ }^{\circ}$ to $235.1^{\circ}$ ). The next 4 -day passive listening period is planned for 22 to 25 October 1974.

The Lunar Atmospheric Composition Experiment is 0 N but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, 0FF; high voltage power supply, 0FF; and backup heater, ON. The electronics temperature (AM-41) was reading $3.2^{\circ} \mathrm{F}$ on 12 September.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature ( $\mathrm{A} J-11$ ) was reading $-17.4^{\circ} \mathrm{F}$ on 12 September.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.

Conmanded OFF 14 June 1974.
Apol10 14 ALSEP

peratio	status from 6 September 1974, 1300 G.m.t., to 13
Central station	Sunset at the Apollo 14 site occurred on 10 September. Transmitter A signal strength was reported as -136.0 to -144.0 dbm from the 30 -foot antenna tracking stations. The DSS-1 heater (10 watts) is ON for lunar night operation.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSE
	The instrument's heater is in AUTO ON for lunar night operations. At 1126 G.m.t.,
	10 September, the PSE responded to a spurious command (octal 071, Y-motor ON) as
	observed by the Ascension Tracking Station. The Y-motor was returned to the OFF condition by mode 1 command (octal 071), from the Guam Tracking Station at 1901
	G.m.t., 10 September. The Zong period Y-axis noisy data, previously reported, has continued to be observed throughout this reporting period. No significant seismic events were observed during the periodic real-time support periods.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating in the full automatic stepping sequence with Channel-
	tron high voltages commanded ON since 1359 G.m.t., 9 September.
Charged particle lunar environment experiment	The experiment is operating in the manual mode at the -35 vdc range and automatic
	thermal control mode since 1403 G.m.t., 9 September. It is planned to leave the
	experiment in this configuration pending possible degradation of AC-03, analyzer A
	voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY.

Apol10 12 ALSEP

APOLLO 12 ALSEP



APOLLO 17 ALSEP


ALSEP SUPPORT SCHEDULF/EVENTS						$\begin{array}{r} \text { PSE CALS } \\ 31_{\angle 4} \angle 43 \end{array}$
Aug 25, 237	26/238	27/239	28/ட40	29/241	30/242	
1100-1200	O900-1100   ALSEP 14   ALSEP 12   ALSEP 17   LACE OFF   LEAM OFF   FLIP CAL   HFE RBS	$0800-1200$   ALSEP 12   PSE Z-MTR OFF   C/S HTR OFF   ALSEP 14   C/S HTR OFF   Y PROC CHK   ASE CHK   ALSEP 16   ASE CHK	$\frac{0900-1100}{\text { ALSEP } 12}$ SIDE 0FF FLIP CAL HFE RBS	$\frac{0900-1100}{\text { ALSEP 12 }}$ CYCLE SIDE ALSEP 15 SIDE STBY ALSEP 14 CPLEE STDBY ALSEP 16 NEG $Z$	O900-1100 ALSEP 12 \& 15 CYCLE SIDES ALSEP 14 PSE HTR OFF ALSEP 16 NEG Z FLIP CAL HFE RBS $\frac{2230-2400}{\text { ALSEP 15 }}$ SIDE SPRT	
Sep 1/244	2/245	3/246	4/247	5/248	6/249	7/250
$\frac{0900-1100}{\text { ALSEP } 12}$ \& 15 CYCLE SIDES ALSEP 16 NEG Z	$\frac{0900-1100}{\text { ALSEP } 12 \text { \& } 15}$ CYCLE SIDES ALSEP 16 NEG Z FLIP CAL HFE RBS	O900-1100 $\frac{\text { ALSEP } 12}{}$ CYCLE SIDE ALSEP 15 SIDE ON ALSEP 17 LACE STDBY LEAM ON	$\frac{0900-1100}{\text { ALSEP } 12}$ CYCLE SIDE FLIP CAL HFE RBS	$\frac{\text { O900-1100 }}{\text { ALSEP 12 }}$ CYCLE SIDE ALSEP 16 POS $Z$ ALSEP 17 LACE ON	O900-1100   ALSEP 17   HBR ON   ALSEP 12   CYCLE SIDE   ALSEP 16   C/S HTR ON   POS Z   FLIP CAL   HFE RBS   2100-2200   ALSEP 16   POS $Z$	$\frac{\text { O900- } 1100}{\text { ALSEP } 16}$ ALSEP 12 CYCLE SIDE ALSEP 14 PSE HTR ON ALSEP 17 HBR
Sep 8/251	9/252	10/253	11/254	12/255	13/256	14/257
$\frac{0900-1100}{\text { ALSEP } 15}$ ALSEP 12 CYCLE SIDE ALSEP 17 HBR	$\frac{0900-1100}{\text { ALSEP } 12}$   SIDE ON   ALSEP 14   C/S HTR ON   SIDE ON   CPLEE ON   ALSEP 17   HBR   FLIP CAL HFE RBS	$1600-2000$   ALSEP 12   PSE Z-MTR ON   C/S HTR ON   ALSEP 14      ALSEP 17   HBR OFF	$\begin{aligned} & \frac{0900-1100}{\text { FLIP CAL }} \\ & \text { HFE RBS } \end{aligned}$	$\begin{gathered} \frac{0900-1100}{\text { ALSEP } 15} \\ \text { NEG } X \\ \text { POS } Y \end{gathered}$	$\begin{aligned} & \frac{0900-1100}{\text { FLIP CAL }} \\ & \text { HFE RBS } \end{aligned}$	NO SUPPORT
BEN-20						ASA

20 September 1974
G.m.t.: 1300

## Apol10 17 ALSEP

Sunrise of the scientific station's 23rd Tunation will occur on 21 September at the Taurus Littrow site. Downlink signal strength is reported between -136.0 and -142.5 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods. There has been no further problem executing commands since the switch from Uplink $A$ to Uplink $B$ on 19 August 1974.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 18 September the lunar surface temperature, as measured by the $H F E$ thermocouples, was $106.0 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0N).

The Lunar Surface Profiling Experiment is in STANDBY. The next passive listening period is scheduled for 22 0ctober 1974, to achieve the fifth segment of one complete lunar cycle by the experiment.

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. The electronics temperature (AM-41) was reading $3.2^{\circ} \mathrm{F}$ on 18 September 1974.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature (AJ-11) was reading $-17.4^{\circ} \mathrm{F}$ on 18 September.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.
Apol1o 16 ALSEP


Suprathermal ion
Passive seismic experiment
Solar wind
spectrometer
experiment
Lunar surface magnetometer experiment
ADO 17072 ALSEP

Central station	Midnight of the 60th lunation occurred on 18 September. The DSS-1 heater ( 10 watts) is $0 N$ for lunar night operation. A signal strength of -736.5 to -141.0 dbm from transmitter B was reported by the 30 -foot tracking station.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apol10 16 ALSEP). The Z-axis drive motor is $O N$ to maximize heating in the instrument during lunar night. The long period $X$ - and $Y$-axes have responded to all calibration comands (octal 066) during this report period. No significant seismic events were noted during the periodic real-time support periods.
Solar wind spectrometer experiment	The instrument remains in the normal gain mode and is recording solar wind plasma data.
Supratherma 1 ion detector experiment	Currently the SIDE is in the full automatic stepping sequence with Channeltron high voltages ON since 1337 G.m.t., 8 September.
Lunar surface magnetometer experiment	Commanded OFF 14 June 1974.

APOLLO 16 ALSEP
APOLLO 16 ALSEP ©

3
0
0
0
3
3
0
0

 3.6 .8
+0.92
 Value in parentheses indicates $R T G$
 simizar sun angle．
Status as of 1600 G．m．t．， 18 September 1974，was as follows：

APOLLO 12 ALSEP 62．1w（62．5w） 1764
21300
$274.6^{\circ}$
62.1 W
DSS -1
LSM OFF LSM OFF $12.5^{\circ} \mathrm{F}$ $126.1^{\circ} \mathrm{F}$ OFF $-4.3^{\circ} \mathrm{C}$ valid

$$
7
$$

APOLLO 14 ALSEP




TM POINT

APOLLO 17 ALSEP

Al1 OFF A11 OFF
$24.7^{\circ} \mathrm{F}$
$3.2^{\circ} \mathrm{F}$
$-17.4^{\circ} \mathrm{F}$
$285.2^{\circ} \mathrm{K}$
$49.2^{\circ} \mathrm{C}$
$26.5^{\circ} \mathrm{F}$ A11 OFF
$24.7^{\circ} \mathrm{F}$
$3.2^{\circ} \mathrm{F}$
$-17.4^{\circ} \mathrm{F}$
$285.2^{\circ} \mathrm{K}$
$49.2^{\circ} \mathrm{C}$
$26.5^{\circ} \mathrm{F}$ A11 OFF
$24.7^{\circ} \mathrm{F}$
$3.2^{\circ} \mathrm{F}$
$-17.4^{\circ} \mathrm{F}$
$285.2^{\circ} \mathrm{K}$
$49.2^{\circ} \mathrm{C}$
$26.5^{\circ} \mathrm{F}$ A11 OFF
$24.7^{\circ} \mathrm{F}$
$3.2^{\circ} \mathrm{F}$
$-17.4^{\circ} \mathrm{F}$
$285.2^{\circ} \mathrm{K}$
$49.2^{\circ} \mathrm{C}$
$26.5^{\circ} \mathrm{F}$ A11 OFF
A11 OFF
$24.7^{\circ} \mathrm{F}$
$3.2^{\circ} \mathrm{F}$
$-17.4^{\circ} \mathrm{F}$
$285.2^{\circ} \mathrm{K}$
$49.2^{\circ} \mathrm{C}$
$26.5^{\circ} \mathrm{F}$


## ALSEP PERFORMANCE SUMMARY REPORT

27 September 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available during the following periods. It must be noted that these data losses are non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SITE	REMARKS
A22	20 Sep	2119/2126	07m	ACN/GDS	Higher Priority
14,15	24 Sep	1017/1023	$06^{m}$	$O R R$	Station Problem

On 20 September 1974 a night-time Fitter IN (octal 101) operational check of aIL ALSEP Passive Seismic Experiments was performed. The filter operation was normal on all experiments. Filter IN/OUT operation was as follows:

ALSEP	FILTER IN   G.m.t.	FILTER OUT   G.m.t.
12	1345	
14	1417	1357
15	1346	1433
16	1417	1358
		1433

Apol10 17 ALSEP
Sunrise of the scientific station's 23rd lunation occurred on 21 September at the Taurus Littrow site. Downlink signal strength was reported between -134.0 and -142.3 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 26 September the lunar surface temperature, as measured by the HFE's thermocouples, was $343 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater $0 N$ ).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next 4-day passive listening period is planned for 22 to 25 October 1974.

The Lunar Atmospheric Composition Experiment is currently in STANDBY with the survival heater ON. The LACE was commanded to STANDBY at 1529 G.m.t., 23 Sep-

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

27 September 1974
G.m.t.: 1300
tember, when the electronic temperature (AM-41) was reading $126.8^{\circ} \mathrm{F}$. The purpose of this operation during lunar day is to increase the temperature (bake-out) in the electronics section, and therefore the outgassing, in an attempt to correct the Multiplier High Voltage Power Supply problem which exists in the experiment (Apolio 17 ALSEP, SMEAR 70). A sequence of operational commands were executed to the experiment during real-time support, 20 September 1974. The LACE's telemetry data indicated no signs of change from the previous operational checks of 20 March and 20 May 1974 (Multiplier High Voltage Power Supply, OND. The experiment was reconfigured to its lunar night operational mode. No periodic thermal cycling check is planed within the next sixty days.

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1525 G.m.t., 24 September 1974, when the mirror temperature (AJ-11) was $188.0^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.

Apol1o 15 ALSEP



```
APOLLO 16 ALSEP
```



Status as of 1600 G.m.t., 26 September 1974, was as follows:

```
TM POINT
```



## TM POINT



## ALSEP PERFORMANCE SUMMARY REPORT

4 October 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available during the following periods. It must be noted that these data losses are non-recoverable.

ALSEP	DATE	G.m.t.	LOSS	SIITE	REMARKS
A22	22-23 Aug 74	1822/0150	$7{ }^{\text {h }} 28^{m}$	MTL	Station Problem
A22	23-24 Aug 74	1854/0150	$6{ }^{n} 5{ }^{m}$	MIL	Station Problem

On 1 October 1974 a day-time Fizter IN (octal 101) operational check of all ALSEP Passive Seismic Experiments was performed. The filter operation was normal on all experiments. Filter IN/OUT operation was as follows:

ALSEP	FILTER IN   G.m.t.	FILTER OUT   G.m.t.
	1345	1402
14	1422	1430
15	1345	1403
16	1421	1430

## Apol1o 17 ALSEP

Noon of the scientific station's 23rd lunation occurred on 28 September at the Taurus Littrow site. Downlink signal strength is reported between -133.0 and -136.5 dbm from transmitter $A$. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods. Over 900 commands have been received and executed by the central station through uplink $B$ since the switch from uplink $A$ on 19 August 1974.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 3 October the lunar surface temperature, as measured by the HFE thermocouples, was $290 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON ). Playback of 2 October data indicated that the seismic event (Ref. Apollo 15 ALSEP) was indiscemible on this instrument.

