Apollo Lunar Surface Experiments Package Status Reports

1972

Apollo Lunar Surface Experiments Package

 Status Reports 1972 Table of ContentsJanuary 7, 1972
January 14, 1972
January 21, 1972
January 28, 1972
January 30, 1972
February 4, 1972
February 11, 1972
February 18, 1972
February 25, 1972
March 3, 1972
March 10, 1972
March 17, 1972
March 24, 1972
March 31, 1972
April 7, 1972
April 14, 1972
April 22, 1972
April 23, 1972
April 24, 1972
April 25, 1972
April 26, 1972
April 27, 1972
April 28, 1972
April 29, 1972
May 1, 1972
May 2, 1972
May 3, 1972
May 4, 1972
May 5, 1972
May 6, 1972
May 8, 1972
May 9, 1972
May 10, 1972
May 11, 1972
May 121972
May 13, 1972
May 15, 1972
May 16, 1972
May 17, 1972
May 181972

May 19, 1972
May 20, 1972
May 22, 1972
May 23, 1972
May 24, 1972
May 25, 1972
May 26, 1972
May 29, 1972
May 30, 1972
May 31, 1972
June 1, 1972
June 2, 1972
June 3, 1972
June 5, 1972
June 9, 1972
June 16, 1972
June 23, 1972
June 30, 1972
July 7, 1972
July 14, 1972
July 21, 1972
July 28, 1972
August 4, 1972
August 11, 1972
August 18, 1972
August 25, 1972
September 1, 1972
September 8, 1972
September 15, 1972
September 22, 1972
September 29, 1972
October 6, 1972
October 13, 1972
October 20, 1972
October 27, 1972
November 3, 1972
November 10, 1972
November 17, 1972
November 30, 1972
December 8, 1972

December 13, 1972
December 14, 1972
December 15, 1972
December 16, 1972
December 17, 1972
December 18, 1972
December 19, 1972
December 20, 1972
December 21, 1972
December 22, 1972
December 23, 1972
December 24, 1972
December 25, 1972
December 26, 1972
December 27, 1972
December 28, 1972
December 29, 1972
December 30, 1972
December 31, 1972

7 January 1972
G.m.t.: 1300

This report covers the presently operating ALSEP's activity and data from the previous two weeks.

Apollo 15 ALSEP
The Apollo 15 ALSEP experiments and central station are functioning, with scientific and engineering measurements from the data subsystem and all experiments indicating operational status within expected limits. The moon is in interplanetary space and data of this region is being gathered by the lunar station's instruments.

Central station telemetry downlink data indicates that the temperatures of all experiments and data subsystem components are decreasing since lunar noon, January 1. The station's radioisotope thermoelectric generator is supplying an output of 74.1 watts of power to the experiments package. The signal strength from the station's transmitter, as reported from the MSFN tracking stations, was $-137.0 \pm 2.0 \mathrm{dbm}$. The operational procedure, implemented on 14 October, of eliminating the data subsystem's 18 -hour timer outputs by uplinking the timer's reset command, octal 150, was terminated at the last sunrise, December 25. Per agreement the 18 -hour timer was configured to function after lunar sunrise, and will be eliminated at lunar sunset. On 6 January, the effects of the 133 rd 18-hour timer pulse was correctly verified in the systems telemetry functions, during phase II support, confirming consistent timer pulse execution since initialization of the timer.

No lunar seismic events have been observed by the seismometer during the intermittent phase II support periods of the past two weeks. The experiment's thermally generated seismic disturbances diminished with lunar noon, as the instrument was fully illuminated and the thermal gradients across the seismometer's thermal shroud are at a minimum. The instrument's thermal control mode is auto ON, and the feedback loop filter is commanded our. On 31 December, it was noted at the begiming of real-time support that the instrument's internal temperature sensor (DI-07) was reading off scale high. This had been anticipated and is due to the increased solar energy being received by the experiment as the earth/moon system approaches perihelion. DI-07 returned on scale, 4 January.

The magnetometer's sensors are currently in the 100 gamma range, as the moon passes through the free-streaming solar wind region. On 31 December, the instrument's Y axis sensor output dropped off scale LOW, coincident with the first cal raster of a scheduled flip calibration sequence, and returned on scale, 4 January, coincident with the second cal raster of a scheduled flip calibration sequence. This anomaly also occurred during
the last two lunations. The experiment's Y axis sensor head also remains fixed at a 180 degree position, not having responded to a flip cal command since 29 October. The X and Z sensors are returned to the 180 degree positions following each flip cal sequence to maintain sensor head synchronization. Presently the instrument's flip cal inhibit command is IN, precluding the experiment's responding to the data subsystem's timer initiating an autom matic flip cal sequence and causing loss of sensor head synchronization. Investigation of these anomalies is continuing. Currently the experiment has executed 264 filp calibration sequences since activation.

The solar wind spectrometer continues to record data in the normal range mode. The experiment continues to indicate an intermittently faulty output at the two highest energy steps (levels 13 and 14), as discussed previously. It should be noted that this anomaly affects only two of the 21 total steps of the instrument's operation. There is a suspicion that a similar problem exists on the spectrometer of the Apollo 12 ALSEP, but range tape data has not yet been investigated to confirm or refute this suspicion. It is planned to leave both instruments in normal range until investigation of this abnormal operation is concluded.

The suprathermal ion detector and cold cathode gauge experiments are currently operating in the full automatic stepping sequence with the Channel tron high voltages commanded ON. The instrument's Channeltron high voltages were commanded OFF from 30 December to 4 January to preclude instrument mode changes at internal temperatures above $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.

The heat flow experiment continues to acquire subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$, with probe 2 indicating a temperature of $250.7^{\circ} \mathrm{K}\left(-8.1^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $301.7^{\circ} \mathrm{K}\left(83.7^{\circ} \mathrm{F}\right)$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

Lunar sunset will occur on 9 January; power output of the radioisotope source is unvarying; and transmitter "A" signal strength was reported as $-140.9 \pm 2.7 \mathrm{dbm}$. The central station, DSS-I heater, was commanded. OFF at 2355 G.m.t., 26 December, when the average thermal plate temperature reached $69.7^{\circ} \mathrm{F}$. The Apollo 14 ALSEP executed its l6th spurious functional command at I051 G.m.t., 24 December, when the Carnavon, Australia, tracking station noted an octal 052, Charged Particle Lunar Environment Experiment ON, in the downlink. The CPLEE was commanded back
to standby, at 1753 G.m.t. No data out-of-tolerances were noted from the spurious command.

Operation is in the auto on thermal control mode, and the feedback loop filter com manded OHT. No Iunax seismic signals have been observed during the limited reai time support for the Apollo 14 station.

The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded on. The experiment high voltage power supplies are to remain on continuously during all subsequent lunar day periods per the agreed operational procedure. Intermittent positive engineering data interruptions in one section of the analog-to-digital filter is having no adverse effect on the scientific outputs of the experiments.

to

 1432 . ment check) with all science and engineering data nominal. On 9 Janvary, the CPIEE will be commanded to standby OFF for a short cocling period (all heaters OFF) and then to operate select to monitor the 12th lunar sunset at the Apollo 14 ALSEP site. beginning and standby at the end of each regularly scheduled support period.

Passive seismic
experiment

Active seismic

experimert

Suprathermai ion detector/cold cathode gauge experiment

Charged particle Iunar environmental experiment

Status as of 1700 G.m.t., 6 January, was as follows:
APOLIO 12 ATSED
11.742
1330
70.6 W

14 January 1972
G.m.t.: I400

Apollo 15 AISEP
The Apollo 15 Iunar science station is functioning as planned with the followm ing exceptions, as all the experiments and central station components continue to experience a negative temperature excursion in the lunar night environmert. Sunset at the Hadley Rille site occurred on 8 January.

The signal strength from transmittex "A", as reported by the network tracking stations, has varied over the past week between -138.5 dbm and -135.0 dbm . The operational procedure of eliminating the data subsystems' 18-hour timer outputs by uplinking the timer's reset command, octal 150, twice daily was re-initiated on 9 January, and will remain in effect throughout I unar night.

On 6 January, an unexpected functional change occurred on this ALSEP. The passive seismometer responded to a spurious functional change at $2235 \mathrm{G} . \mathrm{m} . t$. The supporting MSFN station Canarvon, Australia, observed a comnand verification word of octal 063 (passive seismic experiment Long period gain change in the " x " and " y " axis from 0 db to -10 db). The experiment was commanded back to the 0 do range during Phase II support at 1825 G.m.t., on 7 January. The passive seismic experiment's science data appears to be normal as determined from the brief periods of phase II operations in mission control. The pattern of noise sensed during the terminator crossing by the passive seismometer experiment at the Apollo 15 site is similar to that observed during previous operations of the seismic instrument. The operation of the experiment is as planned; thermal control mode is auto ON; sensor's z-axis drive motor commanded OFF; uncage circuitry configured to the OT state to deliver maximum heat into the sensor assembly; and, the feedback loop filter commanded our in order to match seismic response at the three ALSEP stations in operation.

The Iunar surface magnetometer experiment's sensors are presentiy operating in the 50 gamma range, indicating the moon's passage through the free-streaming solar wind region. In accordance with the instrument's revised operations schedule, the experiment was commanded to the 50 gamma range at 1235 G.m.t., 10 January. Currently the experiment has executed 280 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not having responded to a flip cal command since october 29 . 1971. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Investigation of the magnetomer's anomalous y axis sensor head operation is continuing by the principal investigator.

The solax wind spectrometer was commanded to the high-gain (extended range) mode at 1516 G.m.t., 12 January. The principal investigator has indicated that the cup modulation voltages in proton energy levels 13 and 14 are identical with those in level 12, and the voltages in all other levels are correct. The problem is due to a temperature induced intermittent open circuit in either the test connector or in the cable between it and the electronics module. The principal investigator concludes that the anomoly is not

Voltage dependent and prefers to have both the Apollo 12 and Apollo 15 solar wind spectrometer instruments in the high-gain mode.

The suprathermal ion detector and cold cathode gauge experiments continues operating per the agreed-to schedule, the full automatic stepping sequence with the Channeltron high voltages commanded ON.

The heat flow experiment continues to return valid temperature measurements from all sensors in the drill holes, and on the surface. The present temperature of probe 1 at the bottom of the lowest probe section is $252.9^{\circ} \mathrm{K}\left(-4.2^{\circ} \mathrm{F}\right)$, with probe 2 indicating a temperature of $250.5^{\circ} \mathrm{K}\left(-8.5^{\circ} \mathrm{F}\right)$ at its Iowermost point. The instrument's cable thermocouples on the lunar surface indicatee a temperature of approximately $182.2^{\circ} \mathrm{K}\left(-295.9^{\circ} \mathrm{F}\right)$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.
GFSIV +T OTOdV
Operational status from 8 January 1972 , 1300 G.m.t., to 14 January 1972,1300 G.m.t. Sunset of the leth lunar day at the Apollo 14 Ianding site, occurred January 9 ; power output of the radioisotope souree is unvarying; and, transmitter "A" signal strength was reported as $-138.3 \pm 1.3 \mathrm{dbm}$. The centrai station's DSs -1 heater (10 watts) was commanded ON at 2335 G.m.t. 9 January, when the average thermal plate temperature indicated 51.2 F. Operation is in the auto on thermal control mode, and the feedback loop filter commanded OUT. No lunar seismic signals have been observed during the limited real time support for the Apollo I4 station. Currently in standby. On 7 January, experiment commanded on at 1639 G.m.t. and to calibration pulses were sent during the listening mode operation. High bit rate terminated at $1732 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to standby at $1739 \mathrm{G} . \mathrm{m} . t$. Next Istening mode operation is scheduled for 14 January. Also. plans are presently being fommlated for a special 6-hour high bit rate listening mode operation which will occur on 22 January, around the moon's next perigee. The experiments are operating in the full automatio stepping sequence with the
Chaneltron high voltages commanded on. Intermittent positive engineering data
interuptions in one section of the analog-tomigital filter is having no adverse
effect on the scientific outputs of the experiment. The experiment is presently in standby. During all phase II support periods this past week (9-14 January), the experiment was or will be commanded to operate select and the instrument heater commanded OFF as per the revised operations plan. Analyzer A Channeltron high voltage ($A C-O 3$) remained fairly constant at the 2600 VDC level. Analyzer B Channeltron high voltage remained below nominal levels. The instrument has been commanded to standby at the termination of each scheduled real time suppont period. Science data from Analyzer A has been valid. This operational procedure will continue during the remainder of lunar night, 20-24 January, per the agreed to operations plan. पот7875 T8xawan

Passive seismic experiment Active seismic

Suprathermal ion

 detector/cold cathode gauge Charged particie Iunar enviromental experimentApol1o 12 ALSEP

APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT

21 January 1972
G.m.t.: 1300

Apollo 15 AT.SEP
The Apollo 15 lunar science station continues to function. All the experiments and central station component temperatures have reached thermal equilibrium in the lunar night environment.

A steady output of 72.9 watts from the RTG is being received by the experiments package. The signal strength from the AISEP transmitter "A", as reported from the MSFN tracking stations, was $-136.8 \pm \frac{1}{9} .3 \mathrm{dbm}$. The average thermal plate temperature is stabilized at -4.1 F. The operational procedure of eliminating the data subsystem's l8-hour timer outputs during lunar night is in effect.

The passive seismometer is operating, as planned in the auto on thermal control mode, and feedback loop filter commanded OUP. The seismometer's arm/fire circuit is being maintained in the out of tolerance state by resetting the timer daily. This procedure adds an additional 0.1 watts of power to the sensor unit's thermal control system for lunar night operations.

The lunar surface magnetometer's science and housekeeping data outputs disclose that the moon is in the free-streaming solar wind region, and that the instrument is operating as scheduled in the 50 gamma range. The instrument's Y-axis sensor has continued to output valid science data since returning December 5. The Y-axis sensor head remains fixed at a 180 degree position, not having responded to a flip cal command since October 29. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 282 flip calibration sequences since activation.

The solar wind spectrometer continues to record plasma data in the extended range mode, having operated in this mode since 12 January.

The suprathermal ion detector and cold cathode gauge experiments continues operating per the agreed-to schedule, the full automatic stepping sequence with the Channeltron high voltages commanded ON.

The heat flow experiment continues to return valid temperature measurements from all sensors in the drill holes, and on the surface. The present temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}(-4.0 \mathrm{~F})$, with probe 2 indicating a temperature of $250.5^{\circ} \mathrm{K}$ $\left(-8.5^{\circ}\right.$ F) at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $84.6^{\circ} \mathrm{K}$ (-307.1 $\left.{ }^{\circ} \mathrm{F}\right)$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.
Apol1o 14 ALSEP

Central station	DSS-I heater (10 watt) is ON; power output of the RTG is 71.5 watts; and transmitter "A" signal strength was reported as varying between -135.5 dbm and -139.3 dbm. Iunar midnight occurred on 17 January.
Passive seismic experiment	Operation is in the auto on thermal control mode, and the feedback loop filter commanded OUT. No lunar seismic signals have been observed duxing the limited real time support for the Apollo 14 station.
Active seismic experiment	Currently in standby. On 14 January, experiment commanded oN at 1552 G.m.t., and to high bit rate ON at $1603 \mathrm{G} . \mathrm{m} . t$. , for 30 minute listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erractic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1633 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to standby at 1638 G.m.t. A special 6 -hour high bit rate listening mode operation is planned on 22 January, around the moon's next perigee.
Suprathermal ion detector/cold cathode gauge experiment	The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions in one section of the analog-to-digital filter is having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar environmental experiment```	The experiment is presently in standby. The experiment was commanded to operate select and the instrument heater commanded OFF, as per the revised operations plan, on 14 January. Channeltron high voltage (AC-03) remained fairly constant at the 2600 VDC level. Analyzer $B$ Channeltron high voltage remained below nominal levels. The instrument was commanded to standby later that day at the direction of mission control. Science data from Analyzer A were valid. This operational procedure was resumed. yesterday, 20 January, per the agreed to operations plan and will continue until lunar sunrise (24 January).

Apol10 12 ALSEP


Central station	Lunar midnight occurred 17 January; RTG power output is constant and transmitter "B" signal strength was reported at $-137.8 \pm 1.8 \mathrm{dbm}$. DSS -1 (10 watt) heater is ON.
Passive seismic experiment	Seismometer operation is as planned; auto thermal control mode; feedback loop filter commanded OUT; and the $Z$ axis drive motor ON. No lunar signals have been observed during the limited real time support for the Apollo 12 station.
Lunar surface magnetometer experiment	Scientific and engineering data outputs have been invalid since 10 January. The instrument's digital filter was commanded OUI 14 January, Static data are characteristic of the Apollo 12 instrument's Iunar night operation.
Solar wind spectrometer experiment	Operation is in the extended range mode. The instrument continues to display intermittent outputs in the two highest energy steps.
Suprathermal ion detector experiment	The experiment is operating in the full automatic stepping sequence with its Channeltron high voltage commanded ON.


Status as of 2200 G.m.t., 19 January, was as follows:



DSS-1 ON (1Ow)
CPIEFE \& ASE Standby

APOLLO 12 ALSEP

11920
$294^{\circ}$
71.0 w
(MOT) NO
A11 on




APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
28 January 1972
G.m.t.: 1300

Apollo 15 ALSEP
The Apollo 15 lunar science station is functioning as planned with the following exceptions, as all the experiments and central station component continue to experience a positive temperature excursion; sunrise at Hadley Rille having occurred on 23 January.

A steady output of 73.9 watts from the $R T G$ is being received by the experiments package. The signal strength from the ALSEP transmitter "A", as reported from the MSFN tracking stations, was $-137.3 \pm 3.3 \mathrm{dbm}$ The average thermal plate temperature is presently $106.2^{\circ} \mathrm{F}$ and increasing at an approximate average rate of 0.3 F per hour.

On 26 January at 2025 G.m.t. the Madrid. Spain ground station observed a command verification word in the package's downlink indicating a possible spurious command execution of octal 056, heat flow experiment standby power. This unexpected functional change was confirmed by a change in status of parameter $A B-05$ (experiments standby status). The experiment was returned to operate select by mission control at 2326 G.m.t. that day. No engineering parameters were out of tolerance as a result of the spurious change and science data were not adversely affected.

The passive seismic experiment is operating, as planned, in the auto thermal control mode and feedback loop filter commanded OUT. During terminator passage, the instrument sensed signals of various amplitudes, characteristic of shroud movement from the optical terminator's thermal transients. No lunar seismic signals have been observed during limited real time support for the Apollo 15 stations.

The magnetometer's sensors are currently in the 100 gamma range, as the moon passes through the earth's magnetosheath. The instrument's $Y$-axis sensor continues to output valid science data. The $Y$-axis sensor head remains fixed in the 180 degree position. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 294 flip calibration sequences since activation.

The solar wind spectrometer continues to record plasma data in the extended range mode.

The suprathermal ion detector and cold cathode gauge experiments continues operating per the agreed-to schedule, in the full automatic stepping sequence with the Channeltron high voltages commanded onv. On 24 January the instrument's command register contained a command load of octals 105 and 107 (low energy curved plate analyzer high voltage OFF) at the beginning of real-time support. No operational mode changes had occurred. The command register was cleared by command without incident.

28 January 1972
G.m.t.: 1300

The heat flow experiment continues to return valid temperature measurements from all sensors in the drill holes, and on the surface. The present temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$, with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $360.5^{\circ} \mathrm{K}\left(189.5^{\circ} \mathrm{F}\right)$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.
Apol1o 14 ALSEP