## ALSEP PERFORMANCE SUMMARY REPORT (continued)

4 0ctober 1974
G.m.t.: 1300

The Lunar Seismic Profiling Experiment is in STANDBY. The next 4-day passive listening period is scheduled for 22 October 1974.

The Lunar Atmospheric Composition Experiment was operated through this lunar day in STANDBY with the sumvival heater ON at the request of the Principal Investigator. The purpose of this operation during lunar day was to increase the temperature (bake-out) in the electronics section, and therefore the outgassing, in an attempt to correct the Multiplier High Voltage Power Supply problem which exists in the experiment (Apollo 17 ALSEP, SMEAR 70). The maximum temperature observed in the electronics temperature (AM-41) was $145.5^{\circ} \mathrm{F}$ between the sun angles of $90^{\circ}$ and $106.3^{\circ}$.

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar surface. The LEAM was commanded ON for the lunar night at 1428 G.m.t., 2 October, when the instrument's mirror temperature ( $\mathrm{AJ}-11$ ) was reading $180.5^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch, TN3, telephone 483-5067.
Apol1o 16 ALSEP

Central station	Noon of the 31 st lunation occurred on 29 September 1974. The DSS-1 heater (10 watts) is OFF for lunar day operation. The 18-hour timer output pulses continue to be inhibited. The 30 -foot antenna tracking stations report a signal strength at $-135.0 \pm 2.0 \mathrm{dbm}$ from transmitter $B$.
Passive seismic experiment	The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). The long period $Y$-axis has responded to leveling commands since 28 April 1974. The lunar night leveling anomaly has not been experienced for the past five (5) Iunations (26th to 30th). The instrument's sensor temperature (DL-07) indicated offscale HIGH at the beginning of real-time support on 29 September (sun angle $74.6^{\circ}$ ). It is predicted the temperature will return onscale on 7 October. The seismic event (Ref. Apolzo 25 ALSEP) was also seen at the same time by the Apolzo 16 ALSEP PSE.
Lunar surface magnetometer experiment	The LSM is currently ON and recording data as the moon passes through the earth's geomagnetic tail and magnetopause. 838 flip calibration sequences have been executed and verified by the experiment's engineering data since activation.
Active seismic experiment	The Active Seismic Experiment is currently OFF. Present operations are per Apol1o 16 ALSEP, SMEAR 27.

Apo110 15 ALSEP
Operational status from 27 September 1974, 1300 G.m.t., to 4 0ctober 1974, 1300 G.m.t.
Noon of the station's 40th lunation occurred on 30 September. Transmitter A
downlink signal strength was reported at $-135.5 \pm 2.5 \mathrm{dbm}$ from the 30 -foot antenna tracking stations.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's uncage-arm fire circuitry has been cycling per the support on 30 September it was noted that DL-07 (sensor temperature) was offscale HIGH. The temperature returned onscale ( $140.6^{\circ} \mathrm{F}$ ) on 3 October. $A$ this instmumen (1330 G.m.t., 2 October 1974) and continued for approximately 45 minutes.
The instrument is currently $0 N$. Automatic sequencing of the experiment was initiated for the remainder of this lunation on 3 October (Apollo 15 ALSEP, SMEAR 47). The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was $355.2^{\circ} \mathrm{K}$ on 30 ctober as indicated by the cable thermocouples. The subsurface temperature was 253.5 K of $251.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically. Commanded OFF 14 June 1974.
Commanded OFF 14 June 1974.
notze7s [equaว
Passive seismic
Suprathermal ion detector/cold
cathode gauge
experiment experiment

## Heat flow experiment

 Solar windspectrometer
experiment
Lunar surface
magnetometer
experiment
Apol10 14 ALSEP

Operational   Central station	status from 27 September 1974, 1300 G.m.t., to 4 October 1974, 1300 G.m.t.   Noon of the 46th lunation at the Apollo 14 site occurred on 2 October. Transmitter A signal strength was reported as $-138.0 \pm 3.0 \mathrm{dbm}$ from the 30 -foot antenna tracking stations. The DSS-1 heater ( 10 watts) is OFF for lunar day operations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in FORCED OFF. The Zong period Y-axis noisy data, because one bit was not setting, has continued during this report period. As this anomaly is a re-occurping one it will not be referped to any further in this report unless a consequential change in status occurs. The seismic event (Ref. Apollo 15 AISEP) was also observed by this instrument on the long period $X$ and $Y$ axes.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument has been in STANDBY since 25 September 1974.
```Charged particle lunar environmental experiments```	The CPLEE has been in STANDBY since 27 September 1974.


Central station	Noon of the 67st lunar day occurred on 3 0ctober. The DSS-1 heater (10 watts) is OFF for lunar day operations. A signal strength of -138.0 to -141.5 dbm from transmitter B was reported by the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 sensor temperature (DL-07) was offscale HIGH (sun angle $=96.2^{\circ}$). It is predicted that the temperature will return onscale on 9 0ctober 1974. The seismic event (Ref. Apollo 15 ALSEP) was also obsemed by this instmment.
Solar wind spectrometer experiment	The instrument is $O N$ and in the normal gain mode recording solar wind plasma data. The experiment was operated in the extended range mode due to observation of high particle counts from 26 Sep/0507 to 28 Sep/1403 G.m.t.
Suprathermal ion detector experiment	The SIDE is currently OFF. The instrument was commanded OFF during real-time support on 27 September when the internal temperature was $50.9^{\circ} \mathrm{C}$. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages $O N$ to experiment power OFF is in effect for this lunar day in an effort to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.
Lunar surface	Commanded OFF 14 June 1974.

Status as of 1600 G.m.t., 3 October 1974, was as follows:

ALSEP PERFORMANCE SUMMARY REPORT
11 October 1974
G.m.t.: 1300

Apol10 17 ALSEP
Midnight of the scientific station's 23rd lunation will occur on 130 0ctober at the Taurus Littrow site. Downlink signal strength is reported at $-136.5 \pm 2.5 \mathrm{dbm}$ from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 10 October lunar surface temperature, as measured by the HFE thermocouples was $108 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.4^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater $O N$).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next 4-day passive listening period is planned for 22 to 25 October 1974.

The Lunar Atmospheric Composition Experiment is $O N$ but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, 0FF; and backup heater, ON. The electronics temperature (AM-41) was reading $3.2^{\circ} \mathrm{F}$ on 10 0ctober.

The Lunar Ejecta and Meteorites Experiment is $O N$ and configured to measure impact flux rates on the lunar surface. The instrument's mirror temperature ($\mathrm{AJ}-11$) was reading $-17.4^{\circ} \mathrm{F}$ on 10 october.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 483-5067.

$$
\text { Apo110 } 16 \text { ALSEP }
$$

Apo110 14 ALSEP

Operationa Central station	status from 4 October 1974, 1300 G.m.t., to 11 October 1974, 1300 G.m.t. Sunset at the Apollo 14 site occurred on 9 0ctober. Transmitter A signal strength was reported as -134.5 to -139.5 dbm from the 30 -foot antenna tracking stations. The DSS-1 heater (10 watts) was commanded ON for lunar night operation at 1400 G.m.t., 9 October.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in AUTO ON for lunar night operations. No significant seismic events were observed during the periodic real-time support periods.
Active seismic experiment	The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON at 1402 G.m.t., 9 October.
Charged particle lunar environment experiment	The experiment is operating in the manual mode at the -35 vdc range and automatic thermal control mode since 1403 G.m.t., 9 October. It is planned to leave the experiment in this configuration pending possible degradation of AC-03, analyzer A voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY.

Apol1o 12 ALSEP

The instrument remains in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion Currently the SIDE is in the full automatic stepping sequence with Channeltron

Lunar surface
Commanded OFF 14 June 1974.
magnetometer

```
APOLLO 15 ALSEP
```


Status as of 1400 G.m.t., 10 October 1974, was as follows:

IM POINT	APOLLO 12 ALSEP
Total Days of Operation	1786
Total Commands to Date	21521
Sun Angle	182.7°
Input Power	64.4w
Heater and Power Dumps	All ON
Experiment Status	LSM OFF
Avg Thermal Plate Temp	$32.7{ }^{\circ} \mathrm{F}$
PSE Sensor Temp (DL-07)	$127.3^{\circ} \mathrm{F}$
LSM Internal Temp (DM-05)	OFF
SWS Module 300 Temp (DW-13)	$23.2{ }^{\circ} \mathrm{C}$
SIDE Temp (DI-05)	$27.4{ }^{\circ} \mathrm{C}$
CCGE Temp (DI-04)	HIGH
CPLEE Elect Temp (AC-06)	N/A
ASE GLA Temp (AS-03)	N/A
HFE Temp Ref 1 ($\mathrm{DH}-13$)	N/A

APOLLO 17 ALSEP

18 October 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available during the following periods. It must be noted that these data losses are non-recoverable.

ALSEP	DATE			G.m.t.		LOSS

Apol10 17 ALSEP
Midnight of the scientific station's 23rd Tunation occurred on 13 0ctober at the Taurus Littrow site. Downink signat strength is reported at -141.0 ± 3.0 dbm from transmitter B. During real-time support on 14 October the Bermuda Tracking Station experienced difficulty in maintaining decom lock on the Apollo 17 ALSEP. The signal strength from transmitter A was -146 dbm and telemetry data quality was poor. At the direction of mission control transmitter A was commanded OFF (octal 013) at 1421 G.m.t. Transmitter B was conmanded ON (octal O14) at 1422 G.m.t. and a gain in signal strength of 2 dbm to -144.0 dbm was obtained. The Bermuda Tracking Station was then able to maintain decom lock and an acceptable quality of the telemetry data resulted. There was also a drop of two (2) watts in reserve power when transmitter B was selected but during real-time support on 16 October the reserve power had returned to the normal range for comparative conditions. Analysis indicates that no decom lock difficulties were experienced with signal strengths as low as -147.5 dbm from transmitter A previously.
The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 160 october lunar surface temperature, as measured by the HFE thermocouples was $107 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N).
The Lunar Seismic Profiling Experiment is currently in STANDBY. The next 4-day passive listening period is planned for 22 to 25 October 1974.

ALSEP PERFORMANCE SUMMARY REPORT (CONTINUED)

18 October 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment is $O N$ but is not processing scientific data. The instrument is configured to discriminator level, LOW: filament, OFF; high voltage power supply, OFF; and backup heater, ON.

The Lunar Ejecta and Meteorites Experiment is $0 N$ and configured to measure impact flux rates on the lunar surface.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
Apo110 14 ALSEP
Operational status from 11 October 1974, 1300 G.m.t., to 18 October 1974, 1300 G.m.t. Midnight at the Apollo 14 site occurred on 17 October for the 46th lunation. Transmitter A signal strength was reported at -134.0 to -140.5 dbm from the 30 -foot antenna tracking stations. The DSS-1 heater (10 watts) is ON for lunar night operation. At 1321 G.m.t., 13 October, the Central Station received a spurious command (octal 017, 7-wat Power Dump Resistor ON) as reported by the Ascension Tracking Station. At the direction of mission control, command octal 021 (7-Watt Power Dump Resistor OFF) was executed by the Ascension Tracking Station at 1409 G.m.t., 13 October. During real-time support on 14 October reserve power was checked to confirm the 7-watt PDR was OFF.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The instrument's heater is in AUTO ON for lunar night operations. No significant seismic events were observed during the periodic real-time support periods.
The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86. The instrument is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON since 1402 G.m.t., 9 October. The experiment is operating in the manual mode at the -35 vdc range and automatic thermal control mode since 1403 G.m.t., 90 ctober. It is planned to leave the experiment in this configuration pending possible degradation of $A C-03$, analyzer A voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY. notzezs [euquəう Passive seismic
experiment Active seismic

Suprathermal ion

 detector/cold cathode gauge experimentCharged particle
lunar environ-
ment experiment
Apol1o 12 ALSEP

Operational Central station	status from 11 October 1974, 1300 G.m.t., to 18 October 1974, 1300 G.m.t. Midnight of the 61st lunation occurred on 17 October. The DSS-1 heater (10 watts) was commanded $O N$ for lunar night operation on 100 ctober. A signal strength of -137.0 to -142.5 dbm from transmitter B was reported by the 30 -foot antenna tracking stations.
Passive seismic experiment	The instrument is configured with thermal control, AUTO ON; component gains, 0 db; and feedback Zoop filter IN. At 1402 G.m.t., 16 October, the feedback loop filter was commanded to IN (octal 101) for a 30-day period at the Principal Investigator's request. The instrument's assembly temperature (DL-07) was offscale LOW at a sun angle of 230.4° on 14 October. The Z-axis drive motor was commanded ON at 0943 G.m.t., iU Uctober, to maximize heating in the instrument during lunar night. No significant seismic events were noted during the periodic real-time support periods.
Solar wind spectrometer experiment	The instrument remains in the normal gain mode and is recording solar wind plasma data.
Suprathermal ion detector experiment	Currently the SIDE is in the full automatic stepping sequence with Channeltron high voltages $0 N$ since 1331 G.m.t., 8 0ctober.
Lunar surface magnetometer experiment	Commanded OFF 14 June 1974.

Status as of 1600 G.m.t., 16 October 1974, was as follows:

$$
\text { APOLLO } 14 \text { ALSEP }
$$

APOLLO 12 ALSEP

APOLLO 17 ALSEP

ALSEP PERFORMANCE SUMMARY REPORT

25 October 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downlink data was not available duwing the following periods. It must be noted that these data losses are non-recoverable.

ALSEP		DATE	G.m.t.	LOSS	SITE	REMARKS
A12	19	Oct 74	1014/1023	09^{m}	ACN	Station
A 22	22	Oct 74	0119/0121	02^{m}	MIL	Station

An operational check of all ALSEP Passive Seismic Experiment Heaters was performed during this support period. The heaters were cycled from AUTO ON to FORCED OFE and back to AUIO ON. The following table shows the changes in reserve power during the cycling of the heaters:

		TO	TO
ALSEP	DATE	EORCED OFF	AUTO ON
12	23 Oct 74	$+2.81 w$	$-2.16 w$
14	24 Oct 74	$+3.83 w$	$-4.92 w$
15	22 Oct 74	$+4.61 w$	$-5.07 w$
16	21 Oct 74	$+4.74 w$	$-5.01 w$

Apol10 17 ALSEP
Sunrise of the scientific station's 24th lunation occurred on 20 0ctober at the Taurus Littrow site. Downlink signal strength was reported as $-139.5 \pm$ 4.0 dbm from transmitter A. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment continues operating in the gradient mode with all sensors being sampled in full sequence and periodic ring bridge surveys being accomplished. On 24 October the lunar surface temperature, as measured by the HFE's thermocouples, was $309 \pm 8^{\circ} \mathrm{K}$. Subsurface temperature at 230 cm depth was $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently ON. A 4-day passive listening period was begun at 1445 G.m.t., 22 October, to continue a study of meteoroid impacts and thermal moonquakes. Several significant events were noted during the real-time support periods when the LSP high bit rate was observed for

ALSEP PERFORMANCE SUMMARY REPORT (continued)

25 October 1974
G.m.t.: 1300
one (1) hour. These events occurred during lunar day (Sun Angle 22.5° to 47. 0°). The listening period will be terminated later today, 25 October. The next 4-day passive Iistening period is planned for 1 to 5 November 1974.

The Iunar Atmospheric Composition Experiment is currently in STANDBY with the sumvivat heater ON. The LACE was commanded to STANDBY at 1541 G.m.t., 23 October, when the electronic temperature (AM-41) was reading 120.6 ${ }^{\circ} \mathrm{F}$. The purpose of this operation duming lunar day is to increase the temperature (bake-out) in the electronics section, and therefore the outgassing, in an attempt to correct the MuItiplier High Voltage Power Supply problem which exists in the experiment (Apollo 17 ALSEP, SMEAR 70).

The Lunar Ejecta and Meteorites Experiment is presently OFF. The instrument was commanded OFF at 1539 G.m.t., 23 October 1974, when the mirror temperature (AJ-11) was $182.0^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
Apol1o 16 ALSEP

Apol10 15 ALSEP

Central station	Sunrise of the station's 41st lunation occurred at the Hadley Rille lunar site on 22 October 1974. The transmitter A downink signal strength is reported $-135.5 \pm 2.5 \mathrm{dbm}$. The 18 -hour timer was reset (octal 150) at 1418 G.m.t., 22 October.
Passive seismic experiment	The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events were noted during real-time support.
Suprathermal ion detector/cold cathode gauge experiment	The instrument is $O N$ and operating continuously with channeltron high voltages commanded ON and in full automatic stepping sequence (Apollo 15 ALSEP, SMEAR 47).
Heat flow experiment	The instrument is presently operating in the gradient mode and all sensors are being sampled in full sequence. On 24 October the lunar surface temperature was $302.1^{\circ} \mathrm{K}$ indicated by the cable thermocouples. The subsurface temperature was $253.5^{\circ} \mathrm{K}$ at the bottom of the lowest section of probe \#7. Probe \#2 indicated a temperature of $251.2^{\circ} \mathrm{K}$ at its lowermost point. Ring bridge surveys are obtained periodically.
Solar wind spectrometer experiment	Commanded OFF 14 June 1974.
Lunar surface magnetometer experiment	Commanded OFF 14 June 1974.

\[

\]

Apollo 12 ALSEP
status from 18 0ctober 1974, 1300 G.m.t., to 25 October 1974, 1300 G.m.t.
Sunrise of the 62nd lunar day occurred today, 25 0ctober 1974 at the ALSEP site
in the 0cean of Storms. A signal strength between -136.5 and -140.0 dbm from
transmitter B was reported by the 30foot antenna tracking stations. The DSS-1
heater (10 watts) will be commanded 0FF for lunar day operations later today,
25 0ctober. The instrument is configured with thermal control, AUTO ON; component gains, 0 db;
and feedback loop filter IN. On 16 October, the feedback loop filter was commanded
to IN (octal I01) for a 30-day period at the Principal Investigator's request.
The sensor temperature (DL-07) has been offscale LOW since the start of real-time
support period on 14 October. No significant seismic events were noted during the
periodic real-time support periods of this instrument. The instrument is $O N$ and remains in the normal gain mode recording solar wind plasma data. Commanded OFF 14 June 1974. Operational Central station
Passive seismic
experiment Solar wind
spectrometer
experiment
Suprathermal ion
detector
experiment

[^7]
\[

$$
\begin{aligned}
& \text { APOLLO } 15 \text { ALSEP } \\
& \begin{array}{l}
17 \text { OFF } \\
\text { SM \& SWS OFF }
\end{array}
\end{aligned}
$$
\]

\forall / N	\forall / N
ग○L＇LL－	\forall / N
ว○¢＇$¢ 乙-$	\forall / N
p！！eлиi	HSIH
p！ienui	う。8＊${ }^{\text {¢ }}$
\forall / N	ग○1＊9L－
\forall / N	$\pm \pm 0$
」oL＊カてL	M07 ə［eosft0
Jol＊L	」．6＊0L
1815 JSV	$\pm \pm 0$ WS7
NO LIV	HO LLH
Mb＊\dagger－	ME 19
－${ }^{\circ} 698$	－9．$¢ ¢ \varepsilon$
カ८gZL	029 LZ
$\angle S E L$	0081
$\overline{d \exists S 7 \forall ~ D L ~ 0770 d V ~}$	$\overline{d \exists S 7 \forall ~ 21 ~ 0770 d y ~}$

ALSEP PERFORMANCE SUMMARY REPORT

1 November 1974
G.m.t.: 1300

Apol10 17 ALSEP
Noon of the scientific station's 24th lunation occurred on 28 0ctober at the Taurus Littrow site. Downlink signal strength is reported between -135.0 and -140.1 dbm from transmitter B . Automatic power management continues to distribute power for optinum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 31 October the lunar surface temperature, as measured by the HFE thermocouples, was $348 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.5^{\circ} \mathrm{K}$ at probe \#1 and $256.9^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, and the tilt servo motors in an intermediate position. The experiment sensor temperature is presently stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater 0 N).

The Lunar Seismic Profiling Experiment is in STANDBY. The next 4-day passive listening period is scheduled to begin later today, 1 November, and to terminate on 5 November.

The Iunar Atmospheric Composition Experiment is operating through this lunar day in STANDBY with the survival heater on at the request of the Principal Investigator. The purpose of this operation during lunar day is to increase the temperature (bake-out) in the electronics section, and therefore the outgassing, in an attempt to correct the Multiplier High Voltage Power Supply problem which exists in the experiment (Apollo 17 ALSEPP, SMEAR 70). The maximum temperature observed in the electronics temperature (AM-41) was $148.9^{\circ} \mathrm{F}$ at a sun angle of 96.2°.

The Lunar Ejecta and Meteorites Experiment is currently OFF. The LEAM will be conmanded ON for the lunar night later today, 1 November.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch, TiN3, telephone 713-333-3481.
Apollo 16 ALSEP

Apol1o 14 ALSEP
 for lunar day operations.
The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP) The instrument's heater is in FORCED OFF for lunar day operation. No significant seismic events were noted during the periodic real-time support periods.
The experiment is currently in STANDBY. The instrument was commanded to high bit rate ON, 25 October, to verify operational status. The output of geophones \#2 and \#3 appeared abnormal as had initially been observed on 3 January 1974. The status check was performed per Apolzo 14 ALSEP, SMEAR 86.
The instrument has been in STANDBY since 0036 G.m.t., 25 October 1974.
The CPLEE has been in STANDBY since 1526 G.m.t., 27 October 1974.
Passive seismic
experiment
Active seismic
experiment
Suprathermal ion detector/cold
cathode gauge experiment Charged particle
lunar
environmental
experiments
notzefs [euquaj
Passive seismic
experiment
Solar wind
spectrometer
experiment
magnetometer

$$
\text { Apollo } 12 \text { ALSEP }
$$

$$
\begin{aligned}
& \text { status from } 25 \text { October } 1974,1300 \text { G.m.t., to } 1 \text { November } 1974,1300 \text { G.m.t. } \\
& \text { Noon of the } 62 \text { nd lunar day wil1 occur later today, } 1 \text { November. The DSS- } 1 \text { heater } \\
& \text { (10 watts) is 0FF for lunar day operations. A signal strength of }-139.0 \pm 3.0 \mathrm{dbm} \\
& \text { from transmitter B was reported by the } 30 \text {-foot antenna tracking stations. }
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Suprathermal ion } \\
\text { detector }
\end{array} & \begin{array}{l}
\text { The SIDE is currently OFF. The instrument was commanded OFF during real-time } \\
\text { support on } 26 \text { October when the internal temperature was } 39.9^{\circ} \mathrm{C} \text {. Cyclic commanding } \\
\text { experiment } \\
\text { of the instrument in the full automatic stepping sequence with Channeltron high }
\end{array} \\
& \text { voltages ON to experiment power OFF is in effect for this lunar day. During real- } \\
\text { time support on } 29 \text { and } 30 \text { October, the SIDE experienced unexpected mode changes } \\
\text { to command register XIO at temperatures of } 54.6^{\circ} \mathrm{C} \text { and } 57.4^{\circ} \mathrm{C} \text { respectively. The } \\
\text { mode changes were cleared by commanding the instrument to OFF for cooldown prior } \\
\text { to the next support periods. }
\end{array}
$$

Status as of 1600 G．m．t．， 31 October 1974，was as follows：
APOLLO 16 ALSEP

APOLLO 15 ALSEP
1188
25365
105.7°
67.4 w
A11 OFF
LSM／SWS OFF／SIDE
$115.3^{\circ} \mathrm{F}$
Offscale HIGH
0FF
OFF
Standby
Standby
N／A
N／A
$330.8^{\circ} \mathrm{K}$

\forall / N	\forall / N
	\forall / N
Kqpuezs	\forall / N
Kqpuezs	$\pm \pm 0$
кqpuezs	$\pm \pm 0$
\forall / N	3．6．$\angle 9$
\forall / N	$\pm \pm 0$
」oL＇bعL	JoL 1 LEL
Joて＇$¢$ LL	ปo8．26
Kq7S ヨ0IS／ヨヨาdJ／ヨS＊	$\pm \pm 0$ JaIs／WS7
$\pm \pm 0$ LL甘	± 10 LLV
MS ${ }^{*}$ ¢9	M8． 19
	○9＊8
0292L	ELLLL
ャ9\＆L	L08
d 3 S 71.0770 dV	$7 \mathrm{ZL} \mathrm{0770dV}$

[^8]

8 November 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available duwing the following periods. It must be noted that these data losses are non-recoverable.

ALSEP	DATE	G.m.t.	$\underline{\text { LOSSS }}$	SITEE	REMARKS
A17	3 Nov 7	0525/0536	11^{m}	AGO	Station Problem
A16	3 Nov 7	0525/0540	15^{m}	AGO	Station Problem
A17	3 Nov 7	0600/0656	$56^{\text {m }}$	QUI	Station Problem

Apol10 17 ALSEP

Sunset of the scientific station's 24th lunation occurred on 4 November at the Taurus Littrow site. Downlink signal strength is reported at $-139.0 \pm 3.0 \mathrm{dbm}$ from transmitter B . Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 7 November the lunar surface temperature, as measured by the HFE thermocouples was $114 \pm 8^{\circ} \mathrm{K}$. At a depth of 230 cm , the subsurface temperatures were $256.6^{\circ} \mathrm{K}$ at probe $\# 1$ and $256.8^{\circ} \mathrm{K}$ at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at $49.2^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY. A 4-day passive listening period was begun at 1630 G.m.t., I November, to continue a study of meteoroid impacts and thermal moonquakes. Several significant events were noted during the real-time support periods when the LSP high bit rate was observed for one (1) hour. These events occurped during Zunar day and night (Sun Angles 145.00 to 193.9\%). The Listening period was terminated at 1640 G.m.t., 5 November. The next 4-day passive listening period is planned for 12 to 16 December 1974.

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON.

ALSEP PERFORMANCE SUMMARY REPORT (continued)

8 November 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is 0 N and configured to measure impact flux rates on the lunar surface for the remainder of this lunation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
Apol1o 16 ALSEP

Apol10 15 ALSEP

Apol1o 12 ALSEP