ApO110 12 AISEP


Central station	Lunar sunrise occurred 25 January; RTG power output is constant and transmitter "B" signal strength was reported at $-138.8 \pm 1.8 \mathrm{dbm}$. DSS-1 (10 watt) heater is OFF.
Passive seismic experiment	Seismometer operation is as planned; auto thermal control mode; feedback loop filter commanded OUT. The $Z$ axis drive motor was commanded OFF at 1815 G.m.t., 25 January when the instrument's internal electronics temperature (DLO7) reached $126.2^{\circ} \mathrm{F}$. No Iunar signals have been observed during the limited real time support for the Apollo 12 station.
Lunar surface magnetometer experiment	Scientific and engineering data outputs have been invalid since 10 January. Static data are characteristic of the Apollo 12 instrument's lunar night operation. The instrument's digital filoter remains OUP. The magnetometer's $Z$ axis sensor head fajled to flip to the $0^{\circ}$ position during an instrument flip calibration sequence earlier this month. This anomaly had been observed previously but subsequent flip calibration commands had succeeded in unlocking the head from the $180^{\circ}$ position. It now appears that the $Z$ head may be permanently locked, similar to the $Y$ axis sensor head, in the $180^{\circ}$ position. The $x$ axis sensor head is returned to the $180^{\circ}$ position by a second flip calibration command after the initial sequence in order to maintain all three heads in $180^{\circ}$ synchronization.
```Solar wind spectrometer experiment```	Operation is in the extended range mode. The instrument continues to display intermittent outputs in the two highest energy steps.
Suprathermal ion detector experiment	The experiment is presently OFF. The experiment is commanded to operate select in the full automatic stepping sequence with its Channeltron high voltage oN during each scheduled support period throughout lunar day.

Status as of 2100 G.m.t., 27 January, was as follows:

81.1
126.4
Inval
$51.9^{\circ} \mathrm{C}$
OFF
Off

N / A
N / A
N / A

APOILO LUNAR SURFACE EXPERIMENIS PACKAGE STATUS REPORT
30 January 1972
G.m.t.: 1400

The Iunar laboratory emplaced on the lunar surface by the crew of Apollo 12 was the first of the three presently operating AISEP's to experience the extreme temperature transients resulting from the 30 January total eclipse of the moon. The eclipse reached the other two ALSEP's some twelve minutes later. Today's event was the fifth such eclipse, partial or total, experienced by the Apollo 12 station. Based on experience during the previous eclipses, no unusual scientific data resulting from the total eclipse was noted in real time analyses.

Apollo 15 ALSEP

The eclipse seen by the Apollo 15 ALSEP resulted in a considerable thermal shock to the equipment. During the 4.8 hours of the eclipse, the surm shield temperature excursion was 289.7 degrees F, and then returned to normal. The temperature controlled electronics of the data subsystem experienced a 36.6 degree F temperature transient in this same time frame. An additional effect of this thermal shock was a temporary increase of 4.1 watts in RTG power output.

The heat flow experiment was commanded from its full operational sequence mode to the experiment's thermocouple only mode to allow more accurate and higher density measurements of the lunar surface brightness temperature. In addition during the eclipse umbra experiment gradient and ring bridge survey measurements were made to be used for a detailed analysis of the downward radiation of heat from the upper parts of the bore stems to the heat flow probes. The experiment's thermocouple temperature, TCl2, decreased from a temperature of $355^{\circ} \mathrm{K}\left(179.6^{\circ} \mathrm{F}\right)$ to a minimum value of $142^{\circ} \mathrm{K}$ $\left(-203.8^{\circ} \mathrm{F}\right)$, or an equivalent lunar surface temperature of approximately $175^{\circ} \mathrm{K}\left(-144.4^{\circ} \mathrm{F}\right)$ 。

The other four experiments, the passive seismometer, the lunar surface magnetometer, the solar wind spectrometer, and the suprathermal ion detector and cold cathode gauge indicated no unexpected science output resulting from the total eclipse. The suprathermal ion detector and cold cathode gauge experiments Channeltron high voltages remained ON during the eclipse, with the suprathermal ion detector experiment sensing flux data in the one and two Kv range of the experiment's total ion detector at various intervals of the eclipse.

Apol10 14 ALSEP
The charged particle lunar environment experiment was commanded to operate select during various phases of the eclipse, resulting in a total operate time of 98 minutes. Particle flux data were correlated simultaneously by the charged particle lunar environment experiment, the suprathermal ion detector experiments, and two revolutions of the particles and fields subsatellite.
G.m.t.: 1400

AII four Apollo 14 ALSEP experiments operated as expected and within the predicted temperature response bands, having experienced the extreme temperature changes of the Iunar eclipse. The active seismic experiment remained in standby select mode during the eclipse.

Apol10 12 ALSEP
The 12 central station, seismometer, and field particle experiment sensors indicated the extreme temperature changes recorded by the other ALSEP's, and the scientific instruments recorded data during the eclipse. The magnetometer field sensor outputs which have been static since 10 January have not recovered.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

APOLIO LUNAR SURFACE EXPERTMENTS PACKAGE STAYUS REPORT
4 February 1972
G.m.t.: 1300

This report covers the ALSEP's activity and data following the lunar eclipse on 30 January.

Apollo 15 ALSEP

The Apollo 15 lunar science station is functioning as planned with the following exceptions, as all the experiments and central station components continue to experience a negative temperature excursion as lunar night approaches. The station's radioisotope thermoelectric generator is supplying an output of 73.5 watts of power to the experiments package. The signal strength from the station's transmitter, as reported from the MSFN tracking stations, was $136.4 \pm 2.4 \mathrm{dbm}$. On February 3 the effects of the 153 rd 18-hour timer pulse were correctly verified by the systems telemetry functions, during phase II support, confirming consistent timer pulse execution since initialization of the timer. On 30 January at 063l G.m.t. the Goldstone MSFN tracking station observed a command verification word in the downlink signal, indicating a possible spurious command execution of octal 132, magnetometer filter IN. This unexpected functional change was confirmed during phase II support on 31 January and at 1548 G.m.t. the filter was commanded OUP by mission control.

The passive seismic experiment is operating, as planned in the auto on thermal control mode and feedback loop filter commanded OUT. No lunar seismic signals have been observed during the limited real time support for the Apollo 15 station.

The magnetometer's sensors are currently in the 100 gamma range. On 30 January during phase II support "Y" axis data became invalid coincident with the first raster of the flip calibration sequence. On 31 January the data became valid again coincident with the first raster of the flip calibration sequence, and has remained valid for the rest of this reporting period. The sensor head remains fixed in the 180 degree position. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 310 flip calibration sequences since activation.

The solar wind spectrometer continues to record data in the extended range mode. The previously reported anomalous cup modulation voltages in the protron energy levels 13 and 14 were again noted during this reporting period.

The suprathermal ion detector and cold cathode gauge experiments are currently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ons.

The heat flow experiment continues to acquire subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $252.9^{\circ} \mathrm{K}\left(-4.2^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $340.3^{\circ} \mathrm{K}\left(153.1^{\circ} \mathrm{F}\right)$.
Apolilo 12 ALSEP
Operational status from 30 Jenuary 1972, 1400 G.m.t., to 4 February 1972 , 1300 G.m.t.
(
Lunar noon occurred on February 1; RTG power output is constant; and, transmitter "B" signal strength was reported at $139.8 \pm 3.2 \mathrm{dbm}$. The instrument's thermal control mode is auto ON. No lunar seismic signals have
been observed during the limited real time support for the Apollo le station. On
February 2 , it was observed at the beginning of real time support that the following
unexpect functional changes had occurred within the instrument The long period
X and Y gain was at - 20 db and the short period calibration status was ON. These
changes occurred on February 2 at ol 32 G.m. No command verification words relat-
ing to these changes were observed in the telemery downink from the package.
Mission control subsequently comanded the X and Y gain back to o db (normal) and
the short period calibration ofF. There is no explanation at this time as to the
precise cause of this occurrence. Scientific and engineering data outputs have been invalid since January 10 . Fxperiment operation similar to this has been previously observed during past lunations. Continuing to double filp cal the experiment during scheduled support periods. The Z and Y axis sensor heads have not responded to flip cal commands during this reporting period. The instrument's Channeltron high voltage has been commanded on in the full automatic The in ment experienced a XIO mode change during phase II operations on February 1,2 and The internal temperatures were $56.5 \mathrm{C}(133.7 \mathrm{~F})$ and $55.6^{\circ} \mathrm{C}(132.1 \mathrm{~F})$ respectively, at the time of the unexpected mode changes. After each occurrence the instrument was commanded OFF.

Central station
Passive seismic
experiment
Lunar surface
magnetometer
experiment
Suprathermal ion
detector
experiment

11 February 1972
G.m.t.: 1300

Apolilo 15 ALSEP
The Apollo 15 lunar science station continues to function. Experiments and central station component temperatures have reached thermal equilibrium in the lunar night enviroment; sunset at Hadey Rille having occurred on 6 February.

A steady output of 72.9 watts from the RTG is being received by the experiments package. The signal strength from the AISEP transmitter "A", as reported from the MSFN tracking stations, was $-137.2 \pm 2.2 \mathrm{dbm}$. The average thermal plate temperature is stabilized at $-2.8^{\circ} \mathrm{F}$. The operational procedure of eliminating the data subsystem's I8-hour timer outputs during lunar night is in effect.

The passive seismometer is operating, as planned in the auto ON thermal control mode, and feedback loop filter commanded OUT. The seismometer's arm/fire circuit is being maintained in the out of tolerance state by resetting the timer daily. This procedure adds an additional 0.1 watts of power to the sensor unit's thermal control system for lunar night operations.

The Iunar surface magnetometer's science and housekeeping data outputs disclose that the moon is in the free-streaming solar wind region, and that the instrument is operating as scheduled in the 50 gamma range. The instrument's Y -axis sensor has continued to output valid science data since 37 January. The Y-axis sensor head remains fixed in the 180 degree position. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 324 flip calibration sequences since activation.

The solar wind spectrometer continues to record data in the extended range mode. The previously reported anomalous cup modulation voltages in the protron energy levels 13 and 14 were again noted during this xeporting period.

The suprathermal ion detector and cold cathode gauge experiments are curxently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON.

The heat flow experiment continues to acquire subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the Iunar surface indicate a temperature of approximately $91.6^{\circ} \mathrm{K}\left(-294.5^{\circ} \mathrm{F}\right)$. A heat flow mode 2 experiment at the probe 1 heater location HI2 will be initiated on 14 February, for a 36 hour period.

It is requested that any organization having comments, questions, or suggestions concerning this report contract R. Miley, Science Requirements and Operations Branch, telephone 483-5067.
Apol10 14 ALSEP

Operational Central station	from 4 February 1972, 1300 G.m.t., to 11 February 1972,1300 G.m.t. DSS-I heater (10 watt) is ON; power output of the RTG is 71.9 watts; and transmitter "A" signal strength was reported as varying between -135.5 dbm and -140.0 dbm . Lunar sunset occurred on 8 February.
Passive seismic experiment	Operation is in the auto ON thermal control mode, and the feedback loop filter commanded OUT. On 9 February the passive seismometer unexpectedly implemented a feedback loop filter IIV mode change. IVo command verification word was received to indicate this was a function of a spurious command. The filter was removed by command from mission control with no resultant problems. No lunar seismic signals have been observed during the Iimited real time support for the Apollo 14 station.
Active seismic experiment	Currently in standby. On 4 February, experiment commanded ON at 1431 G.m.t., and to high bit rate ON at $1445 \mathrm{G} . \mathrm{m} . t$. . for 30 minute listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 output was erratic. One small seismic event of very short duration was observed. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 1515 G.m.t., and the instrument commanded to standby at 1517 G.m.t. Next high bit rate listening mode operation is planned for today, 11 February.
Suprathermal ion detector/cold. cathode gauge experiment	The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar environmental experiment```	The experiment was commanded to operate select and the instrument heater commanded ofF, as per the revised operations plan, on 9 February. Channeltron high voltage (AC-O3) remained above the 2500 VDC level. Analyzer $B$ Chancltron high voltage remained below nominal levels. It was planned to leave the instrument in operate select throughout lunar night. However, after 21 hours of continuous operation the instrument began to exhibit erroneous science data in analyzer $A$. As a result the experiment was commanded to standby for one hour and then back to operate select. The science data appeared to be valid. After 30 minutes of operation the instrument was again commanded to standby prior to suspension of real time support. At no time did the Channeltron high voltage (ACO3) show signs of serious degradation during the operational periods. At the resumption of support the next morning, the experiment was again placed in operate select and continues in that mode at this time. Further analysis of science data validity is planned early today.

Apollo 12 ALSEP





Status as of 1700 G.m.t., 10 February, was as follows:

 Off Scale High $N / A$
$N / A$

# APOLIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT 

18 February 1972
G.m.t.: 1300

Apollo 15 ALSEP
The Apollo 15 Iunar science station continues to function. All the experiments and central station component temperatures have reached thermal equilibrium in the lunar night environment; the seventh sunrise for the Apollo 15 ATSEP will oceur 21 February.

A steady output of 72.9 watts from the RTG is being received by the experiments package. The signal strength from the ALSEP transmitter "A" as reported from the MSFN tracking stations, was $-137.3 \pm 7.8 \mathrm{dbm}$. The average thermal plate temperature is stabilized at -4.1 F. The operational procedure of eliminating the data subsystem's 18 -hour timer outputs during lunar night is in effect.

The passive seismometer is operating, as planned in the auto on thermal control mode, and feedback loop filter commanded our. The seismometer's arm/fire circuit is being maintained in the out of tolerance state by resetting the timer daily. This procedure adds an additional 0.1 watts of power to the sensor unit's thermal control system for lunar night operations.

The luriar surface magnetometer's science and housekeeping data outputs disclose that the moon is in the free-streaming solar wind region, and that the instrument is operating as scheduled in the 50 gamma range. The instrument's $Y$-axis sensor has continued to output valid science data since returning 31 January. The $Y$-axis sensor head remains fixed at a 180 degree position, not having responded to a flip cal command since October 29. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 334 flip calibration sequences since activation.

The solar wind spectrometer continues to record data in the extended range mode. The previously reported anomalous cup modulation voltages in the protron energy levels 13 and 14 were again noted during this reporting period.

The suprathermal ion detector and cold cathode gauge experinents are currently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON.

The heat flow experiment continues to acquire subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $91.6^{\circ} \mathrm{K}\left(-294.5^{\circ} \mathrm{F}\right)$. A heat flow mode 2 experiment at the probe 1 heater location 112 was conducted on 14 February, for a 36 -hour period.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

$$
\text { Apollo } 14 \text { ATSEP }
$$


Apolio 12 ALSEP

Central station	Lunar midnight occurred 16 February; RTG power output is constant and transmitter "B" signal strength was reported at $-138.7 \pm 1.3 \mathrm{dbm}$. DSS-1 (10 watt) heater is ON.
Passive seismic experiment	Seismometer operation is as planned; auto thermal control mode; feedback loop filter commanded OUT; and the $Z$ axis drive motor ON. No Iunar signals have been observed during the limited real time support for the Apollo 12 station. On 11 February, 2202 G.m.t. the passive seismometer unexpectedly implemented a manual leveling mode change. Since the $Z$ axis drive motor is commanded ON, for thermal control during Iunar night, the $Z$ axis motor drove the $Z$ tidal data off-scale. The leveling mode was commanded back to the auto mode at 2243 G.m.t. and the $Z$ tidal data recentered with no resultant problems. No command verification word was received to indicate this was a function of a spurious command.
Iunar surface magnetometer experiment	Scientific and ergineering data outputs have been invalid since 8 February. The instrument's digital filter remains IN. Static data are characteristic of the Apollo 12 instrument's Iunar night operation.
Solar wind spectrometer experiment	Operation is in the extended range mode.
Suprathermal ion detector experiment	The experiment is operating in the full automatic stepping sequence with its Channeltron high voltage commanded ON.



- spotiod quoddns quStu Jeunt patnpayos sutunp NO HiHTdN*


25 February 1972
G.m.t.: 1300

Apol10 15 ALSEP
The Apollo 15 lunar ALSEP station, continues transmitting science data with the following exceptions, as all the experiments and central station components continue to experience a positive temperature excursion; sunrise at Hadley Rille occurred on 21 February.

A steady output of 73.5 watts from the RTG is being received by the experiments package. The signal strength from the ALSEP transmitter "A", as reported from the MSFI tracking stations. was $-137.0 \pm 1 \mathrm{dbm}$. The average thermal plate temperature is presently $89.7^{\circ} \mathrm{F}$ and increasing at an approximate average rate of 0.6 F per hour.

The passive seismic experiment is operating, in the auto thermal control mode and feedback loop filter commanded our. Duxing terminator passage, the instrument sensed signals of various amplitudes. characteristic of shroud movement from the optical terminator's thermal transients. No lunar seismic signals have been observed during limited real time support. for the Apollo 15 stations.

The magnetometer's sensors are currently in the 100 gamma range, as the moon passes through the earth's magnetosheath. The instrument's Y-axis sensor continues to output valid science data. The $Y$-axis sensor head remains fixed in the 180 degree position. The $X$-axis and $Z-a x i s$ sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 342 flip calibration sequences since activation.

The solar wind spectrometer continues to record plasma data in the extended range mode.

The suprathermal ion detector and cold cathode gauge experiments continues operating per the agreed-to schedule, in the full automatic stepping sequence with the Channeltron high voltages commanded ON. No operational mode changes have ocourred during this reporting period.

The heat flow instrument continues to sense subsurface and surface tempexature data from all probe sensors. Presently the instruments cable thermom couples indicate a temperature of approximately $333.4 \mathrm{~K}\left(140^{\circ} \mathrm{F}\right)$ with the
temperature of probe 1 at the bottom of the lowest probe section as
$252.9^{\circ} \mathrm{K}\left(-4.1^{\circ} \mathrm{F}\right)$, and probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\mathrm{O}} \mathrm{F}\right)$ at its lowermost point.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

Central station	Lunar sunrise for the $28 t h$ Iunation occurred 23 February. DSS-1 heater (10 watt) was commanded OFF at O6l7 G.m.t., 4 February, at an average thermal plate temperature of $52.3^{\circ} \mathrm{F}$. Power output of the radioisotope power source is unvarying, and transmitter "B" signal strength was reported as $-138 \pm 1 \mathrm{dbm}$.
Passive seismic experiment	Seismometer operation is as planned; auto thermal control mode; feedback loop filter commanded OUI, The $Z$ axis arive motor was commanded OFF at 0458 G.m.t., 24 February at an instrument temperature of 125.9 F . No Iunar signals have been observed during the Iimited real time support for the Apollo 12 station.
Irunar surface magnetometer experiment	Scientific and engineering data outputs have been invalid since 8 February. The instrument's digital filter is IN. Static data are characteristic of the Apollo 12 instrument's lunar night operation.
Solar wind spectrometer experiment	Operation is in the extended range mode.
Suprathermal ion   detector   experiment	The experiment is operating in the full automatio stepping sequence with its Channeltron high voltage commanded ON.

APOLIO 14 AISEP
Lunar sunrise for the 13 th Iunation occurred 23 February. DSS-1 heater (10 watt) was 650 a of $65.8^{\circ} \mathrm{F}$. Power output of the RTG is 72.9 watts; and, transmitter "A" signal strength was reported as varying between -140 dbm and -142.5 dbm .
Operation is in the auto thermal control mode, feedback loop filter OUP. No lunar
seismic signals have been observed during the limited real time support for the Apollo 14 station.
 because of the revised operations plan limiting ASE turn ON when the grenade launch assembly temperature (As-03) is $-60(-76 F)$ or below. During ensuing lunar nights
 operations plan. The next listening mode is scheduled for today.
The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions in one section of the analog-to-digital filter continue, having no adverse effect on the scientific outputs of the experiments.
The experiment is presently in standby. The experiment was commanded to operate select and the instrument heater commanded. OFF, as per the revised operations plan, during each scheduled support period. Channeltron high voltage (AC-O3) has remained fairly constant at the 2600 VDC level. Analyzer B Channeltron high voltage remained below nominal levels. This operational procedure continued until 22 February, one day prior to lunar sunrise, when the experiment was commanded to operate select and continued in this mode until 24 February when mission control commanded it to standby.


3 March 1972
G.m.t.: 1400

Apollo 15 ALSEP
The Apollo 15 Iunar science station continues to transmit science and engineering data to Earth. Central station operation is nominal and experiments performance is as planned with the exceptions noted in this report. The Hadley Rille site passed through lunar noon 29 February.

A steady output of 73.5 watts from the RTG is being received by the experiments package. Signal strength from the station's A transmitter, as reported by the MSEN tracking stations, was between -135.5 dbm and -138.0 dmm . Average thermal plate temperature is presently ll5.4. F .

The passive seismic experiment is operating in the auto thermal control mode with feedback loop filter commanded OUT. No Iunar seismic signals have been observed during the limited real time support periods for the Apollo 15 station.

The magnetometer's sensors remain in the 100 gamma range. The instrument's Y-axis sensor output dropped off scale low during a flip calibration sequence on 29 February. This is consistent with observed performance during past lunar days. The sensor's output returned on scale 2 March. The Y-axis sensor head remains fixed in the 180 degree position. The $X$-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head syachronization.

The solar wind spectrometer continues to record plasma data in the extended range mode.

The suprathermal ion detector and cold cathode gauge experiments continue operating per the agreed-to schedule. On 26 February at 1857 G.m.t., the Madrid, Spain ground station observed a command verification word (octal 053) in the package's downlink, indicating a possible unexpected functional change placing the instrument in standby mode. This change was confirmed when parameter ABO5 (experiments standby status), also monitored by the remote sites, indicated the experiment was in standby. Mission control was not notified by the Madrid station of this change to standby power, since current Network Operations Procedures (NOP) require notification to MCC of this change in ABO5 only during lunar night. The experiment remained in standby for approximately 18 hours until the next scheduled real time support period on 27 February, when the instrument was commanded to operate select at 1252 G.m.t. It has been requested that the NOP be amended to require notification to MCC on a continuous basis in the event of a change in either of parameters ABO 4 or ABO 5 . The instruments' high voltages were commanded OFF on 28 February to preclude mode changes when the internal temperature is above $85^{\circ} \mathrm{C}$ $\left(176^{\circ} \mathrm{F}\right)$. The high voltages will be commanded back on 3 March.

3 March 1972
G.m.t.: 1400

APOIIO 15 ALSEP
The Apollo 15 lunar science station continues to transmit science and engineering data to Earth. Central station operation is nominal and experiments performance is as planned with the exceptions noted in this report. The Hadley Rille site passed through lunar noon 29 February.

A steady output of 73.5 watts from the RTG is being received by the experiments package. Signal strength from the station's A transmitter, as reported by the MSFN tracking stations, was between -135.5 dbm and -138.0 dbm . Average thermal plate temperature is presently $115.4 \mathrm{~F}^{\circ}$.

The passive seismic experiment is operating in the auto thermal control mode with feedback loop filter commanded OUT. No Lunar seismic signals have been observed during the limited real time support periods for the Apollo 15 station.

The magnetometer's sensors remain in the 100 gama range. The instrument's Y-axis sensor output dropped off scale low during a flip calibration sequence on 29 February. This is consistent with observed performance during past lunar days. The sensor's output returned on scale 2 March. The $\mathbb{Y}$-axis sensor head remains fixed in the 180 degree position. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

The solar wind spectrometer continues to record plasma data in the extended range mode.

The suprathermal ion detector and cold cathode gauge experiments continue operating per the agreed-to schedule. On 26 February at 1857 G.m.t., the Madrid, Spain ground station observed a command verification word (octal 053) in the package's downlink, indicating a possible unexpected. functional change placing the instrument in standby mode. This change was confirmed when parameter ABO5 (experiments standby status), also monitored by the remote sites, indicated the experiment was in standby. Mission control was not notified by the Madrid station of this change to standby power, since current Network Operations Procedures (NOP) require notification to MCC of this change in ABO5 only duxing lunar night. The experiment remained in standby for approximately 18 hours until the next scheduled real time support period on 27 February, when the instrument was commanded to operate select at 1252 G.m.t. It has been requested that the NOP be amended to require notification to MCC on a continuous basis in the event of a change in either of parameters AB04 or AB05. The instruments' high voltages were commanded OFF on 28 February to preclude mode changes when the internal temperature is above $85^{\circ} \mathrm{C}$ $\left(176^{\circ} F\right)$. The high voltages will be commanded back on 3 March.

3 Maxch 1972
c.m.t.: 1400

The heat flow experiment continues to provide subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $360.3^{\circ} \mathrm{K}\left(189.1^{\circ} \mathrm{F}\right)$. A heat flow mode 2 experiment at the probe 1 heater location Hll will be requested to be conducted on 13 March for a 48 hour period.

It is requested that any organization having comments, questions, $x$. suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

## Apollo 14 ALSEP

Operat	tus from 25 February 1972, 1300 G.m.t., to 3 March $1972,1400 \mathrm{G} . \mathrm{m} . t$.
Central station	Lunar noon of the I4th Iunation occurred I March. Power output of the RTG is 7I. 0 watts; and transmitter A signal strength was reported as varying between -142.0 dbm and -137.5 dbm .
Passive seismic experiment	Operation is in the forced OFF thermal control mode, feedback loop filter OUN. No Iunar seismic signals have been observed during the limited real time support for the Apollo 14 station.
Active seismic experiment	Currently in standby. On 25 February, experiment commanded on at $1615 \mathrm{G} . \mathrm{m} . \mathrm{t}$., and to high bit rate ON at 1635 G.m.t., for 30 minute listening mode operation. Data output of geophone 1 and 2 appeared normal; geophone 3 data was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. A large seismic arrival was observed at 1702 G.m.t. Approximate event duration was 3 minutes. Maximum amplitudes in all three geophone channels attained full-scale for a short duration. High bit rate terminated $7710 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to standby at 1715 G.m.t. Next listening mode operation is scheduled for today, 3 March.

The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded on. Intermittent positive engineering data interruptions in one
section of the analog-tomagital filter continue, having no adverse effect on the
Charged particle Presently in standby. The experiment was commanded to operate select on 27 February for a non-scheduled operational period of short duration in order to obtain photo electron
data during lunar day. These data are necessary as a calibration device for the data totaled 28 minutes. Channeltron high voltage (AC-03) degraded slightly, falling below 2400 VDC near the end of the period. Analyzer B Channeltron high voltage remained below nominal levels.
Apol10 12 ALSEP

Operational status from 25 February 1972, $1300 \mathrm{G} . \mathrm{m} . t .$, to 3 March $1972,1400 \mathrm{G} . \mathrm{m} . t$.	
Central station	Lunar noon for the 29 th lunation occurred 2 March. Power output of the radioisotope power source is unvarying, and transmitter $B$ signal strength was reported at $-139.5 \pm 2.0 \mathrm{dbm}$.
Passive seismic experiment	Operation is in the auto thermal control mode; feedback loop filter commanded OUT, No Iunar seismic signals have been observed during the limited real time support for the Apollo 12 station.
Lunar surface magnetometer experiment	Scientific and engineering data outputs have been invalid since 9 February. The instrument's digital filter is IN.
Solar wind spectrometer experiment	Operation is in the extended range mode.
Suprathermal ion detector experiment	The experiment is presently OFF. The experiment is commanded to operate select in the full automatic stepping sequence with its Channeltron high voltage oN during each scheduled support period throughout lunar day. The instrument experienced spurious internal mode changes to the XIO mode on three successive days: 29 February, 1 March, and 2 March.
Cold cathode gauge experiment	Failure of the high voltage switching transistor has precluded instrument operation since the fourteenth hour of lunar operation.

Status as of 1800 G.m.t., 2 March was as follows:
APOLIO 15 ALSEP


10 March 1972
G.m.t.: 1400

Apol1o 15 ALSEP
This ATSEP has operated 223 days on the lunar surface, having passed through its eighth lunar sunset March 7. Sunrise will occur on 22 March at Hadley Rille. Presently the central station components contimue to experience a negative temperature excursion in the lunar night environment. The signal strength from transmitter "A", as reported by the network tracking stations, over the past week was $-137.3 \pm 1.8 \mathrm{dbm}$. The solid state timer of the central station continues to produce outm put pulses, on schedule, whenever it is not inhibited to satisfy other operational requirements. The timer's output pulses have been inhibited since 9 March.

No unusual science events were observed during the sunset terminator crossing which occurred since the last reporting period. Operation of the passive seismic experiment, heat flow experiment, solar wind speetrometer, suprathemal ion detector and cold cathode gage continue unchanged from the preceding week. The lunar surface magnetometer was reconfigured to its 50 gamma range on 8 March for the remainder. of this lunar night.

An unexpected functional change of the heat flow experiment occurred between the termination of real time operations on 5 March, and the start of phase TT operations the next day, Maxch 6, bringing the total functional changes having occurred in the central station and/or experiments with no commands transmitted to 23. The heat flow experiment's high conductivity mode was corrected by ground command with no further problems.

It is requested that any organization having comments, questions, or suggestions concerming this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.
$A 0 O 11014$ ATSEP

Sunset of the $14 t h$ lunar day at the Apollo 14 landing site, occurred March 9 ; power output
of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported
as - $-138.8 \pm 1.8$ dbm. The central station's DSS-I heater (10 watts) was commanded on at
1150 G.m.t., 9 March, when the average thermal plate temperature indicated 40.8 F . Operation is in the auto oN thermal control mode, and the feedback loop filter commanded OUT. No lunar seismic signals have been observed during the limited real time support for 1217 G.m.t. 6 March, placing the instrument in standby. The supporting MSFN station observed a command verification word of octal 037. The experiment was commanded back to operate select, without problem, at $1435 \mathrm{G} . \mathrm{m} . t$. , March 6 . Another functional change occurred at $0836 \mathrm{G} . \mathrm{m} . t$. , on 9 March, placing the instrument from the auto leveling mode to forced leveling mode. The Bermuda tracking station observed a command verification word. The seismometer was commanded back to auto leveling mode at 1149 G.m.t., March 9 , without any resultant problem.

> Currently in standby. On 3 March, experiment commanded ON at 1519 G.m.t., and to high bit rate ON at $1545 \mathrm{G} . \mathrm{m} . t .$, for 30 minute listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1615 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, and the instrument commanded to standby at $1616 \mathrm{G} . \mathrm{m} . t$. The next high bit rate listening mode operation is planned for today.
The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. Intexmittent positive engineering data interruptions in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
The experiment was commanded to operate select on 6 and 7 March for scheduled operational periods of short duration in order to obtain photo electron data during lunar day. These data are used to calibrate the data obtained by the instrument over its entire operational range. Experiment on time totaled 126 minutes. Channeltron high voltage (AC-03) degraded
Slightly, falling below 2400 VCD near the end of each period. Analyzer B Channeltron
Slightly, falling below 2400 VCD near the end of each period. Analyzer B Channeltron

## Central station

## Passive seismic

## experiment

Active seismic
experiment

Suprathermal ion detector/cold cathode gauge experiment

Charged particle Iunar environmental experiment
icle $\qquad$

## $34006 \cdot m \cdot t$

72,1400 G.m.t., -47 7 eप7 pe
been
$\qquad$
4
40
4

A high $\forall$ xoz Analy Iunar night operationa 14 hours per a revised operational procedure the experiment was commanded to operate select on March 9. Experiment ON time totaled 9 hours. Per the operational procedure the experiment was then commanded to standoy. A minimum of 12 hours in standby between operating periods for instrument warm up is required. The experiment will be cycled for the remainder of lunar night in this man
during non-operating periods the instrument will be ammanded to standby.






















17 March 1972
G.m.t.: 1300

## Apollo 15 ALSEP

The Apollo 15 lunar science station continues to transmit science and engineering data to Earth. Central station operation is nominal and experiments performance is as planned with the exceptions noted in this report. Lunar midnight at the Hadley Rille site occurred theoretically on 14 March. Experiments and central station component temperatures are sustaining equilibrium in the lunar night environment.

A steady output of 72.9 watts from the RPG is being received by the experi-ments package. Signal strength from the station's A transmitter, as reported by the MSFN tracking stations, was between -135.0 dbm and -138.0 dbm . The average thermal plate temperature is stabilized at $-5^{\circ} \mathrm{F}$. The operational procedure of eliminating the data subsystem's 18 -hour timer outputs during lunar night is in effect.

The passive seismometer is operating, as planned in the auto on thermal control mode, and feedback loop filter commanded OUT. The seismometer's arm/fire circuit is being maintained in the out of tolerance state by resetting the timer daily. This procedure adds an additional 0.1 watts of power to the sensor unit's thermal control system for lunar night operations.

The lunar surface magnetometer is in the free-streaming solar wind region and operating as scheduled in the 50 gamma range. The instrument's $Y$-axis sensor has remained on scale since 2 March. The $Y$-axis sensor head remains fixed in the 180 degree position. Plip calibration sequences are commanded in pairs, in order to maintain sensor head synchronization.

The solar wind spectrometer continues operation in the extended range mode. The previously reported anomalous cup modulation voltages in proton energy levels 13 and 14 were again noted during this reporting period.

The suprathermal ion detector and cold cathode gauge experiments are currently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON.

The heat flow experiment continues to acquire subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $87.0^{\circ} \mathrm{K}\left(-302.8^{\circ} \mathrm{F}\right)$. A 48 hour heat flow mode 2 experiment at the probe I heater location HII was concluded on 15 March.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.


























24 March 1972
G.m.t.: 1300

Apol10 15 ALSEP
The Apollo 15 lunar science station continues to transmit science and engineering data to Earth. Central station operation is nominal and experiments performance is as planned with the exceptions noted in this report. Lunar sunrise at the Hadley Rille site occurred on 22 March. Experiments and central station component temperatures have continued to rise steadily with the increasing sun elevation.

A steady output of ' 72.9 watts from the RTG is being received by the experiments package. Signal strength from the station's A transmitter, as reported by the MESN tracking stations, was between -135.0 dbm and -138.9 dbm . The average thermal plate temperature is presently 66.5 F .

The passive seismometer is operating, as planned in the auto oN thermal control mode, and feedback loop filter commanded ouT. No Iunar seismic signals have been observed during the limited real time support periods for the Apollo 15 station.

The Iunar surface magnetometer is indicating passage of the moon through the bow shock created as the solar wind passes the Earth's magnetic field. The instrument is now operating in the 100 gamma range. The Y-axis sensor head remains fixed in the 180 degree position. Flip calibration sequences are commanded in pairs, in order to maintain sensor head synchronization.

The solar wind spectrometer continues operation in the extended range mode.
The suprathermal ion detector and cold cathode gauge experiments continue operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON.

The heat flow experiment continues to acquire subsurface and surface temperature data from all probe sensors. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperam ture of approximately $302.0^{\circ} \mathrm{K}(84.1 \mathrm{~F})$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.
ADO110 14 ALSEP

Operational status from 17 March 1972, $1300 \mathrm{G} . \mathrm{m} . t$. , to 24 March 1972. $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.	
Central station	Sunrise of the 15 th Iunation occurred today, 24 March. Power output of the RTG is 71.5 watts and transmitter A signal strength was reported as varying between -139.0 dm and -142.4 dbm. DSS-1 heater (10 watt) was commanded OFF earlier today.
Passive seismic experiment	Operation is in the auto ON thermal control mode, feedback loop filter OUT. No Iunar seismic signals have been observed during the limited real time support for the Apollo 14 station.
Active seismic experiment	Currently in standoy. On 17 March the scheduled "Iistening mode" operation was not conducted because of the revised operations procedure limiting Ast turn on when the grenade launch assembly temperature ( $\mathrm{AS}-03$ ) is $-60^{\circ} \mathrm{C}\left(-76^{\circ} \mathrm{F}\right)$ or below. Next listening mode operation is scheduled for today, 24 March.
Suprathermal ion detector/cold cathode gauge	The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions in one section of the analog-to-digital filter continue, having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar environmental experiment```	Presently in standby. The experiment was commanded to operate select on 17, 21, 22, and 23 March with operational periods scheduled for 24 and 25 March. The Channeltron A voltage remained within the limits of the revised operation plan (SMEAR \#70) as monitored by the MSEN remoted sites. The instrument is commanded to standby at the conclusion of each operational period by the remote site or by mission control.


31 March 1972
G.m.t.: 1300

ApOLIO 15 ALSEP
The Apollo 15 ALSEP, now in its ninth lunar day, is continuing to transmit a steady stream of data to earth. The temperature of all experiments and central station components have stabilized from the effects of passing through Iunar noon, March 29. Central station operation is nominal and experiments performance is as plamed with the exceptions noted in this report.

A steady output of 73.5 watts from the RTG is being received by the experiments package. Signal strength from the station's A transmitter, as report-ed by the MSFN tracking stations, was between -135.0 dbm and -137.5 dbm . Average thermal plate temperature is presentiy $116.4^{\circ} \mathrm{F}$.

The passive seismic experiment is operating in the auto thermal control mode with feedback loop filter commanded OUT. No lunar seismic signals have been observed during the limited real time support periods for the Apollo 15 station.

The magnetometer's sensors remain in the 100 gamma range. The Y-axis sensor head remains fixed in the 180 degree position. The X-axis and Z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. Currently the experiment has executed 398 flip calibration sequences since activation.

The solar wind spectrometer continues to record plasma data in the extended range mode.

The suprathermal ion detector and cold cathode gauge experiments are currently operating in the full automatic stepping sequence with the Channeltron high voltages commanded OFF. The instruments' high voltages were commanded OFF on 28 March to preclude mode changes when the internal temperature is above $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$.

The heat flow instrument continues to sense subsurface and surface temperature data from all probe sensors. Presently the instrument's cable thermocouples indicate a temperature of approximately $368.5 \mathrm{~K}\left(203.9^{\circ} \mathrm{F}\right)$ with the temperature of probe I at the bottom of the lowest probe section as $252.7^{\circ} \mathrm{K}\left(-4.2^{\circ} \mathrm{F}\right)$, and probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ at its lowermost point.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

Iunar noon of the I5th Iunation occurred today. Power output of the RTG is 71.3 watts, and transmiter A signal strength was reported as varying between 141 dbm and 136 During phase II support on 29 March at 1620 G.m.t. and 30 March at 1441 G.m.t., charged particle, suprathermal ion detector, and cold cathode gauge experiments epertion No ccurrance. The suprathermal ion detector, and cold cathode gauge experiments were returned by command to operate select at 1634 G.m.t.. 29 March, and at 1450 G.m.t. 30 March without problem and all instrument data appeared normal. The charged particle experiment was commanded to operate select per schedule at 1448 G.m.t., 29 March, and at 1408 G.m.t., 30 March, and 211 data were normal prior to the unexpect an . each functional mode change.
Operation is in the forced OFF thermal control mode, feedback loop filter OUT. No lunar seismic signals have been observed during the limited real time support for the Apollo 14 station. The instruments long period Z axis has not displayed valid. data and has not responded to a command since 23 March 1972. Currently in standby. On 24 March, experiment was commanded on at 1908 G.m.t., and to high bit rate ON at $1930 \mathrm{G} . \mathrm{m} . t$. , for a 30 minute listening mode operation. Data output of geophone 1 and 2 appeared normal; geophone 3 data was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High
bit rate support was terminated at 1945 G.m.t. due to the supporting MSFN tracking listening mode operation is scheduled for today.

> The experiments are operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. Intemittent positive engineering data interruptions in one section of the analog-to-digital filter continue, having no adverse effect on the scientific outputs of the experiments.

Passive seismic

experiment Active seismic
experiment
Suprathermal ion detector/cola cathode gauge

APOLIO 15 ALSEPP

Status as of $1600 \mathrm{G} . \mathrm{m} . \mathrm{t}, 30 \mathrm{March}$, was as follows:

 A1. On
$92.8^{\circ} \mathrm{F}$
$133.9^{\circ} \mathrm{F}$
Invalid
$66.1^{\circ} \mathrm{C}\left(150.9^{\circ} \mathrm{F}\right)$
$47.4^{\circ} \mathrm{C}\left(133.3^{\mathrm{F}}\right)$
Off Scale High $\stackrel{4}{4}$ N / A
N / A
N / A 862
128
75°
70.
$0 f f$ rotal Commands to Date Sun Angle
Input Powe Heater and Power Dumps Statu Experiment Status
Avg Themal Plate Temp
PSE Sensor Assembly Temp PSE Sensor Assemoly Lemp
LSM Internal Temp SWS Module 300 Temp SIDE Temp
CCGE Temp CPLEE Electronic Temp ASE GLA Temp
HFE Temp Ref

APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
7 April 1972
G.m.t.: 1400

Apollo 15 ALSEP

This AISEP has operated 250 days on the lunar surface, having passed through its ninth lunar sunset April 6. Sunrise will occur on 20 April at Hadley Rille. Presently the central station components continue to experience a negative temperature excursion in the lunar nightenvironment. The downlink signal strength from transmitter "A" remains within tolerance. The solid state timer of the central station continues to produce output pulses, on schedule, whenever it is not inhibited to satisfy other operational requirements. The timer's output pulses have been inhibited since 6 April.

The 24th and 25 th spurious commands were executed by the central station data subsystem during this reporting period. At 0605 G.m.t., 4 April, the Bermuda tracking station noted a command verification word, octal 134, LSM thermal control XYO, in the 15 ALSEP downlink. During real time support, the functional change to thermal control OFF was verified and returned to thermal controI Y without incident. At 1654 G.m.t., 4 April. the Hawaii tracking station noted a spurious command octal 037, PSE standby in the downlink with a supporting change in experiment standby status, AB-04. The PSE was commanded to operate select at 1802 G.m.t. without incident.

No unusual science events were observed during the sunset texminator crossing which occurred yesterday. Operation of the passive seismic experiment, heat flow experiment, solar wind spectrometer, suprathermal ion detector and cold cathode gage continue unchanged from the preceding week. The Iunar surface magnetometer was reconfigured to its 50 gamma range on 6 April for the remainder of this lunar night.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, telephone 483-5067.

$$
\text { Apol1o } 14 \text { ATSEP }
$$

Apolio 12 ALSEP

Operationa Central station	us from 31 March 1972, 0600 G.m.t., to 7 April 1972, 1400 G.m.t. Sunset of the 30th lunar day occurs tomorrow; RTG power output is constant; and, transmitter "B" signal strength was reported at -141.0 ± 1.5 dbm. The 51st spurious functional command was executed by the central station. Command verification word octal 022, power dump resistor \#1 ON, was noted by the Texas tracking station at $0651 \mathrm{G} . \mathrm{m} . t$, , 31 March. The function change was verified by mission control center and the PDR \#1 commanded OFF at 1354 G.m.t., 31 March. No detrimental effects to the central station have been noted resulting from this spurious change.
Passive seismic experiment	The instrument's thermal control mode is auto ON, and the feedback loop filter commanded OUT. No lunar signals have been observed during the limited real time support for the Apollo 12 station.
Lunar surface magnetometer experiment	Magnetometer engineering data were valid 5 April. These data had been static since 8 March 1972. Science data has not been valid this lunation.
Solar wind spectrometer experiment	Currently operating in the extended range mode.
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with Channeltron high voltage $O N$. The experiment was commanded $O \mathbb{N}$ for continuous lunar night operations, 5 April.

APOLIO LUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT
14 April 1972
G.m.t.: 1400

This status report will contime to be published each Friday, with the exception of 21 April due to the Apollo 16 mission. A daily status report for the Apollo 16 ALSEP will be provided for its initial 45 days of operation.

Apol1o 15 ALSEP
The Apollo 15 lunar science station is functioning, as all the experiments and central station components have stabilized in the lunar night environment. Midnight at the Hadley Rille site occurred on 13 April.

The signal strength from transmitter "A", as reported by the network tracking stations, has varied over the past week between -138.5 dbm and -136.0 dbm . The operational procedure during lunar night of eliminating the data subsystem's 18-hour timer outputs by uplinking the timer's reset command, octal 150 , twice daily continues in effect.

The operation of the passive seismic experiment is as planned; thermal control mode is auto ON; uncage circuitry configured to the OT state to deliver maximum heat into the sensor assembly; and, the feedback loop filter commanded OUT in order to match seismic response at the three ALSEP stations in operation. No seismic events have been recorded during limited real time support this week.

The lunar surface magnetometer experiment's sensors are presently operating in the 50 gamma range, indicating the moon's passage through the free-streaming solar wind region. Currently the experiment has executed 418 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

The solar wind spectrometer continues to record plasma data in the normal range mode for the investigation of long term statistical effects. The ALSEP 12 solar wind spectrometer also is operating in the normal range mode, in order to match the solar plasma response of the two instruments.

14 Apri1 1972
G.m.t.: 1400

Apollo 15 ALSEP (continued)
The suprathermal ion detector and cold cathode gauge experiments are operating per the agreed to schedule, in the full automatic stepping sequence with the Channeltron high voltages commanded on.

The heat flow experiment's thermocouples, in the cables, are continuing to track the lunar surface temperatures. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$, with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $88.2^{\circ} \mathrm{K}\left(-300.6^{\circ} \mathrm{F}\right)$

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.
CTSTV TT OTTOdF

Operati Central station	status from 7 April, 1400 G.m.t., to 14 April, 1400 G.m.t. Sunset of the fifteenth lunar day at the Apollo 14 Ianding site, ocurred 7 April power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-140.0 \pm 1.2 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) was commanded ON at $1739 \mathrm{G} . \mathrm{m}, \mathrm{t} ., 7$ April, when the average themal plate temperature indicated 41.2 F .
Passive seismic experiment	Operation is in the auto on themal control mode, and the feedback loop filter commanded OUI. No lunar seismic signals have been observed during the limited real time support for the Apollo 14 station.
Active seismic experiment	Currently in standby. On 7 April. experiment commanded ON at 1645 G.m.t., and to high bit rate ON at $1700 \mathrm{G} . \mathrm{m} . t$. , for 30 minute listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1730 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to standby at 1733 G.m.t. On 10 April, experiment commanded ON at 1719 G.m.t., and to high bit rate ON at $1720 \mathrm{G} . \mathrm{m} . t$. for 8 minute listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was contimuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 1728 G.m.t., and the instrument commanded to standby at 1729 G.m.t.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Chameltron high voltages commanded ON. Intermittent positive engineering data interruptions in one section of the analog-to-digital filter are having no adverse effect on the seientific outputs of the experiments.
```Charged particle lunar environmental experiment```	Per the agreed operational procedure the experiment has been commanded to operate select each day for a 12 hour operation period. Analyzer A Channeltron high voltage (AC-03) remains substantially constant at the 2500 Vac level. Analyzer $B$ Channeltron high voltage remains below nominal levels. It is planned to command the experiment to operate select for the Apollo 16 SIVB impact 19 April.