```

APOLLO 16 ALSEP
``` \(\qquad\)
APOLLO 15 ALSEP

Status as of 1600 G.m.t., 7 November 1974, was as follows:
APOLLO 12 ALSEP

APOLLO 17 ALSEP

15 November 1974
G.m.t.: 1300

November 19 will mark the completion of five full years of continuous operation by the Apollo 12 AISEP science station on the Iunar surface. The lunar scientific station will have exceeded by four years its originat one year design Iife expectation. The Radioisotope Thermoelectric Generator has experienced an anticipated gradual degradation of 12.2 watts (2.44 watts per year). The signal strength from the transmitter has remained essentially constant since activation. The Passive Seismic, Solar wind Spectrometer, and Suprathermal Ion Detector Experiments are operating and returning valid science data to the Earth. The Lunar Surface Magnetometer Experiment had been permanently deactivated on 14 June 1974. To date over 21935 commands have been transmitted to and executed. by the central station and experiments. The Apollo 12 ALSEP will complete its 62nd Iunation on the Lunar surface with sunvise on 23 November 1974.

Remote site coverage for recording of AISEP downlink data was not available duwing the following pexiod. It must be noted that this data loss is non-recoverable.
\begin{tabular}{llrlll}
AISEP & DATE & G.m.t. & LOSS & SITE & REMARKS \\
17 & 9 NOV 74 & \(0746 / 0748\) & \(02^{m}\) & BUR & Station Probzem
\end{tabular}

Apo110 17 ALSEP
Midnight of the scientific station's 24th lunation occurred on 11 November at the Taurus Littrow site. Downlink signal strength is reported between -139.0 and -145.5 dbm from transmitter \(B\). Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 13 November lunar surface temperature, as measured by the HFE thermocouples was \(108 \pm 8^{\circ} \mathrm{K}\). At a depth of 230 cm , the subsurface temperatures were \(256.6^{\circ} \mathrm{K}\) at probe \#1 and \(256.9^{\circ} \mathrm{K}\) at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at \(49.2^{\circ} \mathrm{C}\) (slave heater \(0 N\)).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next 4-day passive listening period is planned for 12 to 16 December 1974.

\section*{ALSEP PERFORMANCE SUMMARY REPORT (CONTINUED)}

15 November 1974
G.m.t.: 1300

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON. A sequence of operational commands were executed to the experiment during real-time support on 13 November. The LACE's telemetry data did not indicate any sign of change from previous operational checks (Multiplier High Voltage Power Supply, ONI. The experiment was reconfigured to its lunar night operational mode.

The Lunar Ejecta and Meteorites Experiment is \(O N\) and configured to measure impact flux rates on the lunar surface.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
Apol10 14 ALSEP
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operational status from 1300 G.m.t., 8 November 1974, to 1300 G.m.t., 15 November 1974} \\
\hline \multirow[t]{4}{*}{Central station} & Midnight at the Apollo 14 site will occur later today, 15 November, for the 47 th \\
\hline & lunation. Transmitter A signal strength was reported at -137.5 \(\pm 2.5 \mathrm{dbm}\) from \\
\hline & the 30-foot antenna tracking stations. The DSS-1 heater (10 watts) is Of for \\
\hline & lunar night operation. \\
\hline \multirow[t]{3}{*}{Passive seismic experiment} & The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP) . \\
\hline & The instrument's heater is in AUTO ON for lunar night operations. No significant \\
\hline & seismic events were observed during the periodic real-time support periods. \\
\hline Active seismic experiment & The experiment is currently in STANDBY. Present operations are per Apollo 14 ALSEP, SMEAR 86. \\
\hline Suprathermal ion detector/cold cathode gauge experiment & The instrument is operating in the full automatic stepping sequence with Channeltron high voltages commanded ON since 7 November. \\
\hline \multirow[t]{3}{*}{Charged particle lunar environment experiment} & The experiment is operating in the manual mode at the -35 vdc range and automatic \\
\hline & thermal control mode since 7 November. It is planned to leave the experiment in \\
\hline & this configuration pending possible degradation of AC-03, analyzer A voltage, to 2280 vdc, at which time the instrument will be commanded to STANDBY. \\
\hline
\end{tabular}

\section*{Apol1o 12 ALSEP}
Operational status from 1300 G.m.t., 8 November 1974 , to 1300 G.m.t., 15 November 1974

\footnotetext{
PSE heater checks were performed on 7, 8, and 9 November. The following table depicts ed:

RESERVE
POWER (W)

\begin{tabular}{c}
HEATER \\
CONDITION \\
\hline
\end{tabular} AUTO ON
AUTO OFF
FORCED ON
FORCED OFF
AUTO ON
AUTO ON
AUTO OFF
FORCED ON
FORCED OFF
AUTO ON
AUTO OFF
FORCED ON

2 MOTOR ON
AUTO ON

DTE/TTME

}

Passive seismic
experiment

magnetometer
experiment
Status as of 1600 G.m.t., 13 November 1974, was as follows:
APOLLO 16 ALSEP

APOLLO 15 ALSEP

APOLLO 14 ALSEP

APOLLO 12 ALSEP
TM POINT

APOLLO 17 ALSEP

\section*{TM POINT}
relative to earth-sun line MOON POSITIONS

\section*{ALSEP PERFORMANCE SUMMARY REPORT}

22 November 1974
G.m.t.: 1300

Remote site coverage for recording of ALSEP downink data was not available during the following period. It must be noted that this data loss is non-recoverable.
\begin{tabular}{cccccc}
ALSEP & DATE & G.m.t. & LOSS & SITE & REMARKS \\
14 & 13 NOV 74 & \(2059 / 2109\) & \(10^{m}\) & GWM & Station Problem
\end{tabular}

Apollo 17 ALSEP
Sunrise of the scientific station's 25 th lunation occurred on 19 November at the Taurus Littrow site. Downlink signal strength is reported between -138.0 and -142.0 dbm from transmitter \(B\). Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 21 November the lunar surface temperature, as measured by the HFE thermocouples, was \(198 \pm 8^{\circ} \mathrm{K}\). At a depth of 230 cm , the subsurface temperatures were \(256.5^{\circ} \mathrm{K}\) at probe \#1 and \(256.8^{\circ} \mathrm{K}\) at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at \(49.2^{\circ} \mathrm{C}\) (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next 4-day passive listening period is planned for 12 to 16 December 1974.

The Lunar Atrospheric Composition Experiment is ON but is not processing scientific data. On 18 November, between 1158 G.m.t. and 1521 G.m.t., the experiment was turned OFF/ON to conduct a cold soak test. During the above time frome the electronics temperature (AM-41) decreased from \(-2.3^{\circ} \mathrm{F}\) to \(-31.3^{\circ} \mathrm{F}\). The cold soak was accomplished at the Principal Investigator's request prior to initiating an operational check of the instrument. The LACE's telenetry data did not indicate any significant change from previous operational checks (Multiplier High Voltage Power Supply, \(O N\)). The instrument was reconfigured to discriminator level, LOW; filament, 0FF; high voltage power supply, OFF: and backup heater, ON.

ALSEP PERFORMANCE SUMMARY REPORT (CONTINUED)
22 November 1974
G.m.t.: 1300

The Lunar Ejecta and Meteorites Experiment is ON and configured to measure impact flux rates on the lunar surface.

It is requested that any organization having comments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 713-333-3481.

ADO170 75 ALSEP

The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). tion's data subsystem timer outputs. No significant seismic events were observed during the 1 imited real-time support periods.

The instrument is \(O N\) and operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence (\(0-127\) frames).

The instrument is presently operating in the gradient mode and 211 sensors being sampled in full sequence. The lunar surface temperature was \(83.9^{\circ} \mathrm{K}\) on
21 November, as indicated by the cable thermocouples. The subsurface tempera-
ture was \(253.6^{\circ} \mathrm{K}\) at the bottom of the lowest section of probe \#1. Probe \#2
indicated a temperature of \(257.0^{\circ} \mathrm{K}\) at its lowermost point. Ring bridge surveys indicated a temperature of \(251.0^{\circ} \mathrm{K}\) at its lowermost point. Ring bridge surveys
are obtained periodically.

Commanded OFF 14 June 1974.
Commanded OFF 14 June 1974. Passive seismic nolpegs [euquaj

Suprathermal ion
detector/cold

\section*{MOLJ 7 P 民H \\ experiment} Solar wind
spectrometer
experiment
Lunar surface magnetometer
experiment
Apollo 14 ALSEP

 and feedback loop filter IN. At 1402 G.m.t., 16 October, the feedback loop filter was commanded to IN (octal 101) and will remain IN indefinetly at the Principal Investigator's request. The instrument s assembly temperature (13 .07) remains offscale LOW since 13 November, at a sun angle of \(236.3^{\circ}\). The Z-axis drive motor PSE heater anomaly reported last week is continuing. No significant seismic events
were noted during the periodic real-time support periods of this instrument. The instrument is currently in the normal gain mode and is recording solar wind
Currently the SIDE is ON in the full automatic stepping sequence with Channeltron high voltages ON.
Commanded OFF 14 June 1974. no!ze7s Lenquaj
Passive seismic
experiment Solar wind
spectrometer
experiment Suprathermal ion experiment detector detector
experimen
Lunar surface magnetometer
experiment

APOLLO 15 ALSEP

Status as of 1600 G.m.t., 21 November 1974, was as follows:

APOLLO 12 ALSEP

TM POINT

APOLLO 17 ALSEP

TM POINT

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{CST ALSEP SUPPORT SCHFTUE/EVENTS} & PSE CAI \({ }^{\circ}\) DAILY \\
\hline OCT 27/3., & 28/301 & 29/302 & 30/303 & 31/304 & Nov 1/305 & 2/306 \\
\hline \begin{tabular}{l}
\[
\frac{0900-1100}{\text { ALSEP } 12}
\] \\
CYCLE SIDE
\end{tabular} & \[
\begin{aligned}
& \frac{\text { O900- } 11100}{\text { ALSEP } 12} \text { \& } 15 \\
& \text { CYCLE SIDES }
\end{aligned}
\] & \[
\frac{0000-0400}{\text { ALSEP } 12}
\] & \[
\begin{aligned}
& \frac{0900-1100}{\text { ALSEP } 12 \&} 15 \\
& \text { CYCLE SIDES }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{0900-1100}{\text { ALSEP } 12} 15 \\
& \text { CYCLE SIDES }
\end{aligned}
\] & \[
\frac{0900-1200}{\text { ALSEP } 12}
\] & \[
\begin{aligned}
& \frac{1600-1800}{\text { ALSEP } 12} \\
& \text { CYCLE SIDE }
\end{aligned}
\] \\
\hline ALSEP 14 CPLEE STBY & \[
\begin{array}{|l|}
\text { ALSEP } 14 \\
\text { PSE HTR OFF }
\end{array}
\] & ALSEP 15 SIDE SPRT & \[
\underset{\text { NEG } Z}{\text { ALSEP } 16}
\] & \[
\begin{aligned}
& \text { ALSEP } 16 \\
& \text { NEG Z }
\end{aligned}
\] & \[
\begin{array}{cl}
\text { ALSEP } & 15 \\
\text { SIDE ON }
\end{array}
\] & \[
\begin{aligned}
& \text { ALSEP } 16 \\
& \text { POS } Z
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { ALSEP } 15 \\
& \text { SIDE STBY } \\
& \text { ALSEP } 16 \\
& \text { NEG Z }
\end{aligned}
\] & \begin{tabular}{l}
ALSEP 16 NEG Z \\
FLIP CAL HFE RBS
\end{tabular} & ALSEP 16 NEG Z & \[
\begin{aligned}
& \text { FLIP CAL } \\
& \text { HFE RBS }
\end{aligned}
\] & & \begin{tabular}{l}
ALSEP 17 \\
LEAM ON HBR ON FLIP CAL HFE RBS
\end{tabular} & \[
\underset{\substack{\text { ALSEP }}}{\underset{H B R}{ }} 17
\] \\
\hline NOV 3/307 & 4/308 & 5/309 & 6/310 & 7/311 & 8/312 & 9/313 \\
\hline \(\frac{1800-1900}{}\)
ALSEP 12
CYCLE SIDE
ALSEP 16
POS Z
ALSEP 17
CACE ON
HBR & \begin{tabular}{l}
0400-0700 \\
ALSEP 17 \\
HBR \\
ALSEP 12 \\
CYCLE SIDE \\
ALSEP 16 \\
C/S ITR ON \\
POS 2 \\
FLIP CAL \\
HFE RBS
\[
\frac{1500-1600}{A 6 S E P 7}
\]
\end{tabular} & \(\frac{0000-0100}{\text { ALSEP } 16}\)
POS
\(\frac{\text { O900-1200 }}{\text { ALSEP } 12}\)
CYCLE SIDE
ALSEP 14
PSE HTR ON
ALSEP 17
HBR OFF & \[
\begin{aligned}
& \frac{0900-1100}{\text { ALSEP 15 }} \\
& \text { ALSEP } 12 \\
& \text { CYCLE SIDE } \\
& \text { FLIP CAL } \\
& \text { HFE RBS }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{0900-1100}{\text { ALSEP } 12} \\
& \text { SIDE ON } \\
& \text { ALSEP } 14 \\
& \text { C/S HTR ON } \\
& \text { SIDE ON } \\
& \text { CPLEE ON }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{1800-2200}{\text { ALSEP 12 }} \\
& \text { C/S HTR ON } \\
& \text { PSE Z MTR ON } \\
& \text { ALSEP } 14 \\
& \text { FLIP CAL } \\
& \text { HFE RBS }
\end{aligned}
\] & 0900-7100 \\
\hline NOV 10/314 & 17/375 & 12/316 & 13/317 & 14/318 & 15/319 & 16/320 \\
\hline \[
\begin{aligned}
& \hline \frac{0900-1100}{\text { ALSEP } 15} \\
& \text { NEG X } \\
& \text { POS Y }
\end{aligned}
\] & \[
\begin{aligned}
& \frac{0900-1100}{\text { FLIP CAL }} \\
& \text { HFE RBS }
\end{aligned}
\] & NO SUPPORT & \[
\begin{aligned}
& \frac{0900-1100}{\text { FLIP CAL }} \\
& \text { HFE RBS }
\end{aligned}
\] & NO SUPPORT & \[
\begin{aligned}
& \frac{0900-1100}{\text { FLIP CAL }} \\
& \text { HFE RBS }
\end{aligned}
\] & NO SUPPORT \\
\hline BEN-20 & & & & & & NASA-JSC \\
\hline
\end{tabular}

\section*{ALSEP PERFORMANCE SUMMARY REPORT}

6 December 1974
G.m.t.: 1300

This report covers the period from 22 November to 6 December 1974.
A total eclipse of the Moon occurred on 29 November 1974. As the Moon passed through the Earth's shadow, all AISEPS were in the umbral phase and experienced total darkness. This was the second occurrence of a total eclipse (first on 4/5 June 1974) of all ALSEPs at the same time. A real-time support period was conducted for this event.

\section*{Apo110 17 ALSEP}

Sunset of the scientific station's 25th lunation occurred on 4 December at the Taurus Littrow site. Downlink signal strength is reported at \(-139.2 \pm\) 2.7 dbm from transmitter \(B\). Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61-hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 5 December, the lunar surface temperature, as measured by the HFE thermocouples was \(119 \pm 8^{\circ} \mathrm{K}\). At a depth of 230 cm , the subsurface temperatures were \(256.5^{\circ} \mathrm{K}\) at probe \#1 and \(256.8^{\circ} \mathrm{K}\) at probe \#2. During the Lunar eclipse on 29 November 1974 the experiment was operated in the thermocouples only mode.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at \(49.2^{\circ} \mathrm{C}\) (slave heater ON).

The Lunar Seismic Profiling Experiment is currently in STANDBY. The next 4-day passive listening period is planned for 12 to 16 December 1974.

The Lunar Atmospheric Composition Experiment is \(0 \mathbb{N}\) but it not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON.

The Lunar Ejecta and Meteorites Experiment is \(O N\) and configured to measure impact flux rates on the lunar surface for the remainder of this lunation. During the Zunar eclipse the LEAM was commanded ON at 1348 G.m.t., 29 November. The instmument operated normally throughout the period. The Mirror Temperature (AJ-11) experienced a temperature change from \(196.5^{\circ} \mathrm{F}\) to \(122.9^{\circ} \mathrm{F}\). The LEAM was commanded OFF at 1821 G.m.t., 29 November, for lunar day operation.

6 December 1974
G.m.t.: 1300

It is requested that any organization having comments, questions, or suggestions concerning this report contact \(F\). Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
Apo 11015 ALSEP
\begin{tabular}{|c|c|}
\hline Operationa & status from 1300 G.m.t., 22 November 1974, to 1300 G.m.t., 06 December 1974 \\
\hline Central station & Sunset of the station's 42nd lunation occurred at the Hadley Rille Site today. Transmitter A downlink signal strength is reported at \(-136.5 \pm 3.5\) dbm by the tracking stations with 30 -foot antennas. At 2208 G.m.t., 1 December, and at 0845 G.m.t., 3 December, the Ascension Tracking Station observed a CVW in the downlink signal (octal 017) 5 watt heater ON. The heater was commanded OFF (octal 021) on both occurpences at 2249 G.m.t., 1 December and at 0908 G.m.t., 3 December by the tracking station. \\
\hline Passive seismic experiment & The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage-arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. At the start of real-time support on 28 November the instrument's sensor temperature (\(\mathrm{DL}-07\)) was offscale HIGH (sun angle \(=77.4^{\circ}\)). At the beginning of real-time support on 3 December it was noted that the PSE sensor temperature had returned onscale (\(\mathrm{DL}-07=134.8^{\circ} \mathrm{F}\), sun angle \(140.0^{\circ}\)). At 1923 G.m.t., 1 December, the PSE responded to a spurious command loctal 063, long period XY-axis sensor gain indicated -10db) as observed by the Hawaii Tracking Station. Duwing real-time support at 2152 G.m.t., 4 December, the long period XY-axis sensor gain was cormanded back to the 0 db gain (3-octal 063s) by mission control. No significant seismic events were observed during the limited real-time support periods. \\
\hline Suprathermal ion detector/cold cathode gauge & The instrument is \(O N\) and operating with the Channeltron high voltages commanded \(O N\) and in the full automatic stepping sequence (0-127 frames). During the period from 26 November through 01 December 1974, sequencing ON/OFF of the experiment was in effect for the lunar day time (Apollo 15 ALSEP, SMEAR 47). \\
\hline Heat flow experiment & The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was \(276.5^{\circ} \mathrm{K}\) on 5 December, as indicated by the cable thermocouples. The subsurface temperature was \(253.6^{\circ} \mathrm{K}\) at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of \(298.4^{\circ} \mathrm{K}\) at its lowermost point. Ring bridge surveys are obtained periodically. At 0708 G.m.t., 26 November, the Goldstone Tracking Station observed a CVW in the downlink signal (octal 136) Low Conductivity Mode of the HFE. During real-time support this spurious functional change was verified and at 1503 G.m.t., 26 November, the experiment was commanded back to the full sequence mode (octal 141). During the lunar eclipse on 29 November 1974 the experiment was operated in the thermocouples only mode. \\
\hline
\end{tabular}
Apollo 15 ALSEP (continued)
Commanded OFF 14 June 1974.
Commanded OFF 14 June 1974.
Solar wind
spectrometer
experiment
Lunar surface
magnetometer
experiment
\begin{tabular}{|c|c|}
\hline & \\
\hline Central station & Noon at the Apollo 14 site (48th Iunation) occurred on 30 November 1974. Transmitter A signal strength was reported between -738.0 dbm and -145.0 dbm by the 30 foot antenna stations. The DSS-l heater (10 watts) was commanded OFF for lunar day operation on 24 November 1974. The Y processor was verified during real-time support 24 November. \\
\hline Passive seis experiment & The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). During this reporting period the instrument's heater was operated in the FORCED OFF mode from 27 November through 4 December, to minimize heating during the lunar day operations. At the beginning of real-time support on 27 November it was observed that the short period z-axis sensor gain indicated -10 db. Review of the ALSEP downlink indicated no command verification word (octal 067). Therefore, this spurious functional change occurred between real-time support pewiods on 26 November and 27 November. The z-axis sensor gain was commanded back to 0 db gain without incident at 2001 G.m.t., 27 November. A spuwious functional command (Calibration SP OFF, octal 065) was executed by the PSE on 29 November during real-time support. The Calibration SP was returned to OFF (octal 065) at 1443 G.m.t., 29 November. No significant seismic events have been noted during this report period. \\
\hline Active seismic experiment & The experiment is currently in STANDBY. The instrument was commanded to high bit rate ON, 24 November, to verify operational status. The output of geophones \#2 and \#3 appeared abnormal as had initially been obsevved on 3 January 1974. The status check was performed per Apolzo 14 ALSEP, SMEAR 86. \\
\hline Suprathermal ion detector/cold cathode gauge experiment & The instrument has been in STANDBY since 1228 G.m.t., 23 November 1974. At 1837 G.m.t., 21 November, the MiZa Tracking Station observed that the SIDE Word 15 was static. Seventeen commands were executed before Word 15 remained dynamic at 2303 G.m.t., 21 November, for forty-four minutes. An additional forty-one commands were executed before word 15 was dynomic at 0127 G.m.t., 22 November. Sixty-two more commands were transmitted when Word 15 was static from 1704 G.m.t. to 2001 G.m.t., 22 November. Word 15 again went static at 1228 G.m.t., 23 November and was left in this condition until the eclipse on 29 November. Seventy-two commands were transmitted from 1311 G.m.t. to 1624 G.m.t., 29 November without success. The SIDE would not tum ON during the Lunar Eclipse. \\
\hline Charged particle lunar environmental experiments & The CPLEE has been in STANDBY since 1528 G.m.t., 25 November 1974. The experiment was commanded ON from 1259 to 1812 G.m.t., 29 November, for the lunar eclipse. Following the eclipse the instmment was commanded back to STANDBY for the remainder of this lunar day. \\
\hline
\end{tabular}

Noon of the 63rd lunation occurred 1 December 1974 at the ALSEP site in the Ocean of
\(\stackrel{9}{4}\) for Ka pałuodər sem a was commanded from transmitter heater (10 watts) 틈 I-SSO lunar day operations on 24 November 1974. The instrument is configured with thermal control, AUTO ON; component gains, 0 db; and feedback loop filter IN and will remain IN indefinitely at the Principal Investigator's request. The instrument's assembly temperature (DL-07) remains offscale HIGH since the start of real-time support on 1 December, at a sun angle of \(95^{\circ}\). No significant seismic events were noted during the periodic real-time support periods of this instrument.

The instrument is currently in the normal gain mode and is recording solar wind plasma data. The experiment was operated in the extended range mode due to observation of high particle counts from 1510 G.m.t., 25 November to 1532 G.m.t., 26 November.

The SIDE is currently OFF. The instrument was commanded OFF during real-time support on 25 November when the internal temperature was \(51.8^{\circ} \mathrm{C}\). Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON
 the Ascension Tracking Station reported a spurious CVW Experiment Power ON (octal 052), in the ALSEP downink. During real-time support on 27 November, it was verified that this spurious command had functioned. The following conditions were observed prior to commanding the experiment OFF at 2216 G.m.t., 27 November for cooldown:
2. Mode Register contained a 007 (\(\times 10\) mode), however the experiment was in full sequence. The ground plane stepper was OFF.
\[
\begin{aligned}
& \text { 5. The lrouna energy aume plate analyzer (LECPA) was OFF. } \\
& \text { 4. ALI high voltages were OFF. }
\end{aligned}
\]

On 29 November the SIDE was commanded ON at 1150 G.m.t. for operation during the lunar ectipse. Three (3) X10 modes were experienced prior to the passage of the station through the umbral phase of the eclipse. The experiment was turned OFF on each occurrence and the maximum temperature (T2) attained was \(59.4^{\circ} \mathrm{C}\). No further difficulties were encountered and the SIDE was commanded OFF at 1811 G.m.t. at the

Central station
Passive seismic experiment Solar wind spectrometer experiment

Suprathermal detector
experiment
\[
\begin{aligned}
& \text { magnetometer } \\
& \text { experiment }
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|}
\hline TM POINT & APOLLO 12 ALSEP & APOLLO 14 ALSEP & APOLLO 15 ALSEP \\
\hline Total Days of Operation & 1842 & 1399 & 1223 \\
\hline Total Commands to Date & 22214 & 13064 & 25931 \\
\hline Sun Angle & \(144.4^{\circ}\) & \(150.3^{\circ}\) & \(171.5^{\circ}\) \\
\hline Input Power & 61.4 w & 64.8w & 67.4 w \\
\hline Heater and Power Dumps & Al7 0FF & A11 OFF & A11 0FF \\
\hline Experiment Status & LSM OFF & SIDE/CPLEE/ASE Stdby & LSM/SWS OFF \\
\hline Avg Themal Plate Temp & \(87.8^{\circ} \mathrm{F}\) & \(81.8^{\circ} \mathrm{F}\) & \(69.8{ }^{\circ} \mathrm{F}\) \\
\hline PSE Sensor Temp (DL-07) & Offscale HIGH & \(126.1^{\circ} \mathrm{F}\) & \(125.4{ }^{\circ} \mathrm{F}\) \\
\hline LSM Internal Temp (DM-05) & OFF & N/A & OFF \\
\hline SWS Module 300 Temp (DW-13) & \(57.5{ }^{\circ} \mathrm{C}\) & N/A & OFF \\
\hline SIDE Temp (DI-05) & OFF & Stdby & \(54.6{ }^{\circ} \mathrm{C}\) \\
\hline CCGE Temp (DI-04) & OFF & Stdby & \(294.5^{\circ} \mathrm{K}\) \\
\hline CPLEE Elect Temp (AC-06) & N/A & Stdby & N/A \\
\hline ASE GLA Temp (AS-03) & N/A & \(78.8{ }^{\circ} \mathrm{C}\) & N/A \\
\hline HFE Temp Ref 1 (\(\mathrm{DH}-13\)) & \(N / A\) & N/A & \(298.4^{\circ} \mathrm{K}\) \\
\hline TM POINT & APOLLO 17 ALSEP & & \\
\hline Total Days of Operation & 723 & & \\
\hline Total Commands to Date & 18798 & & \\
\hline Sun Angle & \(198.5^{\circ}\) & & \\
\hline Input Power & 74.4w & & \\
\hline APM Status (AB-13) & ON & & \\
\hline Power Dump Status (AB-14) & Al1 OFF & & \\
\hline Experiment Status & LSPE Stdby & & \\
\hline Avg Thermal Plate Temp & \(26.7^{\circ} \mathrm{F}\) & & \\
\hline LACE Temp (AM-41) & \(1.4{ }^{\circ} \mathrm{F}\) & & \\
\hline LEAM Temp (AJ-11) & \(-14.0{ }^{\circ} \mathrm{K}\) & & \\
\hline HFE Temp Ref 1 (\(\mathrm{DH}-13\)) & \(284.7^{\circ} \mathrm{K}\) & & \\
\hline LSG Temp (DG-04) & \(49.2^{\circ} \mathrm{C}\) & & \\