$\forall / N$
（ H $_{0} \varepsilon \cdot 28-$ ）$\nu_{0} S^{\prime} \cdot 89-$
$\begin{aligned} \left(H_{0} e^{\circ} 6-\right) & D_{0} O+\pi- \\ & \text { OTTRAUI } \end{aligned}$
PTTQ＾UI
$\forall / N$
$\cdots / \mathrm{N}$
$\begin{array}{r} W_{0} 7^{\circ}+己 T \\ \text { HapueqS } \varepsilon \cdot \angle \varepsilon \\ \text { SGS } \end{array}$
（MOT）NO T－SSC
M + ，L
$\begin{aligned} & 682 \\ & 2895 \end{aligned}$
こと中
dHSIV Vl OTIOCV



APOLLO (ALSEP)	DAY/HOUR, GMT					
	MIDNIGHT	SUNRISE		NOON	SUNSET	MIDNIGHT
16		19 APR/2032	(18T)	27 APR/0546	4 MAY/1504	11 MAY/2348
15		20 APR/1950	(10TH)	28 APR/0506	5 MAY/1422	$12 \mathrm{MAY} / 2301$
14	15 APR/0430	22 APR/1323	(16TH)	29 APR/2244	7 MAY/0753	
12	15 APR/1607	23 APR/0132	(315T)	30 APR/1024	7 MAY/1827	

APOLLO LUNAR SURFACE EXPERTMENIS PACKAGE STATUS REPORT
22 April 1972
G.m.t.: 1400

Apollo 16 ALSEP
The Apollo 16 ALSEP was deployed on the moon on 21 April at approximately 110 meters WSW of the Orion's location (IM-16 coordinates on the EVA 1 timeline map are CA.9 and 80.3). Initial acquisition of a downlink signal was reported by the Canary Islands ( -139.0 dbm ) and Texas ( -140.0 dbm ) ground stations at $1938 \mathrm{G} . \mathrm{m} . t$. , following activation of the central station's shorting switch. Acquisition occurred 72 minutes after fueling of the radioisotope thermoelectric generator. Initial conditions of the central station were normal. Power output of the RIG was 51.4 watts and the central station's thermal plate temperature averaged 76.7 F initially. ALSEP was commanded to high bit rate mode at 1954 G.m.t., and the active seismic/thumper experiment mode of operations continued until 2016 G.m.t. The thumper was used by the crew to fire 19 of 19 explosive initiators. Enclosure 1 is a detailed timeline of the thumper fire sequence history.

Experiments were initially turned on at the following times: Iunar surface magnetometer experiment, 2021 G.m.t.; and, passive seismic experiment, 2043 G.m.t.

The passive seismic experiment was uncaged by command, with initial leveling of the instrument completed at 0033 G.m.t., 22 April. Releveling of the long period axes has been repeated successfully, with the sensor's heater in auto ON. The experiment is currently operating with the feedback loop filter commanded IN: At 0524 G.m.t., 22 April, sensor temperature, DI-07, indicated $107.3^{\circ}$ F (first temperature output since deployment).

The lunar surface magnetometer has recorded data from turn-on. The instrument is presently operating with the digital filter commanded IN, and in the 200 gamma range.

The active seismic experiment is operating in standby select.
The heat flow experiment's central station cable was separated by the crew on the Iunar surface at 1916 G.m.t., 21 April, during the deployment sequence of ALSEP.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

ENCLOSURE 1

Apollo 16 ALSEP Thumper Fire History

ASI		Event
Number	Time (G.m.t.)	Results
1	20:01:52	Fire
2	20:02:22	No Fire
	20:02:38	Fire
3	20:03:17	"
4	20:03:53	"
5	20:04:49	"
6	20:05:27	"
7	20:06:13	"
8	20:06:49	"
9	20:07:30	"
10	20:08:14	"
11	20:09:42	19
12	20:10:29	"
13	20:11:06	8
14	20:12:14	"
15	20:12:45	"
16	20:13:23	11
17	20:14:12	11
18	20:14:52	"
19	20:15:51	"


status as of $0600 G . m$ t. 22 April, was as foliows:

$-15 .{ }^{6} \mathrm{C}\left(39 . \mathrm{C}^{\mathrm{F}} \mathrm{F}\right)$


23 April 1972
G.m.t.: 1300

Apollo 16 ALSEP
The experiments and centrai station are functioning as plamed, with measurements from each of the experiments package suosystem's indicating operational status within expected levels. Power output from the radicisotope source remains constant at 70.4 watts. Average temperature of the central station electronic thermal plate was 91.2 F with a sun angle of 43 degrees at the deployment site; temperature rise of approximately $0.4{ }^{6} \mathrm{~F}$ per hour. Downlink signal strength is constant at -139.0 dbm , plus or minus 0.5 dbm . A status change in the timeris hour counter telemetry point, $A Z-01$, the seismometer's short period cal status(AL-O7) and uncage status(AL-08), verified output of the first and second timer pulses, at $1355 \mathrm{Gm} . \mathrm{t} ., 22$ April, and again at 0813 G.m.t., 23 April.

The passive seismic experiment continues operating normally with all channels leveled. The instrument recomded short period $Z$ axis signal levels strong enough during EVA 2 rover traverse to establish rover range to within approximately $\frac{1}{2} \mathrm{~km}$. The seismoneter's temperm ature transducer continues to reflect an increase, prior to obtaining thermal equilibrium.

The Iunar surface magnetometer is operating as expected in the 200 gamma range as the moon approachs the earth's bowshock. The experiment performed its first flip calibration operation, by command, at 205 l G.m.t., 22 April, while the moon was in interplanetary space. The instrument's internal electronic temperature has remained stabilized at $33.7^{\circ} \mathrm{C}$ for the preceding 20 hours.

The active seismic experiment is in standby.
It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

APOLTO 14 ALSEP


Status as of $0900 \mathrm{G} . \mathrm{m} . t ., 23$ April, was as follows:


All OFF 25.7 F


Invalid $\quad O_{F}$
$-11.0^{\circ} \mathrm{C}\left(12,2^{\circ} \mathrm{F}\right)$ 오중
$\frac{\text { B }}{\substack{4 \\ \&}}$

24 April 1972
G.m.t.: 1300

## Apollio 16 ALSEP

The Apollo 16 scientific station measured the crew activities during EVA 3 over essentially the full traverse $x$ ange; the effects of IM EVA equipment jettison; and, the Orion's lunar surface lift-off.

The central station's engineering measurenents continue to provide data on the solar intensity throughout the approach of lunar noon. The RTG output continues steady at 70.4 watts. Downlink signal strength is solid at $-139.0 \pm 0.5 \mathrm{dbm}$. The station's solid-state timer telemetry status, AZ-Ol, changed at approximately 0229 G.m.t., 24 April, signalling the arrival of the thixd 18-hour pulse.

The passive seismic experiment detected the effects of the EVA 3 rover traverse, and EVA equipment jettison. Along with these artifical disurbances, the seismometer is also recording characteristic wobbling as the instrument settles and thermally stabilizes. The instrument's housekeeping status also verified arrival of the timer's third 18-hour pulse.

The lunar surface magnetometer is operating normally, and continues to measure magnetic field data as the moon passes through the earth's bow wave. The expeximent's sensors are presently operating in the 200 gamma range, with the digital filter commanded. IN.

The active seismic experiment was commanded to operate select for two minutes (1126-1128 G.m.t., 23 April) verifying that the mortar package is properly activated (central station telemetry data indicated a delta reserve power of 7.5 watts). The experiment was then commanded on at 1846 G.m.t., 23 Apri工, and to high bit rate, 1902 G.m.t., during the EVA 3 traverse, as the crew was on its in-bound leg approximately 1 km from the IM. Geophone calibration pulses were transmitted at the start (1906 G.m.t.) and end (1910 G.m.t.) of the experiment's high bit rate mode. High bit rate operation was terminated at 1910 G.m.t., and the instrument commanded to standby at 1911 G.m.t., 23 April. The geophone outputs recorded during the traverse will be used in correlation with the passive seismic data obtained on the out-bound traverse, in order to determine phase velocity of the moon's internal structure.

In an effort to obtain added phase velocity data, the active seismic experiment was commanded ON at $0106 \mathrm{G} . \mathrm{m} . t ., 24 \mathrm{April}$, as scheduled for IM Iunar lift-off. The instrument was comanded to high bit rate ON at 0110 G.m.t., 24 April. The experiment recorded a significant signal at ascent on all three geophones. One cal pulse was sent at the start of the high bit rate mode. High bit rate operation was terminated at 0131 G.m.t., and the instrument commanded to standby at 0136 G.m.t., 24 April. The expeximent is currently in standby select.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.