\hline LSP Temp (AP-01) & \(29.1{ }^{\circ} \mathrm{F}\) & & \\
\hline
\end{tabular}

\section*{ALSEP PERFORMANCE SUMMARY REPORT}

13 December 1974
G.m.t.: 1300

12 December marked the completion of two full years of continuous operation by the Apollo 17 ALSEP saience station on the lunar surface. The lunar scientific station has completed the two years of its original design Iife expectation. The Radioisotope Thermoelectric Generator has experienced graduat degradation of 3.9 watts (1.95 watts per year). The signal strength from the transmitters has remained essentially constant since activation. The Iunar Seismic Profiling, Heat Flow, Iunar Ejecta and Meteorite, and Lunar Surface Gravimeter Experiments are operating and returning valid science data to the Earth. The Lunar Atmospheric Composition Experiment has not returned valid data since 17 October 1973. To date over 18980 commands have been transmitted to and executed by the central station and experiments. The Apollo 17 ALSEP will complete its 25th Iunation on the lunar surface with sunxise on 18 December 1974.

Remote site coverage for recording of ALSEP downink data was not available during the following periods. It must be noted that these data losses are non-recoverable.

\section*{Apo110 17 ALSEP}

Midnight of the scientific station's 25th lunation occurred on 11 December at the Taurus Littrow site. Downtink signal strength was reported between -142.0 and -148.5 dbm from transmitter \(B\) and after 1532 G.m.t., 9 December 1974, at \(-142.0 \pm 2.0 \mathrm{dbm}\) from transmitter \(A\). At the decision of mission control transmitters were switched from \(B\) to \(A\) on 9 December. On 6 December tracking stations (Ascension and Canary) with 30-foot antennas were experiencing sporadic data drops on the Apollo 17 ALSEP. The signal strength from transmitter \(B\) was -146.0 to -148.5 dbm during the dropouts. The drops were for a few seconds at a time and were not of sufficient duration to warrant data loss reports. It must be noted that the drops occurred at possibly the worst lunar libration pattern for antenna pointing this Zunation. After the switch to transmitter A a gain of 2 dbm \((-142.0\) to \(-140.0 \mathrm{dbm})\) in signal strength was realized on 9 December. Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during realtime support periods.

13 December 1974
G.m.t.: 1300

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 12 December lunar surface temperature, as measured by the HFE thermocouples, was \(108 \pm 8^{\circ} \mathrm{K}\). At a depth of 230 cm , the subsurface temperatures were \(256.6^{\circ} \mathrm{K}\) at probe \#1 and \(256.8^{\circ} \mathrm{K}\) at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at \(49.2^{\circ} \mathrm{C}\) (slave heater 0N).

The Lunar Seismic Profiling Experiment is currently ON. A 4-day passive Iistening period was begun at 1545 G.m.t., 12 December, to continue \(a\) study of meteoroid impacts and thermal moonquakes. No significant events were noted during the real-time support period when the LSP high bit rate was observed for one (1) hour. This Iistening period is during lunar night (Sun Angles 283.0 \(0^{\circ}\) to 332.0 \(0^{\circ}\)) and witl be terminated on 16 December 1974. The next 4-day passive listening period is planned for sun angles 331.0 - 024 at a yet to be determined date.

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. The instrument is configured to discriminator level, LOW; filament, OFF; high voltage power supply, OFF; and backup heater, ON.

The Lunar Ejecta and Meteorites Experiment is \(O N\) and configured to measure impact flux rates on the lunar surface.

It is requested that any organization having comments, questions, or suggestions concerning this report contact \(F\). Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
Apo110 16 ALSEP
\begin{tabular}{|c|c|}
\hline Operational & status from 1300 G.m.t., 6 December 1974, to 1300 G.m.t., 13 December 1974 \\
\hline Central station & Midnight at the Descartes Site occurred on 12 December for the 33rd lunar night. The DSS-1 heater (10 watts) is ON for lunar night operations. The 18-hour timer output pulses continue to be inhibited per the agreed operational plan initiated 6 May 1972. The signal strength from transmitter B is reported between -134.0 and -138.5 dbm by the 30 -foot antenna tracking stations. \\
\hline Passive seismic experiment & The instrument is configured for seismic network congruity (thermal control, AUTO ON; component gains, 0 db ; and feedback loop filter OUT). No significant seismic events were noted during the limited real-time support of this instrument. \\
\hline Lunar surface magnetometer experiment & The LSM is ON. 896 flip calibration sequences have been executed and verified by the experiment's engineering data since activation. \\
\hline Active seismic experiment & The Active Seismic Experiment is currently OFF. Present operations are per Apollo 16 ALSEP, SMEAR 27. \\
\hline
\end{tabular}
APOLLO 16 ALSEP

Status as of 1500 G．m．t．， 12 December 1974，was as follows：
 1406
13427
\(235.0^{\circ}\)
\(64.0 \mathrm{~W}(64.4 \mathrm{w})\)
A11 ON
ASE Stdby
\(21.4^{\circ} \mathrm{F}\)
\(124.1^{\circ} \mathrm{F}\)
\(\mathrm{N} / \mathrm{A}\)
N／A
Invalid
Invalid
\(-22.7^{\circ} \mathrm{C}\)
\(-69.5^{\circ} \mathrm{C}\)
\(\mathrm{N} / \mathrm{A}\)
\[
\begin{aligned}
& \text { APOLLO } 15 \text { ALSEP } \\
& 1230 \\
& 26058 \\
& 256.2^{\circ} \\
& 67.4 \mathrm{~W}(67.9 w) \\
& \text { A11 OFF } \\
& \text { LSM SWS 0FF } \\
& 11.0^{\circ} \mathrm{F} \\
& 124.6^{\circ} \mathrm{F} \\
& 0 \mathrm{FF} \\
& 0 \mathrm{FF} \\
& 7.2^{\circ} \mathrm{C} \\
& 110.3^{\circ} \mathrm{K} \\
& \text { N/A } \\
& \text { N/A } \\
& 283.5^{\circ} \mathrm{K}
\end{aligned}
\]
\[
\begin{aligned}
& \text { Value in parentheses indicates RTG } \\
& \text { output during Zast Zunation at a } \\
& \text { simizar sun angle. }
\end{aligned}
\]

APOLLO 17 ALSEP

さそきさ

\[
\begin{aligned}
& \text { (} \varepsilon \text { L-H0) } 1 \text { fəy duə } \mathcal{Z} \text { JH }
\end{aligned}
\]

TM POINT

NOVEMBER 29, 1974
LUNAR EVENTS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{CST} & \multicolumn{2}{|l|}{GMT} \\
\hline Moon enters penumbra & & \multicolumn{2}{|c|}{0626} & \multicolumn{2}{|l|}{1226} \\
\hline Moon enters umbra & & \multicolumn{2}{|c|}{0729} & \multicolumn{2}{|l|}{1329} \\
\hline Middle of eclipse & & \multicolumn{2}{|c|}{0914} & \multicolumn{2}{|l|}{1514} \\
\hline Moon exits umbra & & \multicolumn{2}{|c|}{1059} & \multicolumn{2}{|l|}{1659} \\
\hline Moon exits penumbra & & \multicolumn{2}{|c|}{1202} & \multicolumn{2}{|l|}{1802} \\
\hline \multicolumn{3}{|l|}{Duration of eclipse (hrs + mins)} & \(5+36\) & & \\
\hline \multicolumn{4}{|c|}{Magnitude of eclipse (1.} & & \\
\hline \multicolumn{6}{|c|}{ALSEP EVENTS (CST - TIMES APPROXIMATE)} \\
\hline & 1 & 4 & 3 & 2 & 5 \\
\hline ALSEP enters penumbra & 0644 & 0647 & 0659 & 0704 & 0716 \\
\hline ALSEP enters umbra & 0747 & 0757 & 0800 & 0810 & 0819 \\
\hline ALSEP middle of eclipse & 0902 & 0906 & 0978 & 0919 & 0931 \\
\hline ALSEP exits umbra & 1014 & 1018 & 1033 & 1020 & 1038 \\
\hline ALSEP exits penumbra & 1116 & 1120 & 1135 & 1125 & 1143 \\
\hline Penumbral duration (hrs + mins) & 4+32 & \(4+33\) & \(4+36\) & \(4+21\) & 4+27 \\
\hline Umbral duration (hrs + mins) & \(2+27\) & \(2+27\) & \(2+33\) & \(2+10\) & \(2+19\) \\
\hline
\end{tabular}

Apol1o 12 ALSEP
Time G.m.t.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & 1252 & 1412 & 1457 & 1618 & 1812 \\
\hline CST (w) & 61.38 & 64.37 & 63.06 & 62.21 & 60.96 \\
\hline CS2 (w) & 28.48 & 35.76 & 31.18 & 30.64 & 35.22 \\
\hline ATO1 \({ }^{\circ} \mathrm{F}\) & 190.9 & -13.0 & -81.7 & -143.2 & 182.4 \\
\hline AT02 \({ }^{\circ} \mathrm{F}\) & 190.9 & -7.8 & -79.2 & -143.2 & 182.4 \\
\hline AT08 \({ }^{\circ} \mathrm{F}\) & 202.1 & 61.9 & 21.3 & -18.2 & 157.0 \\
\hline AT09 \({ }^{\circ} \mathrm{F}\) & 33.9 & 34.7 & 5.4 & -31.1 & 37.4 \\
\hline AVG TH PL \({ }^{\circ} \mathrm{F}\) & 94.64 & 82.34 & 73.10 & 57.48 & 62.82 \\
\hline PSE DL07 \({ }^{\circ} \mathrm{F}\) & 135.20 & 135.27 & 134.82 & 133.38 & 131.23 \\
\hline SWS MOD \(100{ }^{\circ} \mathrm{C}\) & 65.23 & 60.86 & 55.86 & 46.53 & 43.58 \\
\hline SWS MOD \(200{ }^{\circ} \mathrm{C}\) & 62.58 & 56.68 & 57.88 & 42.86 & 42.13 \\
\hline SWS MOD \(300{ }^{\circ} \mathrm{C}\) & 66.14 & 60.86 & 56.68 & 47.28 & 45.05 \\
\hline SWS SNSR \({ }^{\circ} \mathrm{C}\) & 67.90 & 13.87 & -13.46 & -46.41 & 38.79 \\
\hline SIDE T2 \({ }^{\circ} \mathrm{C}\) & 56.51 & 59.43 & 55.55 & 48.28 & 44.02 \\
\hline
\end{tabular}

LSM OFF

\section*{Apol1o 14 ALSEP}

Time G.m.t.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & 1252 & 1358 & 1555 & 1628 & 1810 \\
\hline \(\overline{\operatorname{CST}}\) (w) & 64.06 & 67.57 & 65.38 & 64.94 & 63.63 \\
\hline CS2 (w) & 39.38 & 39.86 & 38.57 & 38.57 & 37.21 \\
\hline ATO1 \({ }^{\circ} \mathrm{F}\) & 207.7 & 32.0 & -128.6 & -143.2 & 199.3 \\
\hline AT02 \({ }^{\circ} \mathrm{F}\) & 207.7 & 37.4 & -126.1 & -143.2 & 199.3 \\
\hline AT08 \({ }^{\circ} \mathrm{F}\) & 188.1 & 92.3 & -5.1 & -18.2 & 134.3 \\
\hline AT09 \({ }^{\circ} \mathrm{F}\) & 128.7 & 83.9 & 0.1 & -10.4 & 72.9 \\
\hline AVG TH PL \({ }^{\circ} \mathrm{F}\) & 114.74 & 105.84 & 82.36 & 76.78 & 81.68 \\
\hline PSE DL07 \({ }^{\circ} \mathrm{F}\) & 134.56 & 134.50 & 132.34 & 131.58 & 128.46 \\
\hline CPLEE AC-5 \({ }^{\circ} \mathrm{C}\) & 64.08 & 42.26 & 13.13 & 3.40 & 38.94 \\
\hline CPLEE AC-6 \({ }^{\circ} \mathrm{C}\) & 63.28 & 56.15 & 30.06 & 21.74 & 33.61 \\
\hline ASE ASO2 \({ }^{\circ} \mathrm{C}\) & 79.9 & 79.9 & 61.8 & 55.3 & 46.2 \\
\hline ASE ASO3 \({ }^{\circ} \mathrm{C}\) & 77.2 & 75.7 & 66.9 & 62.9 & 61.6 \\
\hline ASE ASO4 \({ }^{\circ} \mathrm{C}\) & 69.2 & 52.3 & 21.5 & 14.4 & 39.5 \\
\hline
\end{tabular}

SIDE OFF

\section*{LUNAR ECLIPSE DATA - 29 NOVEMBER 1974}

\section*{Apollo 15 ALSEP}

Time G.m.t.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & 1140 & 1412 & 1519 & 1623 & 1730 \\
\hline CS1 (w) & 66.95 & 70.84 & 69.43 & 68.93 & 65.05 \\
\hline CS2 (w) & 30.93 & 29.97 & 30.65 & 27.86 & 24.79 \\
\hline AT01 \({ }^{\circ} \mathrm{F}\) & 159.8 & 40.1 & -76.7 & -126.1 & 59.1 \\
\hline AT02 \({ }^{\circ} \mathrm{F}\) & 190.9 & 56.4 & -71.7 & -121.2 & 72.9 \\
\hline AT08 \({ }^{\circ} \mathrm{F}\) & 106.2 & 56.4 & 10.7 & -18.2 & 13.3 \\
\hline AT09 \({ }^{\circ} \mathrm{F}\) & 137.2 & 72.9 & 16.0 & -13.0 & 61.9 \\
\hline AVG TH PL \({ }^{\circ} \mathrm{F}\) & 116.5 & 108.60 & 94.90 & 80.12 & 81.80 \\
\hline PSE DL07 \({ }^{\circ} \mathrm{F}\) & H & H & H & H & 142.43 \\
\hline SIDE/CCIG \({ }^{\circ} \mathrm{K}\) & 372.57 & 347.41 & 249.50 & 261.41 & 255.23 \\
\hline SIDE T2 \(^{\circ}{ }^{\circ} \mathrm{C}\) & 64.53 & 72.17 & 69.92 & 64.53 & 62.45 \\
\hline HFE TREF1 \({ }^{\circ} \mathrm{K}\) & 332.183 & 322.555 & 304.096 & 297.965 & 292.199 \\
\hline HFE TC12 \({ }^{\circ} \mathrm{K}\) & 359.704 & 228.078 & 157.691 & 145.038 & 187.521 \\
\hline HFE TC22 \({ }^{\circ} \mathrm{K}\) & 370.735 & 228.060 & 159.776 & 147.674 & 192.622 \\
\hline
\end{tabular}

SWS and LSM 0FF

\section*{Apol1o 16 ALSEP}

Time G.m.t.
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & 1211 & 1520 & 1633 & 1806 \\
\hline CST (w) & 67.55 & 69.10 & 68.62 & 65.83 \\
\hline CS2 (w) & 35.68 & 37.59 & 37.33 & 34.97 \\
\hline AT01 \({ }^{\circ} \mathrm{F}\) & 188.1 & -71.7 & -126.1 & 137.2 \\
\hline AT02 \({ }^{\circ} \mathrm{F}\) & 176.8 & -74.2 & -126.1 & 125.9 \\
\hline AT08 \({ }^{\circ} \mathrm{F}\) & 171.1 & 5.4 & -25.9 & 117.4 \\
\hline AT09 \({ }^{\circ} \mathrm{F}\) & 83.9 & 16.0 & -13.0 & 21.3 \\
\hline AVG TH PL \({ }^{\circ} \mathrm{F}\) & 99.4 & 80.12 & 73.56 & 73.44 \\
\hline PSE DL07 \({ }^{\circ} \mathrm{F}\) & H & H & H & H \\
\hline LSM X -axis \({ }^{\circ} \mathrm{C}\) & 81.72 & 60.59 & 42.59 & 33.92 \\
\hline LSM Y-axis \({ }^{\circ} \mathrm{C}\) & 81.72 & 60.59 & 42.59 & 34.64 \\
\hline LSM Z-axis \({ }^{\circ} \mathrm{C}\) & 83.90 & 63.54 & 45.36 & 36.11 \\
\hline LSM BASE \({ }^{\circ} \mathrm{C}\) & 40.03 & 31.14 & 24.52 & 21.89 \\
\hline LSM INTRNL \({ }^{\circ} \mathrm{C}\) & 47.01 & 39.29 & 33.67 & 29.52 \\
\hline
\end{tabular}

\section*{LUNAR ECLIPSE DATA - 29 NOVEMBER 1974}

Apollo 17 ALSEP
Time G.m.t.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & 1340 & 1417 & 1532 & 1702 & 1731 & 1821 \\
\hline CS36 (w) & 72.79 & 75.64 & 75.21 & 73.93 & 71.53 & 71.53 \\
\hline \(\operatorname{CS61}\) (w) & 38.25 & 36.95 & 35.22 & 34.06 & 32.49 & 37.09 \\
\hline CS63 (w) & H & 25.68 & 25.68 & 25.91 & 25.91 & 25.68 \\