Status as of o900 G.m.t., 24 Apring was as foliows:


$$
\begin{aligned}
& \text { Total Days of Operation } \\
& \text { Total Commands to Date } \\
& \text { Sinn Ancle }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Input Power } \\
& \text { Heater and Power Dumps }
\end{aligned}
$$ Experiment Status Avg Thermal Plate Temp PSE Sensor Assembly Temp

LSM Internal Temp
SWS Module 300 Temp
SWS Module 300 Temp
SIDE Temp
CCGE Temp
CFLEE Electronic Temp
ASE GLA Temp
HFE Temp Ref Junction

25 April 1972
G.m.t.: 1300

Apol10 16 ALSEP
Scientific data continues being collected, including the effects of the moon passing through the earth's magnetosheath. The central station and all experiments are operating normally and within the predicted temperature response bands. The downlink signal strength from transmitter "A", and the thermoelectric power source output remains steady. The fourth output pulse of the resettable solid state timer was verified at 2050 G.m.t., 24 April.

The passive seismic experiment continues recording venting in the LM descent stage, and characteristic wobbling as the instrument settles. The seismometer's housekeeping data continues to indicate a gradual temperature increase of $0.19^{\circ} \mathrm{F}$ per hour, over the preceding 24 hours. The experiment is presently operating with the feedback loop filter commanded IIF, and in auto ON thermal control mode.

The Iunar surface magnetometer experiment continues to measure magnetic field data as the moon passes through the earth's magnetosheath. The instrument's internal electronic temperature is increasing at approximately $0.2^{\mathrm{C}}$ per hour, and is currently configured to its 200 gamma operating range with the digital filter commanded IN.

The active seismic experiment is presently in standby. During the instrument's high bit rate operations of 23 April it was noted that the roll sensor telemetry (DS-06) indicated offscale high. PCM count from the tracking stations verified that the roll sensor circuit was inoperative and reading offscale at all one's. The pitch sensor indicated a stable reading of -2.3 degrees (plus or minus one PCM count) throughout the three high bit rate operating periods. The transducer's mode of failure is under investigation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.


## APOLIO LUTAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT

26 April 1972
G.m.t.: 1300

Apoillo 16 ALSEP
The experiments and central station are functioning as planned, with scientific and engineering measurements from the data subsystem and all experiments indicating operational status within limits.

Power from the radioisotope source remains stable at 70.9 watts. The average temperature of the central station electronics thermal plate continues increasing at 0.13 F per hour. Downlink signal strength is steady at -140.5 dbm , plus or minus 2.0 dbm . A status change in the timer's hour counter telemetry point, AZ-01, the seismometer's short period cal status (AL-07) and uncage status (AL-08), verified output of the fifth and sixth timer pulses, at 1503 G.m.t., 25 April, and again at 0928 G.m.t., 26 April.

The passive seismic experiment continues recording venting in the LM descent stage, and characteristic wobbling as the instrument settles. These disturbances are steadily decreasing in amplitude. The instrument's feedback loop filter was commanded OUT, and the long period and short period components commanded for peak response (amplifier circuit attenuators to 0 db ) on 24 April. The seismic network now has congruity, as all seismic instruments are configured identically. The experiment's sensor temperature is continuing to rise at a rate of $0.26^{\circ} \mathrm{F}$ per hour. At the current average rate of temperature increase per hour, the sensor's transducer (DL-O7) will indicate offscale high at approximately $0500 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 27$ April (sun angle of 90 degrees).

The Iunar surface magnetometer experiment is operating normally, and continues to measure magnetic fields as the moon passes in and out of the tail of the magnetopause. Engineering data indicates that the instrument's electronics temperature is increasing at the average rate of $0.18^{\circ} \mathrm{C}$ per hour, over the preceding 24 hours.

The active seismic experiment is currently in standby, with a 30 minute passive listening mode operation planned for April 28.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.



27 April 1972
G.m.t.: 1300

Apol10 16 ALsEP
The station is in its sixth day of operation with the moon in the earth's magnetic tail. Data of this region is being gathered by the lunar surface magnetometer experiment. The central station's data subsystem components apparently achieved a maximum temperature value, as the average thermal plate temperature leveled off at 109.1 F near $1500 \mathrm{Gm} . \mathrm{t} ., 26 \mathrm{April}$, and stabilizing at that value for a minimum of nine hours. The central station's average thermal plate temperature is currentiy indicating a 0.05 F per hour average decrease (ogoo G.m.t., today). The thermoelectric power source output remains steady. The reported signal strength of transmitter " $A$ " at the various 30 -foot antennas is $-139.0 \pm 1.0$ dbm. Telemetry data indicated that the seventh 18 -hour timer pulse executed at 0346 G.m.t., April 27.

The passive seismic experiment has sensed four natural seismic signals through April 26. These types of signals are most effectively detected on the instrument's long period components (IPX, 3 events; and, LPY, 4 events). The average duration of each signal recorded was evaluated to be 20 minutes in length. The sensor continued to experience a continuous temperature increase until reaching 142.6 F at 0200 G.m.t., 27 April, at which time DL-O7 indicated offscale HIGH (sun angle of 88 degrees). Due to the offscale temperature condition the seismometer's tidal data is invalidated, but has minimal effect on the instrument ${ }^{\text {s }}$ seismic data outputs. Present configuration is thexmal control forced OFF, and $O \mathrm{db}$ gain on all axes.

The Iunar surface magnetometer is operating normally in the 200 gamma range as the moon passes through the earth's magnetic tail. The instrument's second pre-site survey sequence flip calibration operation was completed at 1452 G.m.t., 26 April. The instrument's infernal electronics temperature has stabilized at $44.7^{\circ} \mathrm{C}$ on 26 April, near 1800 Gom.t. (sun angle of 84 degrees).

The active seismic experiment is currently in standby.
It is requested that any organization having comments, questions, or suggestions concemang this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.
APOLIO 16 ALSEP



Status as of 0900 G.m.t., 27 April, was as follows:
APOLLO 12 ALSEP


## APOLIO LUNAR SURFACE EXPERIMETMS PACKAGF STATUS RBPORT

28 April 1972
G.m.t.: 1300

Apol10 16 ALSEP
Currently, the central station's electronics plate temperature is 107.5 F with a corresponding temperature decrease of approximately 0.05 F per hour. RTG output power remains constant at 70.9 watts. Downlink signal strength is steady at -140.0 , plus or minus one dom. A status change in the timer's hour counter telemetry point, AZ-Ol, and the seismometer 's short period cal status (AI-07) and uncage status (AL-08), verified output of the timer's eighth pulse at 2205 G.m.t., 27 April.

On 27 April, at 2211 G.m.t., an unexpected functional change occurxed in the system's experiment's telemetry status word, $A B-05$, indicating that the PCM count of experiment 4 , heat flow experiment, decreased from 069 PCM counts to 000 PCM counts. No command verification word relating to this functional change was observed in the station's downlink. At 2227 G.m.t., the power distribution unit logic was reset by command, octal 053, heat flow experiment standby power ON. No detrimental effects to the central station have been noted resulting from this spurious change.

The IM produced background noise recorded by the passive seismometer at the Apollo 16 site is comparable to that observed during initial operations of seismic instruments on previous missions. In the preceding 24 hours, several small natural seismic events have been sensed by the 16 station's instrument. These small events were not detected simultaneously by the other stations in the seismic network. The sensor's temm perature (DL-O7) continues offscale HIGH. The moon's May perigee will occur on 12 May, at approximately $1700 \mathrm{G} . \mathrm{m} . \mathrm{t}$.

The Iunax surface magnetometer experiment is operating normally, and continues to measure magnetic fields as the moon passes through the center of the earth's magnetotail. Engineering data indicates that the instrument's internal electronics temperature is decreasing at an average rate of $0.09^{\circ} \mathrm{C}$ per hour.

The active seismic experiment is currently in standby. The instrument ${ }^{8}$ s grenade launch assembly temperature stabilized at $57.8^{\circ} \mathrm{C}$ on 27 April, near l200 G.m.t. (sun angle of 93 degrees). A 30 minute passive listening mode operation is planned for today.

It is requested that any organization havins comments, questions, or suggestions concerning this report contact $R$. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Central station	Iunar noon at the Apollo 15 landing site, occurred today; power from the RTG is steady; and, transmitter "A" signal strength was reported as $-137.5 \pm 1.5 \mathrm{dbm}$. The 212 output pulse of the resettable solid state timer was verified on 28 April. At 1914 G.m.t., 23 April, the station was inadvertently commanded to low bit rate, and returned to normal bit rate at 1918 G.m.t. without incident.
Passive seismic experiment	Operation is in the auto ON thermal control mode, and the feedback loop filter commanded OUT to match the seismic response on the four seismometers in operation. No lunar seismic signals have been observed during the real time support for the Apollo 15 station. The seismic station sensed the Apollo 16 S -IVB impact energy arrival time at approximately 210435 G.m.t., 19 April.
Lunar surface magnetometex experiment	The experiment's sensors are presently operating in the 100 gamma range, Currently the instrument has executed 423 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and $z-a x i s$ sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
```Solar wind speetrometer experiment```	Currently operating in the extended range mode.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence (0-127 frames) with the Channeltron high voltages commanded. OFF. The instruments high voltages were commanded OFF at 0117 G.m.t., 27 April, to preclude mode changes when the internal temperature is above $85^{\circ} \mathrm{C}$.
Heat flow experiment	The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$, with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $368.5^{\circ} \mathrm{K}\left(203.9^{\circ} \mathrm{F}\right)$.

Apol10 14 ALSEP

Operational status from 14 April. $1400 \mathrm{G} . \mathrm{m} . t .$, to 28 April, $1300 \mathrm{G} \cdot \mathrm{m} . t$.	
Central station	Woon of the 16 th lunar day at the Apollo 14 landing aite, will occur 29 April; power output of the cadioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-138.5 \pm 1.5 \mathrm{dbm}$. The central station's DSS-1 heater (IO watts) was commanded OFF at Oll0 G.m.t., 23 April, when the average themal plate temperature indicated $54.9^{\circ} \mathrm{F}$.
Passive seismic experiment	Operation is in the forced OFF thermal control mode, and feedback loop filter commanded OUT. The instruments long period Z axis has not displayed valid data and not responded to a command since 23 March 1972. No Iunar seismic signals have been observed during the real time support for the Apollo 14 station. The energy arrival time of the Apollo $16 \mathrm{~S}-\mathrm{IVB}$ impact was detected at 210246 G.m.t., 19 April.
Active seismic experiment	Currently in standby. On 23 April, experiment commanded on at $1435 \mathrm{G} \cdot \mathrm{m} . \mathrm{t}$. . and to high bit rate ON at 1448 G.m.t. for a passive listening mode operation. Data output of geophones 1 and 2 appeared nomal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1515 \mathrm{G} . \mathrm{m} . t$. and the instrument commanded to standby at $1516 \mathrm{G} . \mathrm{m} . t$. The next listening mode operation is scheduled for today.
Suprathermal ion detector/cold. cathode gauge experiment	Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded on. Intermittent positive engineering data interruptions in one section of the analog-tomigital filter are having no adverse effect on the scientific outputs of the experiments.
Charged particle Iunar environmental experiment	Currently in standby. The experiment was commanded to operate select on 14 through 26 April for periods of scientific interest. Analyzer A Channeltron high voltage (Ac-03) remained sustantially constant at the 2500 Vac level. Analyzer B Chaneltron high voltage remained below nominal levels. Following sunrise pperations on 22 April, the instrument experienced five functional changes from operate select to standiby. No command verification word was received by the supporting MSFN tracking stations in any occurrance. During three of the occurrances the suprathermal ion detector/cold cathode gauge experiment was adversely affected, changing from operate select to standby. Following each functional mode change, the ion detector/gauge experiment was commanded to operate select, and the charged particle experiment remained in standby select. Because this phenomena has not been fully analyzed, no ensuing operation

28 April 1972
periods during this lunar day will be scheduled for the charged particle experiment.
Sunset at the Apollo 14 site will occur on 6 May.
Date/Time (G.m.t.)

Charged particle Iunar environmental
experiment
, ponding 00

$$
\text { Apol } 10 \text { I2 AISEP }
$$ The instrument is operating in full automatic stepping sequence with Chaneltron high

Status as of $0600 \mathrm{G} . \mathrm{m} . t ., 28$ April, was as follows:

$\frac{13}{65} 3^{176}$
70.0w

$91.3^{\circ} \mathrm{F}$
Invalid

29 April 1972
G.m.t.: 1300

Apo110 16 AISEP
The Apollo 16 lunar science station continues normal operations, with the moon in the earth's magnetic tail and approaching the magnetopause. The electronics and structural temperatures of each of the experiments package components, except the seismometer, continue to indicate a gradual temperature decrease. The signal strength from transmitter "A" is steady; and, the thermoelectric power source output remains stable.

The spurious heat flow experiment status change noted in the 28 April, 1300 G.m.t., ATSEP status report was in error. At initial power ON of the central station, the 18 -hour counter in the command decoderis delayed command sequencer will initialize with a count of one or zexo. If a count of one is reset then the timer's output pulses will be l8-hours early. A count of zero would mean that the 18 -hour pulses are as scheduled. Fmpirical test data indicates that with a power reset the 18-hour timer has a ambiguous inherent design history of resetting with a count of one or zero. Therefore, what appeared to be the eighth timer pulse (144 hour pulse) of the 16 station was in reality the 162 hour pulse (ninth pulse) and correctly initiated all of its delayed command functions, as well as the 18 -hour repetitive commands. The timer's Ioth and Ilth pulses were verified at $1623 \mathrm{G} . \mathrm{m} . t ., 28$ April, and at 1041 G.m.t., today, by the timer's hour counter telemetry point, the seismometer's shont period cal status and uncage status, and the experiments status word, $A B-05$.

The passive seismometer continues to return signals due to venting of the lunar module descent stage. A significant seismic event was sensed simultaneously by the Apollo 16 station and 15 station instrument's starting at 1125 G.m.t., 27 April (80 minute duration). The signal recorded a peak amplitude of 4 mm on the mission control drum recorders, and indicated a long rise time of greater than 20 minutes. The sensor's temperature (DI-O7) continues offscale HIGH.

The Iunar surface magnetometer performed its third and fourth fip calibration sequences, by command, on 28 April, at $2053 \mathrm{G} . \mathrm{m} . t$. and 2103 G.m.t.g respectively. On completion of the fourth cal sequence the experiment's one-time only site survey was initiated (x axis site survey command, 2116 G.m.t.; y axis site survey command, 2127 G.m.t.; and, z axis site survey command, 2139 G.m.t.), and completed without incident. Data recorded during the site survey sequence are currently being analyzed. Current instrument configuration is 200 gamma range, digital filter IN, and flip cal inhibit IN (2159 G.m.t. 28 April).

29 April 1972 - 2-
G.m.t.: 1300

The active seismic experiment is currently in standby. The experiment was commanded to operate select a 0035 G.m.t., 29 April, and to high bit rate ON at 0045 G.m.t., for a passive listening mode operation. Data output of all geophones appeared normal. No geophone calibration pulses were sent to the instrument. High bit rate operations were terminated at $0115 \mathrm{G} . \mathrm{m} . t$. , and the experiment commanded to standby at 0117 G.m.t., 29 April. No significant seismic signals were noted in real time.

It is requested that any organization having conments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Status as of 0900 G.m.t., 29 April, was as follows:

APOLIO LUNAR SURFACE EXPFRIMENTS PACKAGE STATUS REPORTB
1 May 1972
G.m.t. : 1200

APO110 16 ALSEP
This report covers the Apollo 16 ATSEP activity and data for the previous 48 hours. Operations during this period were essentially unchanged, with the exception of a gradual experiments package temperature decrease as a function of sun elevation at the Descartes site.

Centrai station housekeeping data indicates that the data subsystem electronics are experiencing an average temperature decrease of $0.3^{\circ} \mathrm{F}$ per hour. The RTG power is steady at 70.9 watts, and signal strength at the 30 -foot antennas is $-139.0 \pm 0.1 \mathrm{dbm}$. Telemetry data indicated that the 12 th and 13 th 18 -hour timer pulses were executed at 0459 G.m.t. and 2317 G.m.t., 30 April, respectively.

The passive seismometer continues to sense signals due to creaking and popping of the lunar module descent stage. These signals appear to be in the terminal phase of the most vigorous stage of LM venting, which normally lasts about eight days. The seismometer's temperature transducer output (DI-O7) remains offscale HIGH. Currently, instrument operation is in the forced OFF thermal control mode with the uncaged status uncaged to provide minimum internal generated thermal transients.

The lunar surface magnetometex is operating normally, and continues to measure magnetic fields as the moon passes through the center of the earth's magnetosheath. Engineering data indicates that the instrument's internal electronics temperature is decreasing at an average rate of $0.06^{\circ} \mathrm{C}$ per hour.

The active seismic experiment is in standby. The instrument'g grenade launch assembly is experiencing a temperature decrease of $0.4^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

 ASE \& CPLEE Stby $112.5{ }^{\circ} \mathrm{F}$

$$
\begin{aligned}
& 128.8^{\circ} \mathrm{F} \\
& \mathbb{N} / \mathrm{A} \\
& \mathbb{N} / \mathrm{A} \\
& \text { Invalid } \\
& \text { Invalid } \\
& \text { Standiby } \\
& 85.3^{\circ} \mathrm{C}\left(206.6^{\circ} \mathrm{F}\right) \\
& \mathbb{N} / \mathrm{A}
\end{aligned}
$$

Status as of 0900 G.m.t., I May, was as follows:

894
13,202
101 AII OFF
SIDE OFF
$89.6^{\circ} \mathrm{F}$
142.2^{F}

Invalid ${ }^{\circ}$

APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT
2 May 1972
G.m.t.: 1200

Apollo 16 ALSEP

Currently, the central station's average thermal plate temperature is $84.5^{\circ} \mathrm{F}$ with a corresponding temperature decrease of approximately $0.3^{\circ} \mathrm{F}$ per hour. Power output from the radioisotope source remains constant at 70.6 watts. Transmitter "A" downlink signal strength is steady at -139.0, plus or minus one dbm. The central station's timer telemetry points, timer counter status (AZ-Ol), the seismometer's short period cal status (AL-07) and uncage status (AL-08), and the experiments status word (AB-05) verified output of the 14th timer pulse at 1735 G.m.t., I May. The 15th 18-hour timer pulse also executed correctly at 1136 G.m.t., today. Timer pulses have executed consistently at 18 hours and 17 minutes since initialization of the timer.

The passive seismometer continues to function normally, with the instrument's components sensing occasional lunar module descent stage venting and/or signals typical of settling. The sensor's temperature transducer output returned onscale at 0920 G.m.t., 2 May (sun angle of 153 degrees). Currently, the experiment's housekeeping data reflects that the sensor's temperature is $142.6^{\circ} \mathrm{F}$.

The lunar surface magnetometer, functioning as planned, continues to sense data pertaining to the earth's magnetosheath. The experimentis fifth flip cal sequence was executed correctly, by command, at 1311 G.m.t., I May. The instrument's flip cal inhibit logic remains IN, inhibiting the flip cal command pulse from the automatic delayed command sequencer.

The active seismic experiment is in standby. The instrument's grenade launch assembly is experiencing a temperature decrease of approximately 0.6 C per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Status as of 0500 G.m.t., 2 May, was as follows:

APOLLO IUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

3 May 1972
G.m.t. : 1200

Apol10 16 ALSEP

The Apollo 16 ALSEP, in its twelfth day of lunar operations, remains essentially unchanged from the preceding 24 hours, with the exception of a gradual temperature decrease as a function of sun elevation at the ALSEP site.

Central station telemetry downink data indicates that the data subsystem electronics are experiencing an average temperature decrease of $0.6^{\circ} \mathrm{F}$ per hour. The RTG output continues steady at 70.9 watts. The 16th 18-hour timer pulse was verified at $0610 \mathrm{G} . \mathrm{m} . \mathrm{t}$. 3 May. Signal strength of the transmitter is reported as constant.

Preliminary analysis of the passive seismometer"s real time data indicates that the instrument continues to sense signals of various characteristics (variable amplitudes, duration times, etc.) untypical of instrument settling and/or IM venting. These types of signals are being most effectively detected on the instrument's long period components, particularly IPX and LPY. The seismometer's housekeeping data reflects that the sensor temperature is decreasing at a rate of 0.4 F per hour (thermal control mode is auto oN).

The Iunar suxface magnetometer experiment is presently indicating the moon's passage through the bow shock created by the interaction of the earth's magnetic field with the solar wind. The instrument is operating normally with the digital filter commanded IN and the flip cal inhibit logic IN. Engineering data indicates that the y axis sensor's heater thermostat is controlling the instrument:s temperature, and that the experiment has currently stabilized at $43.5^{\circ} \mathrm{C}$.

The active seismic experiment is in standby. 'The instrument's grenade launch assembly continues experiencing a tempexature decrease of approximately $0.6^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

APOITO LUNAR SURFACE EXPERTMENTIS PACKAGE STATUS REPORT
4 May 1972
G.m.t.: 1200

Apollo 16 ALSEP
The Apollo 16 lunar science station is functioning properly, as all the experiments and central station components continue to experience a negative temperatrure excursion with the approach of lunar night. Theoretical sunset at the Descartes site will oecur today at 1504 G.m.t.

Signal strength from transmitter "A", as reported by the various tracking stations, is unchanging; and, the thermoelectric power source output remains constant. System telemetry data indicated that the 17th 18 -hour timer pulse executed correctly at 0029 G.m.t., 4 May.

The pattern of noise sensed before terminator crossing by the passive seismometer experiment at the Apollo 16 site is similar to that observed during the initial operations of the seismic instruments on previous missions. The operation of the experiment is with the feedback loop filter commanded OUT in order to match seismic response at the four ALSEP stations in operation. The instrument's heater is configured to auto ON in an effort to minimized the sensor ${ }^{\prime}$ s temperature decrease (average rate of decrease is $0.3^{\circ} \mathrm{F}$ per hour).

The Iunar surface magnetometer's scientific data output discloses that the moon is in the free-streaming solar wind region, and will remain so until approximately 23 May. Engineering data indicates that the y axis sensor's heater thermostat is controlling the instrument's internal electronics temperature, and that the experiment is experiencing a minimal temperature decrease of $0.4^{\circ} \mathrm{C}$ per hour. The experiment's sixth flip cal sequence was executed correctly, by command, at 1827 G.m.t., 3 May. The instrument's flip cal inhibit logic remains IN, inhibiting the flip cal command pulse from the automatic delayed command sequencer.

The active seismic experiment is in standby. The instrument's grenade launch assembly continues experiencing a temperature decrease of approximately $0.7^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

APOLLO LUNAR SURFACE EXPERIMENIS PACKAGP STATUS REPORT
5 May 1972
G.m.t. : 1200

Apo110 16 ALSEP
The experiments package is presently 22 hours into its first lunar night and continues to function normally. It is estimated that sunset occurred near 1500 G.m.t., 4 May (sunset time primaxily based on the decisive temperature decrease noted from the central station's sunshield transducer, AT-O1).

The central station is operating satisfactorily at the lowest temperatures it has experienced thus far since lunar activation. The station"s temperatures continued to drop rapidly after sunset with the lowest reading being the sunshield sensor (AT-01) at $-265.4^{\circ} \mathrm{F}$. The central station's 10 watt heater, DSS-1, was commanded on at 0645 G.m.t., 5 May, when the average thermal plate temperature decreased to 22.5 F (reference ALSEP mission mule 32-I-N). Curxently the average thermal plate temperature appears to be equilibrating. RTG output power is steady at 70.4 watts following slight, fluctuations noted during lunar sunset. The downlink signal strength remains at $-140.0 \pm 1.0 \mathrm{dbm}$. The effects of the 18 th timex pulse were seen in the central station's telemetry data at $1842 \mathrm{G} . \mathrm{m} . t .{ }^{\prime} 4$ May.

The passive seismic experiment is continuing to sense signals of various amplitudes, charactexistic of instrument shroud movement from the optical terminator"s thermal transients. The instrument's housekeeping status also verified arrival of the timer's May 4 18-hour pulse. Sensor telemetry data presently indicates a stabilized temperature of $125.8^{\circ} \mathrm{F}$, instrument's therm al control mode is auto ON.

The Iunar surface magnetometer is operating normally, and continues to measure magnetic fields as the mon passes through interplanetary space. The experiment's seventh flip cal sequence was executed correctly, by command, at $1326 \mathrm{G} . \mathrm{m} . t ., 4$ May. The experiment's internal electronics continue to experience a temperature decrease of approximately $1.2^{\circ} \mathrm{C}$ per hour. The magnetometer's sensors are presently operating in the 200 gamma range, with the flip cal inhibit logic and the digital filter commanded. IN。

The active seismic experiment is currently in standby, with a 30 minute passive listening mode operation planned for today. The instrument's grenade launch assembly continues experiencing a temperature decrease of approximately $0.8^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

$$
\text { Apol10 } 15 \text { ATSEP }
$$

Operational status from 28 April, 1300 G.m.t., to 5 May, 1200 G.m.t.

Sunset of the station's IOth Iunation occurred today; power from the RTG continues

The 221 output pulse of the resettable solid state timer was verified on 4 May.
Operation is in the auto ON thermal control mode, gain on sensors is 0 db, and the feedback loop filter commanded OUT to match the seismic response on the four seismometers in operation. No natural seismic signals have been noted during the limited real time support of this instrument. The instrument's temperature output, DL-O7. was noted offscale HIGH at 0136 G.m.t., 29 April (100 degree sun angle). and returned onscale near 1900 G.m.t., 29 April (sun angle of 109 degrees). The experiment's sensors are presently operating in the 100 gamma range. Currently the instrument has executed 433 flip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not respon position following each flip cal sequence to maintain sensor head synchronization. Currently operating in the extended range mode. Commanded to the extended range mode 12 Jemuary 1972. Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded on. The instruments high voltages were commanded ON at $2133 \mathrm{G} . \mathrm{m} . t$. , I May, per the agreed to operations schedule. Experiment Channeltron high voltages are cycled OFF to preclude instrument mode changes at internal temperatures above $85^{\circ} \mathrm{C}$. The temperature of probe 1 at the bottom of the lowest probe section is $253.0^{\circ} \mathrm{K}\left(-4.0^{\circ} \mathrm{F}\right)$, with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $277.8^{\circ} \mathrm{K}\left(40.6^{\circ} \mathrm{F}\right)$. Since $0750 \mathrm{G} . \mathrm{m} . t .225$ April, the probe 2 sequence indicated. offscale HIGH for the four relevant voltage measurements. A duplicate measurement which is performed during the probe 1 sequence, is operating normally so that no data are lost. The TREF 2 measurement has been intermittent offscale HIGH since August 1971. TR巴F2 returned onscale at $1859 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 4$ May (sun angle of 170 degrees) outputting valid data. At $0113 \mathrm{G} . \mathrm{m} . t ., 5$ May (sun angle of 173 degrees) TREF 2 data again indicated a offscale HIGH condition. Curcently TREF 2 is outputting exroneous

Central station
Passive seismic
experiment
Lunar surface magnetometer
experiment

Solar wind

spectrometer
experiment
Suprathermal ion detector/cold cathode gauge experiment

Heat flow experiment

ApO11O 12 ATSEP
Operational status from 28 April $1972,1300 \mathrm{G} . \mathrm{m} . \mathrm{t} ., \mathrm{to} 5 \mathrm{May}$ 1972. 1200 G.m.t.

APOLIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
6 May 1972
G.m.t.: 1200

Apol1o 16 AISEP
Central station telemetry data indicates that the average thermal plate attained thermal equilibrium neax $0300 \mathrm{G} . \mathrm{m} . t ., 6 \mathrm{May}$, at $38.8^{\circ} \mathrm{F}$, some 18 hours after activation of the data subsystem's heater, Dss-1. Power from the radioisotope source remains stable at 70.9 watts. Downink signal strength is steady at -139.0 dbm , plus or minus one dom. A status change in the timer's hour countex telemetry point, AZ-0l, and. the seismometer: s short period cal status (AL-O7) and uncage status (AT-08), verified output of the 19 th and 20th 18 -hour timer pulses, at 1255 G.m.t., 5 May, and again at 0710 G.m.t. 6 May . In an effort to minimize perturbations to the passive seismometer's thermal stability the 18 mour timex inhibit command was transmitted at 0955 G.m.t. 6 May. The timer inhibit command inhibits the I8-hour and the Iminute timer output pulses which in turn will disable the repetitive commands generated in the delayed command sequencer, affecting the seismometex ${ }^{4}$ uncage circuity. This operational procedure of eliminating the timer outputs will remain in effect throughout lunar night (summise will oceur 19 May).

The passive seismic experiment"s long period horizontal components continue to sense settling of the instrument into the lunar surface. The indications of instrument settling or thermal shroud movement from the thermal gradient effects are normally coincident in time, but not in amplitude, Occasionally the long period \& short period vertical components will sense a signal typical of settling and/or lunar module descent stage venting. The instrument's sensor temperature remains stam bilized at 125.8 F . The instrument is configured with its thermal control mode to auto ON, and the uncage cirouitry configured to the OI state to deliver maximum heat into the sensor assembly. It is also plamned that as soon as the sensor's temperature, DI-O7, indicates loss of themal stability, the experiment's z axis drive motor will be commanded to auto ON continuously in an effort to maximize the heat input to the sensor assembly. Seismometer data indicated that sunset at the Apollo 16 deployment site occureed near $1620 \mathrm{G} . \mathrm{m} . t ., 4 \mathrm{May}$ (the central station's sunshield transducer, ATmOl, reflected a decisive temperature decrease at 1500 G.m.t., 4 May).

The lunar surface magnetometer is operating normally, and contimues to measure magnetic fields as the moon passes through interplanetary space. The experiment ${ }^{\text {'s }}$ eighth and ninth flip cal sequences were executed correctly, by command, at 1309 G.m.t. and 1324 G.m.t., 5 May, respectively. The experiment's internal electronics contimue to experience a temperature decrease of approximately 0.3 C per hour. The magnetometer's sensors are presently operating in the 200 gamma range, with the flip cal inhibit logic and the digital filter commanded IN.

APOTIO LUNAR SURFACE EXPERTMENPS PACKAGE STATUG REPORI
6 May 1972
G.m.t.: $1200 \quad$ Page 2

The active seismic experiment is currently in standby. The experiment was commanded to operate select at $1438 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 5 \mathrm{May}$, and to high bit rate ON at $1450 \mathrm{G} . \mathrm{m} . t .$, for a passive Iistening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at 1520 G.m.t., and the experiment commanded to standby at 1522 G.m.t., 5 May. Nine significant signals of various characteristics were noted in real time. The instrument s grenade launch assembly continues experiencing a temperature decrease of approximately $0.9^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, T155, telephone 483-5067.
APOLIO 16 ALSEP

Status as of O9OO G.m.t. 6 May, was as foliows:

899

13,250
162
70.4 w
31.1
Invalid
$44.3_{0}^{\circ} \mathrm{C}\left(111.7^{\circ} \mathrm{F}\right)$
$\dot{-}$
-
-
0
0
0

APORTLO LUNAR SURFACE EXPERTMENTS PACKAGE STATTS REPORT

8 May 1972
G.m.t., 1200

Apollo 16 ATSEP
This report covers the science station's activity and data for the previous 48 hours. The central station's data subsystem components achieved thermal equilibrium near $0300 \mathrm{G} . \mathrm{m} . \mathrm{t} . \mathrm{g}, 6 \mathrm{May}$, at $38.8^{\circ} \mathrm{F}$, following a temperature increase with activation of the data subsystem's DSS - heater. The RTG power output is steady at 70.9 watts, and the signal strength at the $30-$ foot antennas is $-139.5 \pm 1.0 \mathrm{dbm}$. The operational procedure of eliminating the output pulses of the resettable solid stat timer remains in effect (timer inhibit command transmitted at 0955 G.m.t., 6 May).

The experiments are functioning as planned, continuing to sense data associated with the free-streaming solax wind region. Each experiment appears to be eithex thermally stabilized or approaching thermal equilibrium. The passive seismonetex's temperature remains stam bilized at $125.7^{\circ} \mathrm{F}$, initially achieving this temperature near 1600 G.m.t., 5 May (sun angle of 192 degrees). The magnetometer's internal electronics reached a stable temperature of -5.4 C , near 0300 G.m.t., 7 May (210 degree sun angle). The magnetometer correctly performed its loth through 14 th flip calibration sequences, by command, at vaxious times on May 6 (1313 G.m.t., 2051 G.m.t., 2058 G.m.t., and, 2130 G.m.t.), and at 1534 G.m.t., 7 May. The active seismic experiment is in standloy. The instrument's grenade launch assembly cgntinues experiencing a temperature decrease of approximately 0.2 C per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

:SMOTLOF SE SGM ‘NRN $8^{6 \cdot q \cdot W \cdot ท ~} 0060$ Jo Se snqeqs

TM POINT

$$
\begin{aligned}
& \text { Total Days of Operation } \\
& \text { Total Commands to Date } \\
& \text { Sun Angle } \\
& \text { Input Power } \\
& \text { Heater and Power Dumps } \\
& \text { Experiment Status } \\
& \text { Avg Thermal Plate Temp } \\
& \text { PSE Sensor Assembly Temp } \\
& \text { LSM Internal Temp } \\
& \text { SWS Module } 300 \text { Temp } \\
& \text { SIDE Temp } \\
& \text { CCGE Temp } \\
& \text { CPLEE Electronic Temp } \\
& \text { ASE GLA Temp } \\
& \text { HFE Temp Ref Junction }
\end{aligned}
$$

9 May 1972
G.m.t.: 1200

APOI10 16 ALSEP
The engineering data being received and processed from the Apollo 16 ALSEP indicates continued stable operation in RTG output power, radiated power, and temperature characteristics. Theoretically lunar midnight at the Descartes site will occur on May 11.