\hline AT01 \({ }^{\circ} \mathrm{F}\) & 179.6 & 75.6 & -64.2 & -104.0 & 10.7 & 157.0 \\
\hline AT02 \({ }^{\circ} \mathrm{F}\) & 254.5 & 70.1 & -69.2 & -104.0 & 13.3 & 157.0 \\
\hline AT08 \({ }^{\circ} \mathrm{F}\) & 97.8 & 75.6 & 18.6 & -18.2 & -7.8 & 37.4 \\
\hline AT09 \({ }^{\circ} \mathrm{F}\) & 196.5 & 117.4 & 29.3 & 8.0 & 83.9 & 165.4 \\
\hline AVG TH PL \({ }^{\circ} \mathrm{F}\) & 143.0 & 89.4 & 75.8 & 59.2 & 57.3 & 58.9 \\
\hline LSG DG04 \({ }^{\circ} \mathrm{C}\) & 49.199 & 49.199 & 49.199 & 49.199 & 49.199 & 49.199 \\
\hline HFE TREF1 \({ }^{\circ} \mathrm{K}\) & 322.655 & 316.639 & 300.515 & 289.010 & 292.520 & M \\
\hline HFE TREF2 \({ }^{\circ} \mathrm{K}\) & 322.571 & 316.844 & 300.318 & 289.116 & 292.662 & 295.869 \\
\hline HFE TC12 \({ }^{\circ} \mathrm{K}\) & 346.014 & 238.296 & 160.444 & 208.836 & 359.716 & M \\
\hline HFE TC22 \({ }^{\circ} \mathrm{K}\) & 347.003 & 242.945 & 159.137 & 214.692 & 362.438 & 363.606 \\
\hline LACE AM41 \({ }^{\circ} \mathrm{F}\) & M & 134.2 & 114.8 & 97.6 & 97.6 & 102.2 \\
\hline LEAM AJ06 \({ }^{\circ} \mathrm{F}\) & 156.5 & 151.5 & 136.5 & 112.5 & 110.1 & OFF \\
\hline LEAM AJ07 \({ }^{\circ} \mathrm{F}\) & 156.5 & 154.0 & 139.5 & 117.0 & 115.5 & OFF \\
\hline LEApil AJ08 \({ }^{\circ} \mathrm{F}\) & 166.5 & 159.0 & 141.0 & 118.5 & 118.5 & OFF \\
\hline LEAM AJ09 \({ }^{\circ} \mathrm{F}\) & 185.6 & 181.4 & 164.0 & 139.5 & 136.5 & OFF \\
\hline LEAM AJ11 \({ }^{\circ} \mathrm{F}\) & 196.0 & 186.5 & 155.5 & 123.7 & 122.9 & 137.7 \\
\hline LSP AP01 \({ }^{\circ} \mathrm{F}\) & 96.0 & 90.9 & 77.5 & 60.5 & 58.7 & 59.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{S - CST ALSEP SUPPORT SCHEDULE/EVENTS} & PSE CALS DAILY \\
\hline NOV 1, 327 & 18/322 & 19/323 & \(2 \sim 324\) & 21/325 & 22/326 & \(2 \sim, ~ 27\) \\
\hline NO SUPPORT & \begin{tabular}{l}
\[
\frac{0900-1100}{\text { FLIP CAL }}
\] \\
HFE RBS
\end{tabular} & \[
\frac{\text { NO SUPPORT }}{\text { ALSEP } 17}
\] & \begin{tabular}{l}
\[
\begin{gathered}
\frac{0900-1100}{} \begin{array}{c}
\text { ALSEP } 16 \\
\text { AUTTO } 3 X
\end{array}
\end{gathered}
\] \\
FLIP CAL \\
HFE RBS
\end{tabular} & \begin{tabular}{l}
\(\frac{0900-1100}{\text { ALSEP } 15}\) \\
TIMER RST \\
ALSEP 16 C/S HTR OFF TIMER RST
\end{tabular} & \[
\begin{aligned}
& \frac{0900-1100}{\text { ALSEP } 17} \\
& \text { LACE STBY } \\
& \text { LEAM 0FF } \\
& \text { FLIP CAL } \\
& \text { HFE RBS }
\end{aligned}
\] & \begin{tabular}{l}
\[
\frac{0800-1000}{\text { ALSEP } 12}
\] \\
ALSEP 14
\[
2300-2400
\]
\end{tabular} \\
\hline NOV 24/328 & 25/329 & 26/330 & 27/331 & 28/332 & 29/333 & 30/334 \\
\hline O000-0300
ALSEP 12
C/S HTR 0FF
PSE Z MTR 0FF
ALSEP 14
C/S HTR OFF
Y PROC CHK
ASE CHK
ALSEP 16
ASE CHK
NEG Z
\(\frac{7500-1600}{\text { ALSEP } 16-\text { NEG Z }}\) & O900-1100
ALSEP 12
SIDE 0FF
ALSEP 14
CPLEE STBY
ALSEP 16
NEG Z
FLIP CAL
HFE RBS & \(\frac{0900-1100}{\text { ALSEP 12 }}\)
CYCLE SIDE
ALSEP 15
SIDE STBY
ALSEP 16
NEG \(Z\) & \[
\begin{aligned}
& 1700-2100 \\
& \hline \text { ALSEP 12 } \\
& \text { CYCLE SIDE } \\
& \text { ALSEP } 14 \\
& \text { PSE HTR 0FF } \\
& \text { ALSEP } 15 \\
& \text { SIDE SPRT } \\
& \text { ALSEP } 16 \\
& \text { NEG Z } \\
& \text { FLIP CAL } \\
& \text { HFE RBS } \\
& \hline
\end{aligned}
\] & NO SUPPORT & \(\frac{0600-1230}{\text { TOTAL ECLIPSE }}\) ALSEP 12 \& 15 CYCLE SIDES FLIP CAL HFE RBS & \[
\begin{aligned}
& \frac{0900-1700}{\text { ALSEP 12 \& } 15} \\
& \text { CYCLE SIDES } \\
& \text { ALSEP } 17 \\
& \text { LEAM ON }
\end{aligned}
\] \\
\hline DEC \(1 / 335\) & 2/336 & 3/337 & 4/338 & 5/339 & 6/340 & 7/341 \\
\hline \(\frac{0900-1100}{\text { ALSEP 12 }}\)
CYCLE SIDE
ALSEP 15
SIDE ON
ALSEP 16
POS \(Z\) & \[
\begin{aligned}
& \frac{2000-2200}{\text { ALSEP 12 }} \\
& \text { CYCLE SIDE } \\
& \text { ALSEP } 16 \\
& \text { POS Z } \\
& \text { FLIP CAL } \\
& \text { HFE RBS }
\end{aligned}
\] & \(\frac{1200-1400}{\text { ALSEP } 17}\)
LACE ON
ALSEP 12
CYCLE SIDE
ALSEP 16
POS Z
\(\frac{2200-2300}{\text { ALSEP } 16}\)
POS \(Z\) & \(\frac{0700-0800}{\text { ALSEP } 16}\)
POS \(Z\)
\(\frac{1600-1700}{\text { ALSEP } 14}\)
PSE HTR ON
ALSEP 16
C/S HTR ON
POS \(Z\)
FLIP CAL
HFE RBS & \(\frac{0000-0100}{\text { ALSEP } 16}\)
POS \(Z\)
\(\frac{0900-1100}{\text { ALSEP } 12}\)
CYCLE SIDE & \(\frac{0900-1100}{\text { ALSEP } 15}\)
ALSEP 12
SIDE ON
FLIP CAL
HFE RBS & \[
\begin{aligned}
& \frac{0900-1100}{\text { ALSEP } 14} \\
& \text { C/S HTR ON } \\
& \text { SIDE ON } \\
& \text { CPLEE ON }
\end{aligned}
\] \\
\hline BEN-20 & & & & & & NASA-JSC \\
\hline
\end{tabular}

\section*{ALSEP PERFORMANCE SUMMARY REPORT}

20 December 1974
G.m.t.: 1300

An ALSEP status report will not be published on 27 December in observance of the holidays. The report to be published on 3 January 2975 witl include the previous two weeks of ALSEP operations.

The following is a comection to the dates for ALSEP downink data losses as reported on the Summary Report of 13 December 1974.
\begin{tabular}{|c|c|c|c|c|c|}
\hline ALSEP & DATE & G.m.t. & LOSS & SITE & REMARKS \\
\hline 1.5 & 23-24 Oct 74 & 2059/0005 & \(03^{h} 06^{m}\) & AGO & Station Problem \\
\hline 12 to 17 & 10 Dec 74 & 0000/0507 & \(05^{\prime 2} 07^{m}\) & N/A & HELIOS Launeh \\
\hline 15 & 11 Dec 74 & 0006/0011 & \(05^{m}\) & GWM & Station Problem \\
\hline 15 & 11 Dec 74 & 0019/0023 & \(04^{m}\) & GWM & Station Problem \\
\hline 12 to 17 & 11 Dec 74 & 0605/0610 & \(05^{\text {m }}\) & TAN & Station Problem \\
\hline
\end{tabular}

Apol10 17 ALSEP
Sunrise of the scientific station's 26th lunation occurred on 18 December at the Taurus Littrow site. Downlink signal strength is reported between -135.5 and -141.5 dbm from transmitter \(A\). Automatic power management continues to distribute power for optimum thermal control. Transmission of command octal 174 (delay uplink switchover), to inhibit automatic selection of the redundant command signal processing chain by the internally generated 61 -hour pulses, continues during real-time support periods.

The Heat Flow Experiment is presently operating in the gradient mode and all sensors are being sampled in full sequence. Ring bridge surveys are being achieved on a periodic basis. On 18 December the lunar surface temperature, as measured by the HFE thermocouples, was \(104 \pm 8^{0} \mathrm{~K}\). At a depth of 230 cm , the subsurface temperatures were 256.5 K at probe \(\# 1\) and 256.9 K at probe \#2.

The Lunar Surface Gravimeter Experiment is operating and configured for data collection as follows: seismic high gain, integrator shorted mode, bias out, post amplifier gain at increment 15, the coarse and fine screws driven to the extreme lower position, the tilt servo motors in an intermediate position, and the sensor beam near center. The experiment sensor temperature remains stabilized at \(49.2^{\circ} \mathrm{C}\) (slave heater 0N).

The Lunar Seismic Profiling Experiment is currently in STANDBY. A 4-day passive listening period of the Lunar Seismic Profiling Experiment was begun at 1545 G.m.t., 12 December, to continue a study of meteoroid impacts and thermal moonquakes. Some events were noted during the real-time support period when the ISP high bit rate was observed for one (1)hour. This Iisten-
ing period was conducted during lunar night (Sun Angles \(283.7^{\circ}\) to 333.10) and was terminated at 1458 G.m.t., 16 December 1974. The next 4-day passive listening period is planned for sun angles 331. \(0^{\circ}\) to \(024^{\circ}\) at a date yet to be determined.

The Lunar Atmospheric Composition Experiment is ON but is not processing scientific data. On 16 Decembex, between 0703 G.m.t., and 1506 G.m.t., the experiment was turned OFF/STANDBY/ON to conduct a cold soak test. During the test it is estimated the electronics temperature (AM-41) decreased from \(-2.3^{\circ} \mathrm{F}\) to \(-33.6^{\circ} \mathrm{F}\). Again on 18 December, between 0905 G.m.t., and 1445 G.m.t., the experiment was turned OFF/ON for another cold soak. During this date it is estimated the electronics temperature (AM-4I) decreased from \(-2.3^{\circ}\) E to \(-35.9^{\circ} \mathrm{F}\). The cold soaks were accomptished at the Principal Investigator's request prior to initiating operational checks of the instrument. The LACE's telemetry data did indicate some improvement from previous (18 November 1974) operational checks (Multiplier High Voltage Power Supply, ON). The instrument was reconfigured after each test to discriminator level, Iow; filament, OFF; high voltage power supply, OFF; and backup heater, ON.

The Lunar Ejecta and Meteorites Experiment is \(O N\) and configured to measure impact flux rates on the lunar surface.

It is requested that any organization having conments, questions, or suggestions concerning this report contact F. Heinz, Science Requirements Branch TN3, telephone 713-333-3481.
\[
\text { Apol10 } 16 \text { ALSEP }
\]
Apollo 15 ALSEP
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operational status from 1300 G.m.t., 13 December 1974, to 1300 G.m.t., 20 December 1974} \\
\hline Central station & Sunrise of the station's 43rd Tunation will occur at the Hadley Rille Site on 21 December. Transmitter A downink signal strength is reported at -135.0 \(\pm\) 2.0 dbm by the tracking stations with 30 -foot antennas. \\
\hline Passive seismic experiment & The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). The uncage/arm fire circuitry is cycling normally as a result of the central station's data subsystem timer outputs. No significant seismic events were observed during the limited real-time support periods. \\
\hline Suprathermal ion detector/cold cathode gauge & The instrument is ON and operating with the Channeltron high voltages commanded ON and in full automatic stepping sequence (0-127 frames). \\
\hline Heat flow experiment & The instrument is presently operating in the gradient mode and all sensors being sampled in full sequence. The lunar surface temperature was \(84.6^{\circ} \mathrm{K}\) on 18 December, as indicated by the cable thermocouples. The subsurface temperature was \(253.5^{\circ} \mathrm{K}\) at the bottom of the lowest section of probe \#1. Probe \#2 indicated a temperature of \(251.1^{\circ} \mathrm{K}\) at its lowermost point. Ring bridge surveys are obtained periodically. \\
\hline Solar wind spectrometer experiment & Commanded OFF 14 June 1974. \\
\hline Lunar surface magnetometer experiment & Commanded OFF 14 June 1974. \\
\hline
\end{tabular}
Apol1o 14 ALSEP
\begin{tabular}{|c|c|}
\hline Central station & Sunrise at the Apollo 14 site (49th lunation) will occur 22 December 1974. Transmitter A signal strength was reported between -139.3 dbm and \(\pm 2.3 \mathrm{dbm}\). The DSS -1 heater (10 watts) will be commanded OFF for lunar day operatiōn on 23 December 1974. \\
\hline Passive seismic experiment & The instrument is configured for seismic network congruity (Ref. Apollo 16 ALSEP). No significant seismic events have been noted during this report period. \\
\hline Active seismic experiment & The experiment is currently in STANDBY per Apollo 14 ALSEP, SMEAR 86. \\
\hline Suprathermal ion detector/cold cathode gauge experiment & The instrument is currently in STANDBY. At approximately 1533 G.m.t., 14 December, the SIDE experienced a functional change from ON to STANDBY as reported by the Madrid Tracking Station. The SIDE was re-initialised by the station to the full automatic stepping sequence at 1619 G.m.t., 14 December, by Mode I command. At 1926 G.m.t., I4 December, the SIDE again experienced a functionat change from ON to STANDBY as reported by the Ascension Tracking Station. Approximately 1000 commands were transmitted to the experiment by Mode I from the supporting tracking stations and mission control to turn the SIDE ON, without success, between 1926 G.m.t., 14 December and 1745 G.m.t., 16 December. \\
\hline ```
Charged particle
 lunar
 environmental
 experiment
``` & The experiment is currently operating in the manual mode at the -35 vdc range and automatic thermal control mode. At 1309 G.m.t., 13 December, the CPLEE responded to a spurious command (octal 115, Sequencer Advance) as observed by the Canary Tracking Station. During real-time support at 1506 G.m.t., 13 December, the experiment was commanded back to its normal night time operational mode. It is planned to leave the experiment in this configuration pending possible degradation of AC-03, analyzer A voltage, to 2280 vdc , at which time the instrument will be commanded to STANDBY. \\
\hline
\end{tabular}
Status as of 1600 G.m.t., 18 December 1974, was as follows:


MERRY CHRISTMAS AND
A HAPPY NEW YEAR
TO ALL.

*Indicates previous day
Time is shown as GMT (EST)
ALSEP
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
ALSEP \\
Longitude
\end{tabular} & Apollo 17
\[
30.75^{\circ} \mathrm{E}
\] & \[
\begin{aligned}
& \text { Apollo } 16 \\
& 15.51^{\circ} \mathrm{E}
\end{aligned}
\] & \[
\begin{aligned}
& \text { Apollo } 15 \\
& 3.65^{\circ} \mathrm{E}
\end{aligned}
\] & \begin{tabular}{l}
Apollo 14 \\
\(17.47^{\circ} \mathrm{W}\)
\end{tabular} & \[
\begin{aligned}
& \text { Apollo } 12 \\
& 23.39^{\circ} \mathrm{W}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Lunation \\
Sunrise \\
Noon \\
Sunset \\
Midnight
\end{tabular} & \begin{tabular}{l}
\multicolumn{1}{c}{26} \\
Dec 18/2206(1706) \\
Dec 26/0822(0322) \\
Jan 2/1756(1256) \\
Jan 10/0329(2229)*
\end{tabular} & \[
\begin{aligned}
& 34 \\
& \text { Dec 20/0410(2310)* } \\
& \text { Dec 27/1400(0900) } \\
& \text { Jan 4/0004(1904)* } \\
& \text { Jan 11/0931(0431) }
\end{aligned}
\] & \begin{tabular}{l}
\multicolumn{1}{c}{43} \\
Dec 21/0333(2233)* \\
Dec 28/1328(0828) \\
Jan \(4 / 2328(1828)\) \\
\(\operatorname{Jan} 12 / 0852(0352)\)
\end{tabular} & ```
    4 9
Dec 22/2155(1655)
Dec 30/0717(0217)
Jan 6/1709(1209)
Jan 14/0227(2127)*
``` & 64
Dec 23/0916(0416)
Dec 30/1900(1400)
Jan 7/0350(2250)*
Jan 14/1406(0906) \\
\hline \begin{tabular}{l}
Lunation \\
Sunrise \\
Noon \\
Sunset \\
Midnight
\end{tabular} & 27
Jan 17/1246(0746)
Jan \(24 / 2230(1730)\)
Feb 1/0833(0333)
Feb 8/1802(1302) & 35
Jan 18/1849(1349)
Jan 26/0439(2339)*
Feb 2/1439(0939)
Feb 10/0001 (1901)* & 44
Jan 19/1812(1312)
Jan 27/0407(2307)*
Feb 3/1404(0904)
Feb 10/2322(1822) & \[
\begin{aligned}
& 50 \\
& \text { Jan } 21 / 1154(0654) \\
& \operatorname{Jan} 28 / 2155(1655) \\
& \text { Feb } 5 / 0743(0243) \\
& \text { Feb } 12 / 1656(1156)
\end{aligned}
\] & \[
\begin{aligned}
& 65 \\
& \text { Jan } 22 / 0001(1901) * \\
& \text { Jan } 29 / 0938(0438) \\
& \text { Feb } 5 / 1819(1319) \\
& \text { Feb } 13 / 0435(2335) *
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Lunation \\
Sunrise \\
Noon \\
Sunset \\
Midnight
\end{tabular} & \begin{tabular}{l}
\multicolumn{1}{c}{28} \\
Feb 16/0312(2212)** \\
Feb 23/1247(0747) \\
Mar 2/2242(1742) \\
Mar 10/0759(0259)
\end{tabular} & 36
Feb 17/0913(0413)
Feb 24/1856(1356)
Mar 4/0446(2346)
Mar 11/1357(0857) & 45
Feb 18/0836(0336)
Feb 25/1823(1323)
Mar 5/0409(2309)*
Mar 12/1316(0816) & \[
\begin{aligned}
& \quad 51 \\
& \text { Feb } 20 / 0216(2116) * \\
& \text { Feb } 28 / 1209(0709) \\
& \text { Mar 6/2146(1646) } \\
& \text { Mar 14/0648(0148) }
\end{aligned}
\] & 66
Feb 20/1427(0927)
Feb 28/2352(1852)
Mar 7/0819(0319)
Mar 14/1826(1326) \\
\hline \begin{tabular}{l}
Lunation \\
Sunrise \\
Noon \\
Sunset \\
Midnight
\end{tabular} & 29
Mar 17/1657(1157)
Mar \(25 / 0221(2121)\)
Apr \(1 / 1200(0700)\)
Apr \(8 / 2103(1603)\) & 37
Mar 18/2257(1757)
Mar 26/0826(0326)
Apr 2/1802(1302)
Apr 10/0259(2159)* & 46
Mar 19/2218(1718)
Mar 27/0752(0252)
Apr 3/1723(1223)
Apr 11/0217(2117) & 52
Mar \(21 / 1555(1055)\)
Mar \(29 / 0135(2035) *\)
Apr \(5 / 1056(0556)\)
Apr \(12 / 1944(1444)\) & \[
\begin{aligned}
& 67 \\
& \text { Mar } 22 / 0403(2303) * \\
& \text { Mar } 29 / 1316(0816) \\
& \text { Apr } 5 / 2133(1633) \\
& \text { Apr } 13 / 0722(0222)
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
(12/4/74-WT) - (REV: 12/18/74-TB)
1-Preliminary Issue
}```

[^0]: Currently the SIDE is ON. Cyclic commanding of the instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF
 temperatures above $55^{\circ} \mathrm{C}$.

[^1]: Present operations are per Apollo 14 ALSEP,

 The CPLEE is currently in STANDBY select. Present plans are to leave the experi-
 Active seismic
 experiment

 Suprathermal ion detector/cold cathode gauge
 experiment

 Charged particle Tunar environmental
 experiment

[^2]: Total Days of Operation Sun Angle

[^3]: Lunar surface magnetometer
 experiment Solar wind
 spectrometer spectrometer
 experiment Suprathermal detector/cold cathode gauge experiment
 Heat flow
 experiment

[^4]: TM POINT

[^5]: Solar wind
 spectrometer
 experiment

[^6]: Lunar surface
 experiment
 Commanded OFF 14 June 1974. At 1508 G.m.t., 3 September, a command was sent to
 turn the experiment ON with no valid engineering or scientific data being returned in the downlink. A command to turn the instrument ofr was executed shortly thereafter. It was noted the ISM electronics drew 0.9 watts of power. magnetometer

[^7]: Lunar surface
 magnetometer
 experiment

[^8]: TM POINT
 Total Days of Operation
 Total Commands to Date
 Sun Angle
 Input Power
 APM Status（AB－13）
 Power Dump Status（AB－14）
 Experiment Status
 Avg Thermal Plate Temp
 LACE Temp（AM－4．1）
 LEAM Tenp（AJ－11）
 HFE Temp Ref 1（DH－13）
 LSG Temp（DG－04）
 LSP Temp（AP－01）