The passive seismometer experiment continues to function normally with the instrument's components sensing occasional signals typical of lunar module origin. Instrument housekeeping data continues to indicate a stabilized senscr assembly temperature of $125.7^{\circ} \mathrm{F}$ (auto of thermal control mode). The experiment continues operating with the feedback loop filter commanded OUT, and the sensor gains of all components commanded to 0 db .

The lunar surface magnetometer, functioning as planned, continues to sense the effects of the moon passing through interplanetary space. The instrument's 15 th flip cal sequence was executed correctly, by command, at $1311 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 8$ May. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, and the sensors in the 200 gamma range. Near 0600 G.m.t., 9 May, the instrument's internal electronics temperature indicated a $-1.2^{\circ} \mathrm{C}$ temperature decrease to $-6.6^{\circ} \mathrm{C}$, and is presently stable at the lower temperature. The experiment was stabilized for approximately 54 hours at $-5.4^{\circ} \mathrm{C}$, prior to the electronics temperature change.

The active seismic experiment is in standby as planned. The experiment's grenade launch assembly temperature continues a gradual temperature decrease of $0.1^{\circ} \mathrm{C}$ per hour.

It is requested that any oxganization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

APOLTO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

10 May 1972
G.m.t.: 1200

Apo110 16 ALSEP
The Apollo 16 Iunar science station, functioning as planned, experienced no unusual scientific events during the previous 24 hours of Iunar night operations. The moon's May perigee will occur on 12 May. at approximately $1700 \mathrm{G} . \mathrm{m} . \mathrm{t}$.

Central station downink data indicates that the power output of the RTG is constant at 70.9 watts. Signal strength of the ALSEP transm mitter: as measured at the ground stations, is generally unchanged since activation of the experiments package. The procedure of inm hibiting the 18 hour timer output pulses generated in the delayed command sequencex remains in effect. The central station's average thermal plate temperature has decreased to $37.9^{\circ} \mathrm{F}$.

The three experiments, passive seismometer, lunar surface magnetometer, and active seismic continue to provide uninterrupted science and engineering data. All data, 24 hours per day, are being recorded on magnetic tape at the MGFN tracking stations for subsequent detailed analysis. In general, the experiments package telemetry data continues to indicate stabilized temperature characteristics. The passive seismic instrument's sensor temperature, DL-O7, continues stabilized at 125.7 F . The magnetometeris internal electronics temperature remains stable at -6.6 C , having decreased to this temperature near 0600 G.m.t., 9 May. The active seismic experiment's grenade launch assembly continues experiencing a gradual temperature decrease of approximately $0.1^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R . Miley, Science Requirements and Operations Branch. TD5, telephone 483-5067.

Status as of $0900 \mathrm{G} . \mathrm{m} . t ., 10$ May was as follows：

TM POINT

13， 341
70.9 W
DSS－1 ON（10W）
AII ON
$19.6^{\circ} \mathrm{F}$
$126.2^{\circ} \mathrm{F}$
Invalid O°
？島《山己

11 May 1972
G.m.t.: 1200

Apollo 16 ALSEP

Iunar midnight at the Descartes site will theoretically occur today at $2348 \mathrm{G} . \mathrm{m} . \mathrm{t}$. The Apollo 16 science station is functioning properly, as the experiments and central station components continue to maintain thermal equilibrium.

The central station's average thermal plate temperature remains stabilized at $37.9^{\circ} \mathrm{F}$. The signal strength from transmitter "A", as reported by the various tracking stations, is $-139.0 \pm 1.0 \mathrm{dbm}$; and, the thermoelectric power source output remains constant. Inhibiting of the 18 -hour timer output pulses remains in effect.

Seismic events continue to be sensed by the short period verticl seismometer in episodes of small signals. These are believed to be generated by thermal fracturing of rocks in the near vicinity of ALSEP. The first definite moonquake was sensed at stations 12 and 16 simultaneously (data from the other seismic stations not yet available) at 1331 G.m.t., 8 May. A smaller moonquake was also recorded by the Apollo I4 seismic instrument at 0925 G.m.t., 8 May. Presently instrument housekeeping data indicates a sensor assembly temperature of $125.7^{\circ} \mathrm{F}$ (auto on thermal control mode). At $1645 \mathrm{G} . \mathrm{m} . t ., 10 \mathrm{May}$, the seismometer's housekeeping data indicated a rapid change in the sensox assembly temperature and all three tidal data channel outputs. The instrument temperature decreased, while the tidal data output become unstable for a period of apgroximately 1.3 hours. Sensor temperature has decreased as low as 125.3 F , and recovered to the current temperature of $125.7^{\circ} \mathrm{F}$. Approximately 5.5 hours later this unexpected rapid change of sensor temperature and tidal data output occurred again, lasting approximately 1.3 hours before instrument stabilization was noted in the telemetry data. This phenomemon has oceurred three times in total, cycling at approximately 5.5 hours, and having a duration of unstability for 1.3 hours. The instrument's erratic data outputs are under investigation. Presently experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components commanded to 0 db , and the uncage/arm fire circuit commanded to the or status.

The lunar surface magnetometer's science and housekeeping data output discloses that the moon is in interplanetary space, and that the instrument is operating normally. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, the sensors in the 200 gamma range, and the internal electronics temperature stabilized at $-6.6^{\circ} \mathrm{C}$.

The active seismic experiment is in standby as planned. The experiment's grenade launch assembly temperature appears to have stabilized near 1800 G.m.t., 10 May, at $-68.2^{\circ} \mathrm{C}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.
APOLLO 16 ALSEP
Com

Status as of 0900 G.m.t., 11 May, was as follows:

APOLLO 12 ALSEP

APOT,LO TUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

12 May 1972
G.m.t.: 1200

Apollo 16 ALSEP

The central station and all experiments continue to indicate thermal stability in the lunar night enviroment, with the instruments continuing to provide an uninterrupted flow of scientific and engineering data. The radiated power of the package's transmitter remains steady. The RTG is supplying a constant source of power to the system. The procedure of inhibiting the 18 -hour timer outputs generated in the delayed command sequencer will remain in effect throughout lunar night.

A seismic signal of large magnitude was sensed on all seismic stations on May 11, with the signal being recorded on all axes of each instrum ment. The event was initially sensed at the Apollo 14 and 16 stations simultaneously at 1333 G.m.t., 11 May. Data tape playback of the 12 and 15 passive seismometers confirmed that the event had also been recorded at those stations. The moon's May perigee will occur today. Presently the Apollo 16 instrument's housekeeping data indicates a sensor assembly temperature of 125.7° F (auto of thermal control mode). The temperature and tidal data instability phenomemon, first displayed by the instrument on 10 May , continues cycling at approximately 5.5 hour intervals. The instrument's erratic data outputs continue under investigation. Presently the Apollo 16 station instrument is configured identically to the other passive seismometers to achieve network congruity.

The lunar surface magnetometer is operating normally, and continues to measure lunar night time field data. The experiment's 16 th and 17th flip cal sequences were executed correctiy, by command, at 0332 G.m.t. and 0343 G.m.t., 12 May.

The active seismic experiment is in standoy. The experiment's grenade launch assembly temperature remains stabilized at $-68.7^{\circ} \mathrm{C}$. Today's scheduled listening mode operations will not be conducted because of the mission rule (32-3-A) limiting experiment activation when the grenade launch assembly temperature is $-60^{\circ} \mathrm{C}$ or below, prior to grenade fixing. The next listening mode operation is consequently plamed. for 19 May.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Central station	Midnight of the station's Ioth Iunation will occur today; power from the RTG contimues steady and transmitter "A" downlink signal strength is solid at $-137.2 \pm 1.6 \mathrm{dbm}$. After verification of the 18 -hour timer's 223 rd output pulse on 6 May, The lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150 , twice daily at 0100 G.m.t. and 1300 G.m.t. was initiated. The data subsystem's average thermal plate temperature is presently stabilized at -4.I F.
Passive seismic experiment	Operation is in the auto on thermal control mode, sensor gains are 0 db, and the feedback loop filter commanded. OUY in order to achieve seismic network congruity. The instrument's uncage circuitry was configured to the oT state at 0828 G.m.t., 6 May , in an effort to maximize the heat input to the sensor assembly. Seismic signals have been noted in conjunction with the Apolio 16 seismometer.
Lunar surface magnetometer experiment	The experiment's sensors were commanded to the 50 gamma range at $2207 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 5$ May for the duration of lunar night. Cuxrently the instrument has executed 447 flip calibration sequences since activation. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The X axis and z axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head syachronization.
Solar wind spectrometer experiment	Continual operation in the extended range mode since 12 Jamuary 1972.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. The instruments high voltages were commanded ON at 2133 G.m.t., I May, for the duration of Iunar night operations per the planned operational procedure.
Heat flow experiment	The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $89.3^{\circ} \mathrm{K}\left(-298.6^{\circ} \mathrm{F}\right)$. Since $0113 \mathrm{G} . \mathrm{m} . t ., 5$ May (173 degree sun angle), TREF 2 measurements have indicated offscale HIGH. A duplicate measurement, which is performed during the probe I sequence, is operating normally so that no data are lost. The TREF 2 measurement has been intermittent offscale HIGH since August 1971. Presently TREF 2 is outputting erroneous data.

ApO110 14 ATSEP

उपף IO par to qndnno xomod 6 SeN heater (IO watts) was commanded plate temperature indicated $30.5^{\circ} \mathrm{F}$. lowing unexpected functional the instrument's Level speed ord relating to this change
The seismometer was subany problems (functional change This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUT) in order to matoh seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972. Events have been noted in conjunction with the 16 ex Currently is standby. On 5 May, experiment commanded on at 1525 G.m.t., and to high bit rate on at $1530 \mathrm{G} . \mathrm{m} . \mathrm{t}$., for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate temminated at $1600 \mathrm{G} . \mathrm{m} . t \mathrm{t}$, and the instrument commanded to standby at $1602 \mathrm{G} . \mathrm{m} . t$. Two significant signals of various characteristics were noted in real time. The next listening mode operation is scheduled for today. Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly ocourred 9 May 1971) in one section of the analog-tomigital filter are having no adverse effect on the saientific outputs of the experiments. Currently in operate. Per the agreed operational procedure, the experiment has been commanded to operate select each earth day for a minimum operational period of 10 hours (instrument is commanded to standby select during the non-data collecting periods). Initial instrument operations for this lunar night were initiated at 0437 G.m.t. 7 May. At 0329 G.m.t., 11 May, the experiment was commanded to operate The experiment's analyzer A high voltage (AC-O3) remained substantially constant at the 2500 vdc level. Analyzer B high voltage remains below nominal levels,
Apol1o 12 ALSEP
Operational status from 5 May $1972,1200 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, to $12 \mathrm{May} 1972,1200 \mathrm{G} . \mathrm{m} . t$.
at -138.4 t 2.4 average Midnight of the packages 3Ist Iunar night will occur 15 May ; RTG power output is pəquodәa sem पq8uəuts
 7 May.

- ab

tru-
May in an effort to maximize the heat input to the sensor assembly during lunar night

operations. DI-O7 indicated $125.9^{\circ} \mathrm{F}$ at z motor ON. Seismic singals have been sensed simultaneously with the Apollo 16 passive seismjc experiment.

 ing data again were static. Wo valid science data was noted in real time. The instrument's digital filter remains commanded IN. The experiment's y and z axes sensor heads remain fixed at a 180 degree position, not responding to flip cal commands. The x sensor is returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

Uninterrupted operations in the extended range mode since 12 January 1972.

The instrument is operating in full automatic stepping sequence with the Channeltron
 tions at 0718 G.m.t., 5 May (T2 $=28.1 \mathrm{C}$), and a sun angle of 149 degrees.

APOLIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

13 May 1972
G.m.t.: 1200

Apol10 16 ALSEP

All experiments and the central station continue to operate as planned in the lunar night environment, with the electronies and structural temperatures of each of the experiments package components continuing to indicate equilibrated temperature characteristics. A steady output of 70.4 watts from the RTG is being received by the experiments package. The signal strength from the ALSEP transmitter is reported at $-138.2 \pm 0.2 \mathrm{dbm}$. The 18 -hour timer pulse outputs are inhibited.

A significant seismic event was sensed simultaneously by the Apollo 16 station and 14 station seismometers at 0849 G.m.t., 13 May. A data tape playback of the Apollo 12 and 15 passive seismometers has not yet been completed to confirm recording of this event at those seismic stam tions. The magnitude of this event was so large that it was recorded on all axes of each instrument. Instrument housekeeping data continues to indicate a stabilized sensor assembly temperature of $125.7^{\circ} \mathrm{F}$ (auto ON thermal control mode). The experiment continues operating with the feedback loop filter commanded OU1, the sensor gains of all components commanded to 0 db , and the uncage/arm fire circuit commanded to the OT state.

The lunar suxface magnetometer, functioning as planned, continues to sense the effects of the moon passing through interplanetary space. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, the sensors in the 200 gamma range, and the internal electronics temperature stabilized.

The active seismic experiment is in standby as planned. The experiment's grenade launch assembly temperature continues experiencing a gradual temperature decrease of approximately $0.0 I^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Status as of 0630 G.m.t., 13 May, was as follows: APOLLO 12 ALSEP
 70.9 w
DSS -1 ON $(10 \mathrm{w})$
AII ON

APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
15 May 1972
G.m.t.: 1200

APOIIO 16 ALSEP
This report covers the 16 station's activity and data for the previous 48 hours. The science station is functioning as plamed, as the experiments and central station components continue to maintain thermal equilibrium.

Following the largest seismic avent recorded to date, the passive seismic experiment's feedback loop filter was commanded IN (1408 G.m.t. 13 May) in an effort to sense any free oscillations of the moon's interior structure that may have been induced. Filter IN configures the instrum ment into a flat response mode of operation (feedback filter our is peak response). On 14 May, at $0945 \mathrm{G} . \mathrm{m} . t$., the 16 station seismometer sensed an impact event on all components (data from the other seismic stations not yet available). Seismic signals of the 14 May event Iasted about one hour, with the instrument's filter IV. At 1447 G.m.t. 14 May, the instrument's feedback loop filter was commanded our, returning the experiment to peak response and the seismic network congruity. Also, the data tapes pertinent to the seismic event of 13 May were shipped immediately to facilitate detailed analysis, and no data tape playback of the Apollo 12 and 15 station seismometers was initiated. Currently the instrument's temperature remains stabilized at 125.7° F. The temperature and tidal data instability phenomemon, initially displayed on 10 May, continues cycling at approximately 4 hour intervals. This phenonemon is presently not understood, but does not appear to be degrading the experiment's seismic data.

The lunar surface magnetometex is operating normally, and continues to measure magnetic fields as the moon passes through interplanetary space. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, the sensors in the 200 gamma range, and the internal electronics temperature stabilized.

The active seismic experiment is in standby as planned. The experiment's grenade launch assembly temperature remains stabilized at $-69.1^{\circ} \mathrm{C}$.

It is requested that any organization having coments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch. TD5, telephone 483-5067.

Status as of 0900 G.m.t., 15 May, was as follows:

APOLLO 12 ALSEP

> Total Days of Operation Total Commands to Date

Sun Angle
Input Power Power Dumps Heater and Power Dumps

Experiment Thermal Plate Temp Avg Thermal Sensor Assembly Temp PSE Sensor Assemmp

SWS Module 300 Temp
SIDE Temp
CPLEE Electronic Temp
ASE GLA Temp
HFE Temp Ref Junction

16 May 1972
G.m.t.: 1200

Apol1o 16 ALSEP
The central station's average thermal plate temperature remains stabilized at 37.8 F , with the DSS-1 heater ON (10 watts). The signal strength from transmitter "A", as reported by the $30-f o o t$ antema tracking stations, is $-138.1 \pm 1.3 \mathrm{dbm}$. The thermoelectric power source output remains constant. Inhibiting the effects of the I8-hour timer output pulses continues.

The typical night-time pattern of low background noise with occasional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded OUH, the sensor gains of all components configured to o db, the uncage/arm fire circuit commanded to the or state, and the sensor assembly temperature stabilized.

The lunar surface magnetometer is presently indicating the moon's pase sage through interplanetary space. The instrument is operating normally with the digital filter commanded IN, the fip cal inhibit logic commanded. IN, and the sensors configured to the 200 gamma range. Engineering data indicates that the y axis sensor's heater thermostat is maintaining the experiment's internal thermal equilibrium. The instrument's l8th and l9th flip cal sequences were executed correctly, by command, at 1322 G.m.t. and 1333 G.m.t. 15 May.

The active seismic experiment is in standby as planed. The experiment ${ }^{\circ} \mathrm{S}$ grenade launch assembly temperature remains stabilized at -69.5 C .

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

17 May 1972
G.m.t.: 1200

Apol10 16 ATISEP
Lunar suncise at the Descartes site will occur on 19 May. The engineering data being received and processed from the Apollo 16 ALSEP indicates continued steady central station and experiments lunar night operations.

Central station downink data indicates continued stable operation in operating power and radiated power, and equilibrated thermal characm teristics. The procedure of inhibiting the l8-hour timer output pulses generated in the delayed command sequencer remains in effect.

The three experiments, passive seismometer, lunar surface magnetometer, and active seismic continue to provide uninterrupted science and engineering data. All data, 24 hours per day, are being recorded on magnetic tape at the MSFN tracking stations for subsequent detailed analysis. In general, the experiments package telemetry data continues to indicate stabilized temperature characteristics. The passive seismic instrument's sensor temperature, DL-07, continues stabilized at 125.7 F . The magnetometer's internal electronics temperature remains stable at -6.6 C . The active seismic experiment's grenade launch assembly is holding basically constant at $-69.5^{\circ} \mathrm{C}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5. telephone 483-5067.

18 May 1972
G.m.t.: 1200

Apol10 16 AISEP
The Apollo 16 AISEP central station and all experiments continue to function, with the instruments continuing to provide an uninterrupted flow of scientific and engineering data.

Curently the average thermal plate temperature of the central station is $37.4^{\circ} \mathrm{F}$, with the DSS-I heater ON. The temperature swing of the central station's data subsystem thermal plate has been controlled at 72 degrees (maximum temperature value of the average thermal plate equalled $109.1{ }^{\circ} \mathrm{F}$ during lunar day operations; and, the minimum average thermal plate temperature decreased to 37.4° F during Iunar night support with the data subsystem's 10 watt heater on-Iine). The RTG is supplying a constant output of power to the system. The radiated power of the package's transmitter is reported at -139.0 ± 3.0 dbra. Inhibiting the effects of the 18 -hour timer output pulses continues.

The pattern of minimum noise currently being sensed by the passive seismometer is similar to that observed during lunar night operations of seismic instruments on previous missions. The instrument's sensor assembly has experienced a thermal swing of approximately 22 degrees over a lunar cycle (sensor assembly temperature indicated offscale HIGH during the lunar noon period, with the maximum temperature reached projected at $147^{\circ} \mathrm{F}$). Experiment's sensor assembly nighttime temperature is holding basically constant $125.7^{\circ} \mathrm{F}$ (auto ON thermal control mode). Seismometer's operation continues with the feedback commanded oUT, 0 db gain on all sensors, and the uneage/arm fire circuit commanded to the or state. The temperature and tidal data instability phenomenon initially displayed on 10 May, continues cycling at approximately 4 hour intervals. This phenomenon is presently not understood, but does not appear to be degrading the experiment's seismic data.

The lunar surface magnetometer is operating nomally, continuing to measure magnetic fields as the moon passes through interplanetary space. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, and the fiux gate sensors configured to the 200 gamma range. The experiment's internal electronics temperature presently is stable at $-6.6^{\circ} \mathrm{C}$. During Iunar day operations the instrument's internal electronics increased to a peak temperature of $44.7^{\circ} \mathrm{C}$ (a thermal cycle of $51^{\circ} \mathrm{C}$).

The active seismic expeximent is in standry as planned. The experinent's grenade launch assembly temperature remains stabilized at $-69.5^{\circ} \mathrm{C}$. The maximum day-time temperature experienced by the grenade launch assembly was $57.8^{\circ} \mathrm{C}$ (a temperature gradient of $127^{\circ} \mathrm{C}$ over a Iunation). Plans are being formulated to fire the Apollo 16 ALSEP active seismic grenades on May 23.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Status as of $0900 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 18$ May, was as follows:

IM POINT

APOTIO IUNAR SUREACE EXPERTMEINTS PACKAGE STIATUS REPORT
19 May 1972
G.m.t.: 1000

APOIIO 16 ALSEP

Iunar sunrise at the Descartes site will occur today. The central stam tion's average thermal plate temperature remains stabilized, with the DSS-I heater ON (10 watts). The signal strength from transmitter "A", as reported by the 30 foot antena tracking stations, is steady. The themoelectric power source output remains constant. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with occasional small, high frequency signals. is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded out, the sensor gains of all components configured to O db, and the sensor assembly temperature stabilized (auto on thexmal control mode). The uncage/arm fire circuit is configured to the UNCAGE state minimizing heat into the sensor assembly. The instrment will be configured in this manner throughout lunar day to maintain minimum heat input to the sensor assembly.

The Iunar surface magnetometer, functioning as planed, continues to measure time-dependent, solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. Engineering data indicates that the y axis sensor ${ }^{\text {s }}$ heater thermostat is maintaining the experiment's internal thermal equilibrium. The instrument's $20 t h$ and $2 l s t$ flip cal sequences were executed correctily, by command, at 0820 G.m.t. and $0830 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , today.

The active seismic experiment is in standby as planed. The experiment's grenade launch assembly temperabure remains stabilized at -69.5 C .

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirem ments and Operations Branch, TD5, telephone 483-5067.
APO110 15 ATSEP
Operational status from 12 May, 1200 G.m.t., to 19 May, 1200 G.m.t.

ApO110 14 ATSEP

$$
\begin{aligned}
& \text { This instrument is configured identically to the other seismometer's (thermal } \\
& \text { control auto oN, O do gain on all sensors, and filter ouT) in order to match } \\
& \text { seismic response. The instrument s long period } 2 \text { axis has not displayed valid } \\
& \text { data or responded to a command since } 23 \text { Maroh } 1972 \text {. Events have been noted in } \\
& \text { conjunction with the } 16 \text { station's passive seismometer. }
\end{aligned}
$$

Currently in standby. On 12 May the scheduled listening mode operation was not conducted because of the revised operations procedure limiting experiment turn ${ }^{\circ} \mathrm{C}$ or below. \rightarrow May. -1 Presently operating in the full automatic stepping sequence ($0-127$ frames)
with the Channeltron high voltages commanded ON. Intermittent positive with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred 9 May l97l) in one section outputs of the experiments.

> Uninterrupted operations in the automatic sequence (electronics heater ON) since 0329 G.m.t., Il May, collecting science data in the six voltage ranges of analyzer A. The experiment's analyzer A high voltage (AC-03) remained substantially constant at the 2600 vac level. Analyzer B high voltage remains below nominal levels. The current plan is to operate the instrument in the automatic sequence, with the electronics heater ON, through the station's ephemris sumrise. A revised lunar day operations procedure (22 May - 5 June) is presently being formulated.

Central station
Passive seismic experiment Active seismic
experiment
Suprathermal ion detector/cold cathode gauge experiment

Charged particle Charged
environmental experiment
ADO110 12 ATSEP
Operational status from 12 May 1972, 1200 G.m.t. : to 19 May 1972, 1200 G.m.t.

[^0]The instrument is operating in full automatic stepping sequence with the Chameltron high voltage ON. The experiment was commanded on for continuous lunar night operations 5 May.

Status as of 0900 G.m.t., 19 May, was as follows:

 OFF

《《

APOLLO LUNAR SURFACE EXPERIMEMTS PACKAGE STATUS REPORT
20 May 1972
G.m.t.: 1200

APO110 16 ALSEP

The experiments package is presently 26 hours into its second Iunar day, and continues to function normally. It is estimated that sunrise occurred near 1037 G.m.t., 19 May (sunrise time primarily based on decisive change in the seismometer's data outputs).

The average temperature of the central station's electronics thermal plate is currently $48.3^{\circ} \mathrm{F}$, at a sun angle of 13 degrees at the deployment site with a corresponding temperature increase of $0.5^{\circ} \mathrm{F}$ per hour. The data subsystem's 10 -watt heater was commanded OFF at 1331 G.m.t., 19 May , when the station's average thermal plate temperature increased to 40.7 F . RTG output power is steady at 70.1 watts following slight fluctuations noted during lunar sunrise. Downlink signal strength is constant at -139.2 dbm , plus or minus 0.2 dbm . The data subsystem's timer reset command, octal 150, was transmitted at 1329 G.m.t., 19 May, to reset the timer counters to a zero count (clear). The I-minute and the 18-hour output pulses and the timer transmitter turnoff function is referenced to the timer reset (reset command precludes automatic transmitter turnoff at 97 ± 5 days). Inhibiting the effects of the 18 -hour timer output pulses continues.

Two significant seismic events were sensed by the Apollo 16 passive seismometer beginning at 2328 G.m.t., 18 May, and at 0716 G.m.t., 19 May, respectively. The seismic signal of May 18 was sensed by the long period horizontal components on the station 16 instrument, along with the Apollo 14 and 15 seismometers (ringing of the event lasted approximately 50 minutes). The 19 May seismic activity (recorded by the long period horizontal and the short period vertical component of the Apollo 16 instrument) was of a lessex duration. Smailer seismic events were sensed by the Apollo 14 seismic experiment at 0157 G.m.t. 18 May, and 1826 G.m.t., 19 May. Sensor telemetry data presentiy indicates a positive temperature increase of approximately 0.04 F per hour. The 16 instrument's temperature and tidal data instability phenomemon has disappeared, as the sensor assembly temperature is seeking thermal equilibrium.

The lunar surface magnetometer is opexating normally and correctly performed its 22nd through 33 rd flip calibration sequences, by command, at various time on May 19 and today (1232, 1241, 1429, 1438, 1847, 1855, 2139, and 2147 G.m.t., 19 May; and, $0100,0107,0454$ and 0507 G.m.t., 20 May). It is requested by the principal investigator that a set of flip cals (two calibration sequences) be commanded at each optical terminator (sunrise and sunset) at the following intervals; 2-hours preceding; 2-hours after; 6-hours after; 12-hours after; and, 24-hours after. Also, that a set of flip cals be commanded every 2 -days during Iunar day-time operations, and every 3-days during lunar night-time operations.

The active seismic experiment is in standby as planned. The instrum ment's grenade launch assembly continues experiencing a temperature incwease of approximately 1.8 C per hour. On 19 May the scheduled passive listening mode operation was not conducted because of the operations mission rule limiting experiment turn oN when the grenade launch assembly temperature ($\mathrm{AS}-03$) is $-60^{\circ} \mathrm{C}$ or below. Plans are being formulated to fire the Apollo 16 ALSEP active seismic grenades on May 23.

It is requested that any organization having comments, questions, or suggestions concerning this report contact, R. Miley, Science Requirements and Operations Branch, ID5, telephone 483-5067.

APOTLO IUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

22 May 1972
G.m.t.: 1200

Apollo 16 AISEP
This report covers the Apollo 16 ALSEP activity and data for the previous 48 hours. Operations during this period were essentially unchanged, with the exception of a continual experiments package temperature increase as a function of sun elevation at the Descartes site.

Central station housekeeping data indicates that the data subsystem electronics are experiencing an average temperature increase of approximately $0.8^{\circ} \mathrm{F}$ per hour. The downink signal strength from transmitter "A", and the thermoelectric power source output remains steady. The procedure of inhibiting the 18 -hour timer outputs generated in the delayed command sequencer will remain in effect throughout lunar day.

The passive seismic experiment is contimuing to sense signals of vawious amplitudes, characteristic of instrument shroud movement from the optical terminator's thermal transients. These thermally generated disturbances will continue to diminish with the approach of lunar noon, as the seismometer is fully illuminated and the thermal gradients across the instrument's thermal shroud are at a minimu. The operation of the experiment is with the feedback loop filter commanded out and the sensor gains of all components configured to 0 db . The instrument's heater is configured to auto On and the uncage/axm fire circuit to the UNCAGE state in an effort to minimize the sensor's temperature increase (average rate of increase is $0.02^{\circ} \mathrm{F}$ per hour).

The lunar surface magnetometer is operating normally, and continues to measure magnetic fields as the moon passes through interplanetary space. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, and the flux gate sensors configured to the 200 gamma range. The instrument's 34 th and 35 th fip cal sequences were executed correctly, by command, at 1217 G.m.t. and 1225 G.m.t., 20 May.

The active seismic experiment is currently in standby following a nonscheduled passive listening mode operations of 30 minutes today. The experiment was commanded to operate select at 0519 G.m.t., 22 May, and to high bit rate ON at $0532 \mathrm{G} . \mathrm{m} . t$. , for the passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. The instrument's roll angle sensor indicated offscale HIGH, and the pitch angle sensor indicated -3.49 degrees. No signifim
cant signals were noted in real time. The instrument's grenade launch assembly continues experiencing a temperature increase of approximately $1.3^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

> APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

23 May 1972
G.m.t.: 1100 G.m.t.

Apollo 16 ALSEP
On May 23 a command sequence was initiated resulting in the successfur launching of three of the four high explosive grenades contained in the mortar package component of the active seismic experiment. The decision was made not to launch grenade number 1 due to the fact that the previously launched grenade (number 3) caused the instrument's pitch angle sensor (telemetry point $D S-07$) within the grenade launch assembly to read offscale HIGH. The offscale HIGH indication rendered. the pitch position of the launch assembly uncertain. Further data analysis may or may not permit the launching of grenade number 1 in the future. The previously planned sequential firing order was adhered to for the launching of the three grenades; numbers 2, 4, and 3. Significant seismic energy arrivals were noted by all three geophones for each grenade launched. Pertinent command times are noted:

e seismic experiment ON	0520 G.
High bit rate ON	- 0530 G.m.t.
Geophone cal pulse	- $0532 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
Grenade \#2 launch	- 0548 G.m.t.
High bit rate OFF	- 0558 G.m.t.
High bit rate ON	- $0627 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
Grenade \#4 launch	- 0632 G.m.t.
Grenade \#3 launch	- $0640 \mathrm{G} . \mathrm{m}$.
High bit rate OFF	- $0644 \mathrm{G} . \mathrm{m} . t$
Active seismic experiment	0832 G.m

The central station downlink data indicates continued stable operation in operating powex and radiated power, and a continuing temperature increase due to sun elevation. The other two experiments, passive seismometer, and lunar surface magnetometer continue to provide uninterrupted science and engineering data. In general, the experiments are indicating a continuing temperature increase. The magnetometer's 36th and 37th flip cal sequences were executed correctly, by command, at 2307 G.m.t. and 2314 G.m.t., 22 May.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

APOITO LUNAR SURFACE EXPERIMEINTS PACKAGE STATUS REPORT

24 May 1972
G.m.t.: 1200

ApO110 16 ALSEP
The experiments and central station are functioning as planned, with scientific and engineering measurements from the data subsystem and all experiments indicating operational status within limits. No adverse effects from the launching of the active seismic experiment grenades have been noted in the Apollo 16 stations downink telemetry.

Power from the radioisotope source remains stable at 70.9 watts. The average temperature of the central station electronics thermal plate contimues increasing at $0.15^{\circ} \mathrm{F}$ per hour. Downink signal strength is steady at -139.0 dbm , plus or minus 1.0 dbm . The procedure of inhibiting the 18 -hour timer outputs generated in the delayed command sequencer will remain in effect throughout lunar day.

The passive seismic experiment is continuing to sense signals of vaxious amplitudes, characteristic of instrument shroud movement from the optical terminator's thermal transients. These thermally generated disturbances will continue to diminish with the approach of Iunar noon, as the seismometer is fully illuminated and the thermal gradients across the instrument's thermal shroud are at a minimum. The operation of the experiment is with the feedback loop filter commanded out amd the sensor gains of all components configured to 0 db . The instrum ment's heater is configured to auto on and the uncage/arm fire circuit to the UNCAGE state in an effort to minimize the sensor's temperature increase (average rate of increase is $0.4^{\circ} \mathrm{F}$ per hour).

The lunar surface magnetometer experiment is presently indicating the moon's passage through the bow shock created by the interaction of the earth's magnetic field with the solar wind. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, and the flux gate sensors configured to the 200 gamma range. The instrument's internal electronics temperature is increasing at a rate of approximately $0.2^{\circ} \mathrm{C}$ per hour.

The active seismic experiment is currenty in standby, The instrument's grenade launch asgembly continues experiencing a temperature increase of approximately 0.3 C per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R, Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Status as of $0740 \mathrm{G} . \mathrm{m} . t ., 24 \mathrm{May}$ ，was as follows：

品吕台

APOTLO IUNAR SURFACE EXPERIMENIS PACKAGE STATUS REPORT
25 May 1972
G.m.t. : 1200

Apol10 16 ALSEP
Scientific data continues being collected, including the effects of passing through the earth's magnetosheath. The central station and all experiments are experiencing a positive temperature excursion.

The average temperature of the central station electronics thermal plate continues increasing at approximately 0.2 F per hour. The thermoelectric power source output remains steady. Inhibiting the effects of the 18 hour timer output pulses continues. Over the past 24 hour period, the reported signal strength from transmitter "A" has varied, depending on the supporting MSFN sites' characteristics as follows:

$$
\begin{array}{ll}
\text { Canary Islande, } 30 \text { foot antenna } & -139.6 \mathrm{dbm} \\
\text { Carnarvon, } 30 \text { foot cooled antenna } & :-138.5 \mathrm{dbm} \\
\text { Hawaii. } 30 \text { foot cooled antena. } & -140.5 \mathrm{dbm}
\end{array}
$$

The passive seismic experiment continues recording venting in the LM descent stage, and characteristic wobbling as the instrument settles. These disturbances are steadily decreasing in amplitude. The instrument's feedback loop filter is commanded OUP, and the long period and short period. components commanded for peak response (amplifier circuit attenuators to 0 db). The seismic network has steady congruity, as all seismic instruments are configured identically. The experiment's sensor temperature, DL-07, indicated offscale HIGH at approximately $0650 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 25$ May (sun angle of 72 degrees). The experiment's sensor temperature went offscale HIGH during the first lunation at 88 degrees sun angle. Presently the instrument's thermal control mode is auto ON.

The lunar surface magnetometer experiment is operating normally, and continues to measure magnetic fields as the moon passes through the earth's magnetosheath, approaching the magnetopause. Engineering data indicates that the instrument's electrionics temperature is increasing at the average rate of $0.15^{\circ} \mathrm{C}$ per hour, over the preceding 24 hours.

The active seismic experiment is currently in standby as planed. The instrument's telemetry data presently indicates that the grenade launch assembly temperature (AS-03) is stabilized at $69.8^{\circ} \mathrm{C}$, having reached this temperature near $0300 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 24 \mathrm{May}$ (sun angle of 58 degrees). The mortar package assembly (AS-02) indicated a stable temperature of $73.4^{\circ} \mathrm{C}$ from near 0600 G.m.t., 24 May, to 0600 G.m.t., 25 May. At $0600 \mathrm{G} . \mathrm{m} . \mathrm{t} .$, 25 May, the mortar package temperature increased to $75.0^{\circ} \mathrm{C}$ (73 degree sun angle), and at this point in time appears stabilized.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

AFOLIO LUNAR SURFACE EXPFRTMENTS PACKAGE STATUS RFPORT
26 May 1972
G.m.t.: 1200

ADOI10 16 ALSEP
The station is in its 35th day of operation with the moon passing in and out of the earth's geomagnetic tail. Data of this region are being gathered by the lunar surface magnetometer experiment. The central station's data subsystem components continue to seek thermal equilibrium. The central station's average thermal plate temperature continues indicating a lower temperature of approximately $2.0^{\circ} \mathrm{F}$ when compared with identical sun angles of the station's first lunar day operations. The data subsystem's thermal plate currently continues to experience a average temperature increase of $0.1^{\circ} \mathrm{F}$ per hour. The thermoelectric power source output remains steady. The reported signal strength of transmitter "A" at the various 30 -foot antennas is $-140.3 \pm 0.8 \mathrm{dbm}$.

The passive seismoneter's short period vertical component sensed a large local event at $0713 \mathrm{G} . \mathrm{m} . \mathrm{t} . \mathrm{F} 20 \mathrm{May}$. A smaller natural event was also recorded by the passive seismic experiment's long period horizontal components and the short period vertical component on May 24 at 0845 G.m.t. The duration of the signal was evaluated to be 20 minutes. Due to the offscale temperature condition the seismometer's tidal data is degraded. but has minimal effect on the instrument's seismic data outputs. Present configuration is themal control auto ON, and O dib gain on all axes.

The Iunar surface magnetometer is operating normally in the 200 gamma range as the moon passes into the earth's magnetic tail. The instrument's internal electronics temperature continues to increase at a rate of $0.2^{\circ} \mathrm{C}$ per hour, precisely tracking the instrument's first Iunar day temperature.

The active seismic experiment is currently in standby, with a 30 minute passive listening mode operation planned for today. The grenade launch assembly ($\mathrm{AS}-03$) and the mortar package assembly (AS-02) temperatures continue to indicate a stable temperature of 68.3 C (AS-03 decreased from the previous temperatue of $69.8^{\circ} \mathrm{C}$ near $2100 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 25 \mathrm{May}$) and $75.0^{\circ} \mathrm{C}$, respectively.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

$$
\text { Apolio } 15 \text { ALSE上 }
$$

Operat	al status from 19 May . $1200 \mathrm{G} . \mathrm{m} . t .$, to $26 \mathrm{May}, 1200 \mathrm{G} . \mathrm{m} . \mathrm{t}$. Sunrise of the station's Ilth Iunation ocourred near 2158 G.m.t., 20 May; power from the RTG contimes steady and transmitter "A" downink signal strength is solid ato $-136.3=1.5 \mathrm{dbm}$. The Iunar night's operational procedure of eliminating the data Subsystem's timer outputs by uplining the timen's reset command, octal 150 , was terminated at $0518 \mathrm{G} . \mathrm{m} . t . \mathrm{t} 21 \mathrm{May}$.
Passive seismic experiment	Operation is in the auto ON themal control mode, sensor gains are 0 db, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. The instrument's uncage/arm fire circuit was configured to the UNCAGFD state in an effort to minimize the heat input to the sensor assembly. Seismic signals have been noted in conjunction with the Apollo 16 seismometer.
Lunar surface magnetometer experiment	The experiment's sensors were commanded to the 100 gamme range $2147 \mathrm{G} . \mathrm{m} . \mathrm{t}$. . 20 May for lunar day-time operations. It is requested by the principal investigator that a set of flip cals (two calibration sequences) be commanded at each optical terminator (sunrise and sunset) at the following intervals; 2-hours preceding; 2-hours after; 6-hours after; l2-hours after; and, 24-hours after. Also, that a set of flip cals be commanded every day during lunar day-time and lunar night-time operations. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands.
Solar wind. spectrometer experiment	Continual operation in the extended range mode since 12 Jamuary 1972.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. The instruments high voltages will be commanded OFF to preclude mode changes when the internal electronics temperature is above $85^{\circ} \mathrm{C}$.
Heat flow experiment	The temperature of probe I at the bottom of the Iowest probe section is $253.1^{\circ} \mathrm{K}$ $\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately 362.1 . $K\left(159.4^{\circ} \mathrm{F}\right)$. Since 5 May the instrument's measurement TREF 2 has continually displayed erroneous data, TREF 2 returned onscale at $0747 \mathrm{G} . \mathrm{m} . t ., 24 \mathrm{May}$ (sun angle of 49 degress) outputting valiá data. At 1335 G.m.t.. 24 May (51 degree sun angle) TREF 2 data again indicated a offscale HIGH condition. Currently TREF 2 is outputting erroneous data.

Operational status from 19 May, 1200 G.m.t., to 26 May, 1200 G.m.t.

 This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUP) in order to match seismic response. The instrument's long period z axis has not displayed valia data or responded to a command since 23 March 1972. Events have been noted in confunction with the 16 station's passive seismometer.

[^1]Charged particle
$$
A D O 11014 \text { ATSED }
$$
Lunar
environmental
experiment
\[

$$
\begin{aligned}
& \text { until } 5 \text { June }
\end{aligned}
$$
\]

Sunrise of the package's 32nd lunar day occurred 22 May; RTG power output is Sunrise of the package's 32nd lunar day occurred 22 May; RTG power output is
constant; and, transmitter "B" signal strength was reported at $-139.0 \pm 2.5 \mathrm{dbm}$.
The central station's DSS-I heater was commanded orF at I52l G.m.t. 22 May ,
when the station's average thermal plate temperature increaseato 30.2^{0} F.
The instrument's thermal control mode is auto on, the component gains at 0 db , and the feedback loop filter commanded OUT, identical to the other seismic instruments. The instrument's z axis drive motor was commanded OFF at 1518 G.m.t., 22 May, as the sensor assembly temperature increased to $126.0^{\circ} \mathrm{F}$. Seismic signals have been sensed simultaneously with the Apollo 16 passive seismic experiment. Scientific and engineering data have been static since 6 May. The instrument's digital filter remains commanded IN. The experiment's y and z axes sensor heads remain fixed at a 180 degree position, not responding to flip cal commands. The
 to maintain sensor head synchronization.

 The instrument is operating in full automatic stepping sequence with the Channeltron high voltage ON. The experiment's high voltage will be commanded OFF to preclude mode changes when the internal temperature is above $55^{\circ} \mathrm{C}$. Cyclic commanding of the instrument's high voltage power supply during the current lunar day will be unchanged Passive seismic
Central station
Lunar surface magnetometer experiment Solar wind spectrometer experiment
Suprathermal
ion detector
experiment

$$
\text { ANOIIO } 12 \text { ATSEP }
$$

Status as of 0900 G.m.t., 26 May, was as follows:

Total Days of operation
Total Commands to Date
Sun Angle
Sun Angle
Heater and Power Dumps
Avg Thermal Plate Temp
PSE Sensor Assembly Temp
ISM Internal Temp
SWS Module 300 Temp
SIDE Temp
CPLEE Electronic Temp
ASE GLA Temp
HFE Temp Ref Junction

APOITO LUNAR SURFACE EXPERIMENTIS PACKAGE STATUS REPORT

29 May 1972
G.m.t.: 1200

Apollo 16 ALSEP
This report covers the Apollo 16 AISEP activity and data for the previous 72 hours, including a scheduled temporary suspension of ALSEP mission control real time operations from $0500 \mathrm{G} . \mathrm{m} . t ., 27$ May, through 0000 G.m.t., 28 May, due to major maintenance service to the MSC central heating and cooling plant. Operations during this period were esm sentially unchanged, with the exception of a continual experiments package temperature decrease as a function of sun elevation angle at the Descartes site.

Central station housekeeping data indicates that the data subsystem electronics thermal plate is currently experiencing an average temperature decrease of approximately $0.2^{\circ} \mathrm{F}$ per hour. The central station's average thermal plate temperature achieved a maximum second lunar day value of $107.6^{\circ} \mathrm{F}$ near $1802 \mathrm{G} . \mathrm{m} . t ., 26$ May (sun angle of 90.3 degrees), as compared to a maximum value of 109.1 F during the first lunar day operations. The thermoelectric power source output, and the downlink signal strength from transmitter "A" remains steady. The procedure of inhibiting the 18 -hour timer output events generated in the delayed command sequencer remains in effect.

The background noise presently being sensed by the passive seismic experiment at the Apollo 16 site is comparable to that observed during operations of seismic instruments on previous missions. The operation of the experiment is with the feedback loop filter commanded ouT and the sensor gains of all components configured to 0 db . The instrument's heater is configured to auto ON and the uncage/arm fire circuit to the UNCAGED state. The sensor assembly temperature remains offscale HIGH. The moon's June perigee will occur on 10 June, at approximately 0000 G.m.t.

The lunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. Presently the moon is passing into the transition region. The instrument's internal electronics are currently experiencing a negative temperature excursion of $0.1^{\circ} \mathrm{C}$ per hour. The experiment continues to operate with the flip cal inhibit logic and the digital filter commanded IN, and the flux gate sensors configured to the 200 gamma range. The instrument's 4 nd and 43 rd flip cai sequences were executed correctly, by command, at 0121 G.m.t. and 0128 G.m.t., 28 May.

Apollo 16 ALSEP
29 May 1972
G.m.t.: 1200 Page 2

The active seismic experiment is currently in standby. The experiment was commended to operate select at $1445 \mathrm{G} . \mathrm{m} . t ., 26$ May, and to high bit rate ON at 1500 G.m.t. for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at $1530 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and the experi= ment commanded to standby at $1532 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 26 \mathrm{May}$. Two significant events were observed simultaneously on all three geophones in real time. The instrument's grenade launch assembly (AS-03), and the mortar package assembly (AS-O2) temperatures contimue experiencing a decrease of approx imately 0.2 C per hour.

It is requested that any organization having comments, questions, or suggestions conceming this report contact R. Miley, Science Requirements and Operations Branch. TD5. telephone 483-5067.

30 May 1972
G.m.t.: 1200

Apol10 16 ALSEP
Lunar sunset at the Descartes site will occur on 3 June. The engineer.. ing data being received and processed from the Apolio 16 ALSEP indicates continued steady central station and experiments lunar day-time operation.

Central station dowlink data indicates continued stable operation in operating voltages and radiated power, and diminishing thermal characteristics. The procedure of inhibiting the 18 -hour timer output pulses generated in the delayed command sequencer remains in effect.

The three experiments, passive seismometer, Iunar surface magnetometer, and active seismic continue to provide uninterrupted science and engineering data. AIl data, 24 hours per day, are being recorded on mag netic tape at the MSFN tracking stations for subsequent detailed analysis. In general, the experiments package telemetry data, continues to indicate normal operations with decreasing temperature characteristics. The passive seismic instrument's sensor tempexature, DI-07, remains offscale HIGH. The magnetometer's internal electronics temperature is dropping at a average rate of 0.3 C per hour. The active seismic experiment's grenade launch assembly and mortar package assembly temperatures continue decreasing at $0.5 \mathrm{C}(A S-03)$ and $0.4 \mathrm{C}(A S-02)$ per hour, respectively.
It is requested that any organization having comments, questions, ox suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

> APOIIO LUNAR SURFACE EXPERTMEMS PACKAGI STATUS REFORT

31 May 1972
G.m.t. : 1200

Apollo 16 ALSEP
Central station housekeeping data indicates that the data subsystem electroniss thermal plate continues experiencing an average temperature decrease of 0.5° F per hour. The RTG power is steady at 70.6 watts, and signal strength at the 30 -foot antennas is -139.0 ± 1.0 dbm. Inhibiting the effects of the 18 -hour timer output pulses continues.

A seismic event was sensed simultaneously by the Apollo 16 station and 15 station instrument's starting at about 2125 G.m.t. to 2127 G.m.t., 29 May. The signal is very emergent with rise times of about 9-10 minutes at both stations, and the event was sensed by only the long period horizontal components of each seismometer. The seismometer's temperature transducer output (DI-O7) remains offscale HIGH. Currently, instrument operation is in the auto ON thermal control mode with the uncaged status UNCAGED.

The lunar surface magnetometer is operating normally, and continues to measure magnetic fields as the moon passes through the center of the earth's magnetosheath.

The active seismic experiment is in standby as planned. The instrument's grenade launch assembly is experiencing a temperature decrease of $0.4^{\circ} \mathrm{C}$ per hour, while the experiment'g moxtar package assembly temperature is decreasing at a rate of $0.3^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

Status as of 0900 G.m.t., 31 May, was as follows:

TM POINT

> Total Days of Operation Total Commands to Date Sun Angle Input Power Heater and Power Dumps Experiment Status Avg Thermal Plate Temp PSE Sensor Assembly Temp ISM Internal Temp SWS Module 300 Temp SIDE Temp CCGE Temp CFLEE Electronic Temp ASE GLA Temp HFE Temp Ref Junction

APOITO IUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT
1 June 1972
G.m.t. : 1200

Apol10 16 ALSEP
Currently, the central station's average thermal plate temperature is $75.0^{\circ} \mathrm{F}$ and decreasing at approximately $0.6^{\circ} \mathrm{F}$ per hour. Power output from the radioisotope source remains constant at 70.6 watts. Trans mitter "A" downink signal strength is steady at -139.0, plus or mimus one dbm. The aata subsystem's timer output pulces continue to be inhibited to prevent ehange of the passive seismoneter"s uncage status.

The passive seismometer continues to function as planned, with the instrument's components sensing occasional lunar moduae descent stage venting and/or signals typical of setting. The seismometer"s temperature transducer output, DI-OT, remains offscale HIGH.

The Iunar surface magnetometer, functioning as planned, continues to sense data pertaining to the earth's bow wave. The experiment's 4tth and 45 th flip cal sequences were executed correctly, by command, at $2250 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and $2309 \mathrm{G} . \mathrm{m} . t . \mathrm{t} 31 \mathrm{May}$. The instrument's filp cal inhibit logic remains IN, inhibiting the flip cal command pulse from the automatic delayed command sequencer.

The active seismic experiment is in standby. The instrument's grem nade launch assembly ($\mathrm{AS}-03$) and mortar package assembly (AS-02) are experiencing a temperature decrease of approximately 1.0 C per hour and 0.9 C per hour, respectively.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch. TD5, telephone 483-5067.

status as of o900 $G, m . t, ~ J u n e, w a s$ as foliows:
APOLIO 12 ATSEP

```
925
13.577
```

13.577
120
70.0 w

> APOLIO LUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT

2 June 1972
G.m.t.: 1200

ApO110 16 ATSEP
The Apol1o 16 ALSEP, in its 42nd day of lunar operations, remains easeno tially unchanged from the preceding 24 hours, with the exception of a continual temperature decrease as a function of sun elevation angle at the ALSEP site. Iunar sunset at the Descartes site will occur on 3 Jure.

Central station telemetry downink data indicates that the data subsystem electronios thermal plate is experiencing an average temperature decrease of 0.7 F per hour. The RTG output and transmitter downink signal remain unchanged. Inhibiting the effects of the 18 -hour timex output pulses continues.

The passive seismometer's real time data indicates that the instrument continues to sense signals of various characteristics (variable amplitudes, duration times, eto.) typical of thermal gradients preceding the impending optical terminator. These types of signals are being most effectively detected on the instrument's Long period components partieularly LPX and LPY. The sensor's temperature transaucer output returned onscale at o740 G.m.t., 2 June (sun angle of 170 degrees). Currently, the experiment's housckeeping data reflects that the gensor's temperature is 141.2 F and decreasing at a average rate of 1.1 F per hour (instrument's thermal control mode is auto ON).

The Iunar surface magnetometen experiment is presently indicating the moon's passage through the free-streaming solar wind region. The inm strument is operating normally with the digital filter commanded IN and the flip cal inhibit logic IN. Engincering data indicates that the y axis sensor's heater themostat is controlling the instrument's temperature, and the temperature history of the magnetometer electronics is precisely tracking that of the first lunax day.

The active seismic experiment is currently in standby, with a 30 minute passive listening mode operation planned for today. The instrument's grenade launch assembly (AS-03) and mortar package assembly (AS-02) are experiencing a temperature decrease of approximately $1.0^{\circ} \mathrm{C}$ per hour and 1. ${ }^{\circ} \mathrm{C}$ per hour, respectively.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch. TD5. telephone 483-5067.
Operational status from 20 May 1972,1200 G.m.t., to 2 une $1972,1200 \mathrm{G} . \mathrm{m} . t$.
Noon of the station's IIth Iunation occurred 26 May; power from the RTG continues $\pm 0.5 \mathrm{abm}$. The data subsystem's timer continues to function normally, having executed timer pulses consistently at 18 hours and 17 minutes since initialization of the timer (31 July 1971).
Operation is in the auto ON thermal control mode, sensor gains are 0 dib, and the feedback loop filter commaded OUI in order to achieve seismic network congruity. Seismic signals have been noted in conjunction with the Apollo 16 seismometer.
The experiment's sensors were commanded to the 100 gamma range on May 20 for Iunar day-time operations. It is requested by the principal investigator that commanding flip calibration sequences be terminated whenever the experiment's internal electronics temperature increases above 62 C . Because of the temperature restriction no instrument flip cals were executed from May 25 through May 29. Currently the instrument has executed 488 flip calibration sequences since activation. The experiment's Y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands.

CL6T Nurnue 己t aouts epow asuex pepueqxe aut ut wotqexedo tenutquon

 Presently operating in the full automatic stepping sequence with the Channeltron high roltages commanded ON. The instruments high voltages were not commanded oft when the internal electronics temperature increased above 85 C . The experiments have operated continuousIy in the automatic stepping sequence throughout the The temperature of probe 1 at the bottom of the Iowest probe section is 253.10 K $\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $302.6^{\circ} \mathrm{K}\left(85.3^{\circ} \mathrm{F}\right)$. Since 24 May the instrument's measurement TREF 2 contimually displayed exconeous daba. TREF 2 returned onscale at 0113 G.m.t., 28 May (sun angle of 82 degrees) outputting valid data. At $0700 \mathrm{G} . \mathrm{m} . t . \mathrm{t} 29 \mathrm{May}$ (109 degree sun angle) TRFF 2 data again indicated an offscale HIGH condition. Currently TREF 2 is outputting erroneous data. Central station Passive seismic experiment Lunar surface magnetometer Solar windspectrometer Suprathermal ion
detector/cold cathode gauge experiment
Heat flow experiment
ApO110 14 ALSEP

The I7th lunar noon of the 14 station occurred 29 May; power output of the radioisom tope source is unvarying; and, transmitter "A" signal strength was reported as $-139.5 \pm 0.5 \mathrm{abm}$. This instrument is configured identioally to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUT in ordex to match seismic response. The instrument's long period z axis has not displayed valid date or responded to a command since 23 March 1972 . Events have been noted in conjunction with the 16 station's passive seismometer.
Curpentiy in standby. On 26 May , experiment commanded on at $1545 \mathrm{G} . \mathrm{m} .4$. and to high bit rate ON at $1600 \mathrm{G} . \mathrm{m} . t$. , for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 1630 a.m.t, and the instrument commanded to stanay Next listening mode operation is scheduled for today, 2 June. Presentiy operating in the full automatic stepping sequence (0-127 frames) with the Chameltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly ocourred 9 May 1971) in one section op the analog-tom
 experiments. Suprathermal ion U0Tqeqs Texquen Passive seismic experiment Active seismic experiment detector/cold cathode gauge Charged particle Iunar
envirommental experiment
$\stackrel{\mathrm{E}}{\mathrm{F}} \mathrm{H}$ -anno Tune during a mission
 time ($1000 \mathrm{G} . \mathrm{m} . \mathrm{t} .-1200 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 2$ June)
नTGIV こT OLLOXZ

APOLLO 16 ALSEP

Status as of 0900 G.m.t., 2 June, was as follows:

APOIIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

3 June 1972
G.m.t.: 1200

Apol10 16 ALSEP
The experiments package is approximately 10 hours into its second lunaz night and continues to function normally. It is estimated that sunset, occurred near $0200 \mathrm{G} . \mathrm{m} . \mathrm{t} . \mathrm{S} 3$ June (sunset time primarily based on the decisive temperature decreases noted from the central station's sunshield transducer, $A T-01$, and the active seismic grenade launch assembly and mortar package assembly temperatures, $A S-03$ and $A S-02$).

The temperature history of the central station's electronics thermal plate continues to track that of the first lunation. The central station's 10 watt heater, DSS-1, was commanded ON at O217 G.m.t. 3 June, when the average thermal plate temperature decreased to 37.3 F (reference ALSEP mission mule $32-1-N$) . RTG output power is steady at 70.9 watts following slight fluctuations noted during lunar sunset. The dowlink signal strength remains at -139.0 ± 1.0 dom. Inhibiting the effects of the 18-hour timer output puises continues.

The passive seismic experiment is contimuing to sense signals of various amplitudes, characteristic of instrument shroud movement from the optical terminator's thermal transients. The instrument's feedback loop filter is commanded OUP, and the long period and short period components commanded for peak response (amplifier circuit attenuators to 0 db). Sensor telemetry data presently indicates a decreasing temperature of 0.01 F per hour from $126.08^{\circ} \mathrm{F}$ following sunset (instrument's thermal control mode is auto ON).

The lunar surface magnetometer is operating normally, and continues to measure magnetic fielas as the moon passes through interplanetary space, The experiment correctly performed its 46 th through 51 st flip calibram tion sequences, by command, at various times today (0018, 0025, 0400, 0408, 0800 and $0807 \mathrm{G} . \mathrm{m} . t$.$) . The principal investigator had requested$ that a set of flip cals be commanded at specific intervals at each optim cal terminator (sunsct and sunrise), reference AISEP status report dated 20 May 1972 for further detail. The experiment's internal electronics continue to experience a temperature decrease of approximately $1.2^{\circ} \mathrm{C}$ per hour. The magnetometer's sensors are presently operating in the 200 gamma range, with the flip cal inhibit logic and the digital filter commanded IN.

ALSEP Status
3 June 1972
G.m.t.: 1200

Page 2
The active seismic experiment is currently in standby. The expeximent was commanded to operate select at $1344 \mathrm{G} . \mathrm{m} . \mathrm{t}, 2$ June, and to high bit rate ON at $1400 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive Iistening mode operation. Data output of all geophones appeared normal. One geophone calibration pulse was sent to the instrument during the passive listening mode operation, High bit rate operations were terminated at $1430 \mathrm{G} . \mathrm{m} . \mathrm{t}$, and the experiment commanded to standby at 1431 G.m.t., 2 June. One significant event was observed simultaneously on all three geophones in real time. The experiment's pitch and roll sensor indicator's continue to read offscale HIGH. The instrument's grenade launch assembly and mortax package assembly are experiencing a temperature decrease of approximately $4.0^{\circ} \mathrm{C}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirem ments and Operations Branch, TD5, telephone 483-5067.
APOLLO 16 ALSEP

APOLIO LUNAR SURFACE EXPERIMENIS PACKAGE STATUS REPORTI
5 June 1972
G.m.t.: 1200

Apclio 16 ATSEP
This report covers the science station's activity and data for the previous 48 hours. The central station's electronics thermal plate attained themal equilibrium negr 0000 G.m.t. . 5 June, at, an average thermal plate temperature of $39.2^{\circ} \mathrm{F}$. Thermal equilibrium was reached following a 3.5 degree temperature fluctuation with activation of the station's DSS-1 heater sone 46 hours earlier. The RTG power is steady at 70.4 watts, and the signal strength at the 30 -foot antennas is $-139.0 \pm 1.0 \mathrm{dbm}$. The operational procedure of eliminating the output pulses of the resettable solid state timer remains in effect (timer inhibit command transmitted at 0955 G.m.t. . 6 May 2972).

The passive seismometer continues to provide uninterrupted science and exgineering data. The signals of various amplitudes sensed by the experiment from the optical terminator continue to diminish with time. The sensor assembly's temperature (DI-O7) is stabilized at $125.8^{\circ} \mathrm{F}$, initially achieving this temperature near $0900 \mathrm{G} . \mathrm{m} . t ., 4$ June (sun angle of 196 degrees). The instrument is configured with its themal control mode to auto ON, and the uncage/arm fire circuitry configured to the or state to deliver maximum heat into the sensor assembly. It is also planned that as soon as the sensor:s temperature indicates loss of thermal stability, the experiment's z axis drive motor will be commanded to auto on, contirvously during Iunax night, in an effort to maximize the heat input to the sensor assembly.

The lunar surface magnetometer's internal electronics stabilized at a temperature of -4.3 C . Stabilization cccurred at approximately 0300 G.m.t., 5 June (205 degree sun angle). The instrument contimues to correctiy execute, by command, the sets of flip calibration sequences being performed under the experiment's operational plan.

Flip cal sequence Time/Date

\#52
\#53
\#54
\#55
\#56
\#57

1400 G.m.t. $/ 3$ June 1406 G.m.t. $/ 3$ June 0200 G.m.t. $/ 4$ June 0206 G.m.t. $/ 4$ June
2245 G.m.t. $/ 5$ June 2251 G.m.t. $/ 5$ June

AISEP Status
5 June 1972
G.m.t.: $1200 \quad$ Page 2

The active seismia experiment is in standoy select as planned. The temperature transaucer outputs of the grenade launch assembly (AS-OB) and the mortar package assembly (AS-O2) each indicate an offscale LOW readout.
Component Preceding temperature Offscale IoW

Grenade Iaunch assembly $\quad-66.9^{\circ} \mathrm{C}, 0900 \mathrm{G} . \mathrm{m} . t=$. 3 June, 183° sun angle

Mortar package assembly
$-73.5^{\circ} \mathrm{C}, 1290 \mathrm{G} \cdot \mathrm{m} . \mathrm{t} . \mathrm{g}$ 3 June, 184° sun angle

LOW. 1200 G.m.t.e 3 June, 184° sum angle LOW, 1500 G.m.t. 3 June, 186° sun angle

It is requested that any organization having comments, questions, or Suggestions concerning this report contact R. Miley Science Requirements and Operations Branch. TD5, telephone 483-5067.

APOLTO IUTVAR SURFACE EXPERTMENTS PACKAGE STAITUS REPORT
5 June 1972
G.m.t.: 2100

APOIIO 16 AISEP
The Apollo 16 ALSEP forty-five day phase II operations were terminated at 2100 G.m.t., 5 June, when mission control's 24 -hour real time support was suspended and the Manned Space Flight Network shifted to phase III operations in support of the ALSEP 12, 14,15 and 16 stations. Phase III operations require that all ALSEP scientifio and engineering data be recorded continuously at the tracking stations for subsequent analysis. Intermittent periods of real time data monitoring, phase II operations, at mission control are basically scheduled at a minimum of three hours every other day during lunar night, and three hours per day during lunar day-time. Additional periods are scheduled at optical teminator crossings of lunar sunrise and sunset. Also, as of today, the daily ALSEP status report is suspended, and will be published in the future on Friday of each week.

This report covers the 16 station activity and data from the previous nine hours of operations. All experiments and the central station contimue to operate properly in the lunar night environment, sunset having occurred on June 3, with the electronics and structural temperatures of the experiments package components equilibrated.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, ID5, telephone 483-5067.

Status as of $2030 G . m \cdot t .5$ June, was as folaows:

TM POINT

> Total Days of Operation
> $\begin{array}{ll}\text { Total Commands to Date } & 13,617 \\ \text { Sun Angle } & 1744^{\circ}\end{array}$
> Input Power
> Heater and Power Dumps
> Avg Thermal Plate Temp
> PSE Sensor Assembly Temp
> $\begin{aligned} & \text { LSM Internal Temp } \\ & \text { SWS Module } 300 \text { Temp }\end{aligned}$
> SIDE Temp
> $\begin{aligned} & \text { CPLEE Electronic Temp } \\ & \text { ASE GLA Temp } \\ & \text { HFE Temp Ref Junction }\end{aligned}$

9 June 1972
G.m.t.: 2100

Apol10 16 ATSEP
The Apollo 16 ALSEP, functioning as plamed, expexienced no unusual scientific events during the limited phase II operations, following the discontinuation of around the clock operations in mission control. Lunar midnight at the Descartes site will oceur 10 June. The centrai station's average thermal plate temperature remains stabilized, with the DSS-1 heater ON (10 watts). The signai atrength from transmitter "A", as reported by the 30 -foot, antenn tracking stations, is steady. The thermoelectric power source output remains constant. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with oceassional small, high frequency signais, is currently being sensed by the passive seismoneter. Experiment operation continues with the feedback Loop filter commanded ofT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto ON thermai control mode). The uncage/arm fire circuit is configured to the or state maximizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar night to maintain maximum heat input to the sensor assembly. The moon's June perigee will occur on 10 June, at approximately 0000 G.m.t.

The Iunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic Iunar fields. The instrument is operating with the digital filter commanded IV, the flip cal inhibit logic commanded TN, and the sensors configured to the 200 gamma range. Engineering data indicates that the y axis sensor's heater thermostat is maintaining the experiment's internal thermal equilibrium. The instrument's 58th through 6lst flip calibration sequences were executed correctiy, by command, at various times on June 6 (1554 G.m.t., and 1601 G.m.t.) and on June 8 (1332 G.m.t., and 1339 G.m.t.).

The active seismic experiment was commanded to standby OFF at 0659 G.m.t. 7 June, per ALSEP mission rule 32-3-I, following grenade fixings. The experiment will remain OFF except during passive listening mode operations. The next listening mode operation is plamed for today, 9 June.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.
$A 001101, A D S P$

$200 G . m .6 . t 09$ tune $1972.1200 G . m . t$.

Central station	Sunset of the station's lith lunation occurrea 4 June; power from the RTG continues steady and transmittex "A" downink signal strength is reported at - 1.36 .0 t 2.5 dom. After vexification of the 18 -hour timer: $242 n d$ output pulse on 3 June, the lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150 , twice daily at I 300 G.m.t. and $2100 \mathrm{G} . \mathrm{m} . t$ was initiated. The aata subsystems:s average themmal pate temperature is presentiy stabilized at -3.7 F.
Passive seismic experiment	Operation is in the auto on thermal control mode, senson gains ane o ab, and the feedbeck loop filter commanded ouT in order to achieve seismic networix congruity. No natural seismic signals have been noted during the limited real time support of this instiument. The instrument's uncage/amm fire cirouitry was commanded to to OI state to deliver maximum heat into the sensor assembly.
Lunam surface magnetometex experiment	The experiment's sensor wene commanded to the 50 gamma range at $2358 \mathrm{G} . \mathrm{m} . \mathrm{t}$, 3 June for lunar night-time operations. Currentiy the instrument has executea 508 fip calibration sequences since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensons are retumned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	Continual openation in the extended mange mode since 12 Januery 1972 .
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence with the channeltron high voltages commanded on. The instruments high volteges were not commanded oph when the internat electronics temperature increased above 85 C . The experiments have operated continuously in the automatic stepping sequence since 1 Mey 1972 with no mode changes obsexved during real time suppomt.

Apol1. 15 ALSEP

Heat flow experiment	The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $90.6^{\circ} \mathrm{K}\left(-296.3^{\circ} \mathrm{F}\right)$. Since $0700 \mathrm{G} . \mathrm{m} . t ., 29$ May, TRFF 2 measurements have indicated offscale HIGH. A duplicate measurement, which is performed during the probe 1 sequence, is operating normally so that no data are lost. The TREF 2 measurement has been intermittent offscale HIGH since August 1971. Presently TREF 2 is outputting erroneous data. An unexpected functional change of the heat flow experiment oceurred at 1453 G.m.t., 6 June, when the Hawaii tracking station noted a command verification word of octal 140 in the downlink. The heat flow experiment's high conductivity mode was corrected by ground command with no further problems.

Currently in standby, On 2 June, experiment commended ON at 1445 G.m.t., and to high bit rate ON at 1500 G.m.t., for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 1530 G.m.t., and the instrument commanded to standby at 1531 G.m.t., 2 June. No significant events were noted in real time. Next listening mode operation is scheduled for today, 9 June. Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-todigital filter are having no adverse effect on the scientific outputs of the
Uninterrupted operations in the manal mode (electronics heater ON) since 1140 G.m.t., 2 June through 1400 G.m.t., 5 June, collecting science data in the -35 voltage range of analyzer A. Preceding the station's ephemeris sunrise the experiment was commanded to the automatic sequence (heater on) and has continued uninterrupted operations in the automatic sequence to date. The experiment's anelyzer A high voltage remains substantially constant at the 2500 vdc level. Analyzer B high voltage remains below nominal levels. It is planned that the experiment will continue to operate in this configuration throughout the lunar night.
Central station

Passive seismic

Suprathermal ion

Charged particle Iunar
environmental
experiment

$$
\text { Apol10 } 12 \text { ALSEP }
$$

Operation Central station	status from 2 June 1972,1200 G.m.t., to 9 June 1972,1200 G.m.t. Sunset of the $32 n$ Iunar day occurred 6 June; RTG power output is constant; and, transmitter "B" signal strength was reported at $-136.0 \pm 5.5 \mathrm{dbm}$. The central station's DSS-l heater (10 watts) was commanded ON, when the average thermal plate temperatures decreased to $27.2^{\circ} \mathrm{F}$ at $0347 \mathrm{G.m} . \mathrm{t}, 6$ June.
Passive seismic experiment	The instrument's thermal control mode is auto on, the component gains at 0 ab, and the feedback loop filter commanded OUT. No Iunar seismic signals have been sensed during the limited real time support for the Apollo 12 experiment. The instrument's z axis drive motor was commanded oN at 0348 G.m.t., 6 June, in an effort to maximize the heat input to the sensor assembly during lunar night operations. DI-O7 indicated $126.4^{\circ} \mathrm{F}$ at z motor ON.
Iunar surface magnetometer experiment	Magnetometer science and engineering data were valid at $1100 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 4$ June (154 degree sun angle). These data had been static since 6 May 1972. On 4 June, at 1700 G.m.t., the experiment's data again were static. The instrument's digital filter remains commanded IN. The experiment's y and z axes sensor heads remain fixed at a 180 degree position, not responding to flip cal commands. The x sensor is returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	Uninterrupted operations in the extended range mode since 12 January 1972.
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with the Channeltron high voltage ON. The experiment was commanded on for continuous Iunar night operations at $0718 \mathrm{G} . \mathrm{m} . t ., 5 \mathrm{May}\left(T 2=28.1^{\circ} \mathrm{C}\right)$, and a sun angle of 149 degrees. The experiment experienced a mode change to X10 mode at 1618 G.m.t., 3 June ($T 2=54.6^{\circ} \mathrm{C}$). The instrument was returned to operate select without incident.

16 June 1972
G.m.t.: 1300

Apo110 16 ALSEP
Lunar sunpise at the Descartes site will oceur on 17 June. The engineering data being received and processed from the Apollo 16 ALSEP indicates contimued steady central station and experiments lunar night operationa.

Central station downink data indicates continued stable operation in operating power and radiated power, and equilibrated thermal characteristics. The procedure of inhibiting the 18 -hour timer output pulses generated in the delayed command sequencer remains in effect.

The passive seismometer experiment and lunar aurface magnetometer experiment continue to provide uninterxupted science and engineering data. All data, 24 hours per day, axe being recorded on magnetic tape at the MSEN tracking stations for subsequent detailed analysia. In general. the experiments package telemetry data contimes to indicate stabilized temperature characteristics. The passive seismic instrument's sensor temperature, DL-O7, contimues stabilized at $125.7^{\circ} \mathrm{F}$. The magnetometer's internal electronics temperature remains stable at $-54.4^{\circ} \mathrm{C}$. Currently the 16 IsM has executed 65 flip calibration sequences since activation.

The active seismic experiment is in standby OFF. A 30 minute listen ing period is scheduled for today.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch. TD5, telephone 483-5067.

ADOLIO LG AISEP

Sunrise of the station's I2th Iunation will ocour 18 June: power from the RTG strongth is solia at 07 inues sta data subsystem's timer outputs by uplinking the timer's reset command octal 150, twice daily at $0100 \mathrm{G} . \mathrm{m} . t$. , and $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$. continues in effect. The data subsystem's average thermal plate temperature is presently stabilized at -5.5 F .

Operation is in the auto on thermal control mode, sensor gains are 0 db, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. The instrument's uncage circuitry was configured to the or state 4 June ir an effort to maximize the heat input to the sensor assembly. No seismic signals have been noted during the limited neal time support periods The experiment's sensors are in the 50 gamma range for the duration of lunar night. Currently the instrument has executed 512 flip calibration sequences since activation, The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x axis and z axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.

Continual operation in the extended range mode since 12 January 1972.

Passive seismic experiment

208, mas remn
 experiment

Central station
d
 The 18th Iunar sunxise of the 14 stabion will occur 20 June; power output of the strength was (10 watts) This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gair on all sensors, and filter OUH) in order to matoh seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972. No events have been noted auring limited realtime support.
Currently in standby. On 9 June the scheduled listening mode operation was not conducted because of the revised operations procedure limiting experiment turn ON when the grenade launch assembly temperature (AS-03) is $-60^{\circ} \mathrm{C}$ or below. Next listening mode operation is scheduled for 23 June.

Presently operating in the full automatic stepping sequence (0-127 frames)

 with the Chaneltron high voltages commanded on. Intemmittent positive in of the analo-to-dicital filter are having no adverse effect on the scientific outputs of the experiments.[^2] Operational Central station Passive seismic experiment

 detector/cold eathode gauge

[^3]$$
\text { Apol10 } 14 \text { ALSEP }
$$
Apollo 12 AISEP

Apollo 12 AISEP	
Operation	status from 9 June 1972, 1200 G.m.t., to 16 June 1972 , $1300 \mathrm{G} . \mathrm{m} . t$.
Central scation	Sunrise of the package's 33nd lunar day will occur 21 June; RTG power output is constant; and, transmitter " B " signal strength was reported at $-138.8 \pm 2.0 \mathrm{dbm}$. The central station's DSSml heater remains OND.
Passive seismic experiment	The instrument's thermal control mode is auto on, the component gains at 0 db and the feedback loop filter commanded OUT, identical to the other seismic instruments. The instrument's z axis drive motor was commanded on 6 June in an effort to maximize the heat input to the sensor assembly during lunar night operations.
Iunar surface magnetometer experiment	Scientific and engineering data have been static since 4 June. The intmument's digital filter remains commanded IN. The experiment's y and z axes sensor heads remain fixed at a 180 degree position, not responding to flip cal commands. The x sensor is returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	Unintermpted operations in the extended range mode since 12 January 1972 .
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with the Channeltron high voltage ON. The experiment was commanded ON for continuous Iunar night operations 4 June.

Status as of $1500 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 14$ June, was as follows:
 Total Comm
Total Days of Operation Sun Angle Heater and Power Dumps Heater and Power Dumps
Experiment Status Avg Thermal Plate Temp PSE Sensor Assembly Temp
LSM Internal Temp SWS Module 300 Temp IDE Temp CGE Temp

CPLEE Electronic Temp
ASE GLA Temp
HFF Temp Ref Junction

HFE

23 June 1972
G.m.t.t 1200

Apo110 16 ALSEP
The station is in its 63 rd day of operation with the moor passing through the earth's transition region. Data of this region are being gatherea by the lunar surface magnetometer experiment. The central station's data subsystem components continue to seek themal equilibrium. The central station's average thermal plate temperature continues to track precisely When compared with identical sun angles of the station's second lunar day operations. The data subsystem's themal piate gureentiy continues to experience an average temperature increase of $0.2^{\circ} \mathrm{F}$ per hour. The themoelectric power souree output remains steady. The reported signal strength of transmitter "A" at the various 30 -foot antennas is $-139.2 \pm 1.2 \mathrm{dbm}$. The procedure of inhibiting the 18 -hour timer output pulaes generated in the delayed command sequencer remains in effect.

The passive seismic experiment continues to sense lunar seismic signals associated with impact events and moonquakes, in conjunction with the other ALSEP seismometers that form the seismic network. Listed are seismic events noted during the station's limited real time support.

Time/Date

0831 G.m.t. $/ 8$ June
$1502 \mathrm{G} . \mathrm{m} . \mathrm{t} . / 9$ June 1524 G.m.t./9 June 1611 G.m.t. $/ 15$ June

Sensing Component
LPX \& LPY
LPX \& LPY
TIPX \& IPY
TPX, LPY, \& IPZ

Probable Event
Moonquake
Moonquake
Moonquake
Impact

Experiment operation continues with the feedback 1000 filter commanded OUP, the sensor gains of all components configured to 0 db , and the sensor assembly temperature increasing at a rate of $0.2^{\circ} \mathrm{F}$ per hour (auto on thermal control mode). The uncage/arm fire circuit is configured to the UNCAGE state minimizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar day.

The Iunar surface magnetometer, functioning as planned, continues bo measure time-dependent solar and induced magnetio Innar fields. The instrument is operating with the digital filter commanded OUT, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. The experiment's digital filtex was commanded OUT on 18 June at 1429 G.m.t., in accordance with the principal investigators operational plan. It is currently planned that the magnetometer's digital filter will be commanded oUT every other lunation. The instrument's intemal electronics temperature continues to increase at a rate of $0.1^{\circ} \mathrm{C}$ per hour, tracking the instrument's

ALSEP Status
23 June 1972
G.m.t.: 1200

Page 2
second lunar day temperature. The instrument continues to correctly execute, by command, the sets of flip calibration sequences being performed under the experiment's operational plan. During the past. week flip cal sequences \#68 through $\# 79$ were executed.

The active seismic experiment is currently in atandby orF, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at $1408 \mathrm{G} . \mathrm{m} . \mathrm{t}$. 16 June. and to high bit rate on at $1415 \mathrm{G} . \mathrm{m} . t$. for a passive listening mode operation. Data output of all geophones appeared nomal. No geom phone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operationg were terminated at $1445 \mathrm{G} . \mathrm{m} . t .$, and the experiment commanded to standby at $1446 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , 16 June. No significant signals were noted in real fime. At the start of the listening mode the experiment's roll angle sensor (DS-06) indicated offscale HIGH, and the pitch angle sensor (DS-OT) was reading +12.55 degrees. At $1428 \mathrm{G} . \mathrm{m} . \mathrm{t}$. . DS -06 started reading +26.17 degrees and DSwo7 indicated +10.96 degrees. Throughout the remainder of the high bit mode operation both angle sensors slowly decreased. Final data reading of the roll angle sensor was +17.94 degrees, with the pitch angle sensor equaling +7.41 degrees. Both temperature sensors, grenade launch assembly and mortar package assembly, indicated offscale IOW.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.
Sunrise of the station's 12th Iunation occurred on June 18 ; power from the RTG Sunrise of the station's 12th Iunation occurred on June 18; power from the RTG continues steady and transmitter A downink signal strength is solid at data subsystem's timer outputs by uplinking the timer's reset command, octal 150, was terminated at 2100 G.m.t., 18 June. Operation is in the auto on thermal control mode, sensor gains are 0 db , and the feedback loop filter commanded OUT in onder to achieve seismic network congruity. The instrument's uncage/arm fire circuit was configurea to the UNCAGED state 19 June in an effort to minimize the heat input to the sensor assembly. No seismic signals have been noted during the limited real time support periods.

 sensor head remains fixed at a 180 degree position, not responding to flip

 tion.

Continual operation in the extended range mode since 12 Jamuary 1972.

 Passive seismicexperiment Central station

[^4] Solar wind
spectrometer
experiment Suprathermal ion Presently operating in the full automatic stepping aequence with the Channeltron high voltages commanded ON. The instruments high voltages will remain tron high voltages commanded on. The instruments high voltages will remain experiment mode changes were observed during the preceding Junar day-time operations of the instruments internal electronics above 85 C . The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the Iunar surface indicate a temperature of approximately $343.7^{\circ} \mathrm{K}\left(159.3^{\circ} \mathrm{F}\right)$. The TREF 2 measurement has been offscale HIGH since 29 May 1972. Presently
 operating normally so that no data are lost. detector/cola cathode gague experiment
The 18 th lunar sunise of the 14 station occurred 20 June; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was meported as $-137.2 \pm 1.5 \mathrm{abm}$. The central station's DSS-1 heater (10 watts) was commanded OFF at $0855 \mathrm{G}, \mathrm{m}, \mathrm{t} . \mathrm{F} 21$ June, at an average thermal olate temperature of $75.3^{\circ} \mathrm{F}$, The 32 nd unexpected functional change occurred on this ALSEP, when the passive seismometer responded to a spurious functional change between $1700 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 16$ June and $1400 \mathrm{G} . \mathrm{m} . t ., 18$ June (no mission control real time support during this period). The supporting ground stations were unable to locate a command verification word for the command, octal 075 (seiamometer's leveling speed to HIGH). The status of the experiment was reset by command with no problems. This spurious command was attributed to RF noise effecta.
This instrument is configured identically to the other seismometer's (thermal control auto ON, O dib gain on all sensors, and filter OUT) in order to match seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972 . On 15 June this instrum ment sensed an impact event on the two horizontal components, in conjunction with the Apollo 16 seismoneter, starting at 1611 G.m.t.
Currently in standby. On 16 June the scheduled listening mode operation was not conducted because of the revised operations procedure limiting experiment turn ON when the grenade launch assembly temperature (As-03) is $-60^{\circ} \mathrm{C}$ or below. Next listeaing mode operation is scheduled for today, 23 June. Presently operating in the full automatic stepping sequence (0m-127 frames) with the Chameltron high voltages commanded ON. Intermittent positive engineering data intermptions (anomaly oceurred. 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.

[^5]
Central station

Passive seismic experiment Active seismic experiment Suprathermal ion axes sensor heads อप əouenbes Teo dtty Uninterrupted operations in the extended range mode since l2 January 1972 . On
I9 June (2143 G.m.t.) it was noted that the data output of the sum cup levels 1
through 14 during the instrument's ac calibrate measurements (sequence l5) were
Iow. Throughout the June 20 support period the experiment's ac calibration
measurements appeared intermittently IoW. The instrument's ac calibrate measure-
ments were valid at o739 G.m.t., 21 June, and have continued valid since. This
anomaly continues under investigation.

> The instrument is currently operating in full automatic stepping sequence with
the Chaneltron high voltage on. The experiment's high voltage will be commanded
OFF to oreclude mode changes when the intemal electronics temperature is above
$55^{\circ} \mathrm{C}$.
पоโ7975 एexquep
Passive seismic
Passive seismic
experiment
Lunar surface magnetometer experiment Solar wind
spectrometer
experiment
Suprathemal ion detector experiment

$$
120 Q \quad G \cdot m \cdot t
$$

$$
\text { Scientific and engineering data have been static since } 4 \text { June. The instrument's }
$$

30 June 1972
G.m.t.: 1200

Apollo 16 ALSEP
The Apollo 16 ALSEP Iunar operations remain essentially unchanged from the preceding week, with the exception of a continual temperature decrease as a function of sun elevation angle at the ALSEP site. Lunar sunsct at the Descartes site will occur on 2 July.

The station's average thermal plate temperature is tracking as expected when compared with identical sun angles of the station's second lunar day operations. Presently the central station's telemetry downink data indicates that the data subsystem electronics thermal plate is experiencing an average temperature decrease of $0.4^{\circ} \mathrm{F}$ per hour. The RTG output and transmitter downlink signal remain unchanged. On 29 June, at 0725 G.m.t., the Canary Islands ground station observed a command verification word in the downink, indicating a possible spurious command execution of octal 032 (central station timer output accept). Execution of this initial spurious change could not be verifield due to the absence of an 18-hour timer output pulse during the six hours that the timer outputs were enabled. The timer output status was returned to output inhibit at $1307 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 29$ June, by command without problem. Inhibiting the effectis of the 18 -hour timer output pulses continues.

The passive seismometer's real time data indicates that the instrument continues to sense signals of various characteristics (variable amplitudes, duration times, etc.) typical of thermal gradients preceding the impending optical terminator. On June 25 this instrument sensed a seismic event on the y axis horizontal component, in conjunction with the Apollo 14 seismometer, starting at 1308 G.m.t. Numberous smaller events have also been sensed by the Apollo 16 station seismometer from June 23 through 27. The sensor's temperature transducer output indicated offscale HIGH at the start of phase II operations on 24 June, at 1200 G.m.t. Prior to indicating offscale HIGH the sensor's assembly temperature tracked its second lunar day thermal profile identically (DI-O7 went offscale HIGH between a normalized sun angle of 71-82 degrees). It is projected that the seismometer's temperature will return onscale July 1 (sun angle of 170 degrees).

The lunar surface magnetometer experiment is presently indicating the moon's passage through the earth's magnetosheath. The instrument is operating normally with the digital filter commanded OUT and the flip cal inhibit logic IN. The temperature history of the magnetometer's internal electronics is precisely tracking that of the second lunar day. The instrument continues to correctly execute, by command, the sets of flip calibration sequences being performed undex the experiment's operational plan. During the past week flip cal sequences \#80 through \#89 were executed.

ALSEP Status
30 June 1972
G.m.t.: $1200 \quad$ Page 2

The active seismic experiment is currently in standby oFw, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at $1306 \mathrm{G} . \mathrm{m} . t ., 23$ June, and to high bit wate on at $1400 \mathrm{G} . \mathrm{m} . t$. for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at 1430 G.m.t. . and the experiment commanded to standoy orf at 1434 G.m.t. 23 June. No significant signals were noted in real time. The experiment's roll angle sensor (DS-06) and pitch angle sensor ($D S-07$) indicated offscale HIGH throughout the high bit mode operation. The instrument's grenade launch assembly (AS-03) indicated a temperature of $60.3^{\circ} \mathrm{C}$ during the passive listening mode operation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact, R. Miley, Science Requirements and Operations Branch. TD5. telephone 483-5067.

Presently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. The instruments high voltages were not commanded opp when the internal electronics temperature increased above $85^{\circ} \mathrm{C}$. The experiments have operated continuously in the automatic stepoing sequence throughout the
Iunar day-time with no mode changes observed during real time support.
The temperature of probe I at the bottom of the lowest probe section is $253.1_{\mathrm{K}}^{\mathrm{K}}$ $(-3.9 \mathrm{~F})$ with probe 2 indicating a temperature of $250.6 \mathrm{~K}(-8.3 \mathrm{~F})$ at its 1owermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $346.1 \mathrm{~K}(163.4 \mathrm{~F})$. Since 29 May 1972 the instrument's measurement TRFF 2 has continually aisplayed erroneous data. A duplicate measurement TREF l, is operating normally so that no data are lost.

Central station

Passive seismic
experiment
Lunar surface magnetometer
experiment Solar wind spectrometer
experiment
廿ot teuxョuqeadns
detector/cold. cathode gange
experiment
Heat flow
experiment $-137.5 \pm 1.0 \mathrm{dbm}$. On 28 June the $33 r d$ unexpected functional change occurred on this ATSEP. The active seismic experiment responded to a spurious functional change at $0913 \mathrm{G} . \mathrm{m} . t$. The supporting ground station was unable to locate a command verification word for the command, octal 42 (operational power on). The experiment was reset to standby select, by command, without problem.

$$
\begin{aligned}
& \text { This instrument is configured identically to the other seismometer's (thermal } \\
& \text { control auto oN, } 0 \text { do gain on all sensors, and filter oum) in order to match } \\
& \text { seismic response. The instruments long period } z \text { axis has not displayed valid } \\
& \text { data or responded to a command since } 23 \text { March } 1972 \text {. On } 25 \text { June this instrument } \\
& \text { sensed a seismic event on the y axis horizontal component, in conjunction with } \\
& \text { the Apollo } 16 \text { seismometer, starting at } 1308 \text { G.m.t. }
\end{aligned}
$$ Currently in standby. On 23 June, experiment commanded on at 1245 G.m.t., and to high bit rate ON at $1310 \mathrm{G} . \mathrm{m} . t$. for a passive listening mode operation. Data output of geophones I and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1340 \mathrm{G} . \mathrm{m} . t$, and the instrument commanded to standby at 1342 G.m.t., 23 June. No seismic events were noted in real time The next listening mode operation is soheduled for today, 30 June. Presently operating in the full automatio stepping sequence (0-127 frames) with the Chanmeltron high voltages commanded ON. Intermittent positive engineerm ing data interruptions (anomaly occurred 9 May 1971) in one section of the analog-tomigital filter are having no adverse effect on the scientific outputs of the experiments.

Presentiy the experiment is in standiby. Since June 21, the experiment has operated under the revised guidelines (ON during real time support periods only) without experiencing a under voltage condition, collecting science data in the -35 voltage range, -350 voltage range, and +350 voltage range of analyzer. A. planned that the experiment onded on for continuous operations i duly. If guidelines during ensuing lunations.

Passive seismic Active seismic experiment

Active seismic
experiment Suprathermal ion detector/cold
cathode gauge
experiment Charged particle Iunar environmental experiment
isotope source is unvarying; and, transmitter "A" signal strength was reported as
The 18 th Iunar noon of the 14 station occurred 27 June; power output of the radiom
Central station

1200 G.m.t., to 30 June 1972,1200 G.m.t.
 status from
 $$
23
$$
 June 1972,

Operational status from 23 June 1972,1200 G.m.t., to 30 June $1972,1200 \mathrm{G} . \mathrm{m} . t$. Noon of the package's 33 rd lunar day ocurred 28 June; RTG power output is
constant; and, transmitter "B" signal strength was repored at $-140.5 \pm 0.5 \mathrm{dbm}$.
The instrument's thermal control mode is auto oN, the component gains at 0 db ,
and the feedback loop filter commanded out, identical to the other seismic
instruments. No seismic signals have been noted during the limited real time
support periods.
Scientific and engineering data have been static since 4 June. The instrument's digital filter remains commanded IN. It is requested by the principal investigator that all flip calibration requirements of the magnetometer be terminated, effective 26 June 1972 , until further notice. The flip cal sequences will be instituted again if the experiment's science data indioates the need.
Uninterrupted operations in the extended range mode since 12 January 1972 . The instrument's ac calibrate measurements continue to appear valid, and analysis of the problem is in progress.

[^6]Passive seismic experiment Iunar surface magnetometer experiment Solar wind spectrometer experiment Suprathermal experiment
$$
\text { Apollo } 12 \text { ATSEP }
$$ votzeqs rexques ion detector
experiment

7 July 1972
G.m.t.: 1300

Apo110 16 ALSEP

The Apollo 16 ALSEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations. Sunset at the Descartes site occurred 2 July. The central station's average thermal plate temperature remains stabilized, with the DSS-1 heater ON (10 watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady. The themom electric power source output remains constant. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with occassional small, high frequency signals, is currently being sensed by the passive seimometer. Experiment operation continues with the feedback $300 p$ filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto on thermal control mode). The uncage/arm fire circuit is configured to the OT state maximizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar night to maintain maximum heat input to the sensor assembly.

The lunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic Iunar fields. The instrument is operating with the digital filter commanded out, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. Engineering data indicates that the y axis sensor's heater thermostat is maintaining the experiment's internal thermal equilibrium. During the past week, flip cal sequences \#go through \#97 were executed.

The active seismic experiment is currently in standby OPF, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at 1510 G.m.t., 30 June, and to high bit rate ON at $1525 \mathrm{G} . \mathrm{m} . t$. , for a passive listening mode operation. Data output of all geophones appeared normal. Two geom phone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at 1555 G.m.t., and the experiment commanded to standby OFF at 1557 G.m.t. No significant signals were noted in real time. The experiment's roll angle sensor (DS-06) and pitch angle sensor (DS-O7) indicated offscale HIGH throughout the high bit mode operation. The instrument's grenade lanch assembly (As-03) indicated a temperature of $60.3^{\circ} \mathrm{C}$ during the passive Iistening mode operation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TD5, telephone 483-5067.

AgO110 15 ALSEP

 steady and transmitter "A" downink signal strength is reported at $-137.0 \pm 2.1 \mathrm{abm}$. After verification of the 18 -hour timer's 264 th output pulse on 5 July, the lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150 , twice daily at $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and 2100 G.m.t. was initiated. The data subsystem"s average thermal plate temperature is presently stabilized at -3.7 F .

$$
\begin{array}{ll}
\text { Passive seismic Operation is in the auto on thermal control mode, sensor gains are o db, and the } \\
\text { experiment } & \text { feedback loop filter commanded ouT in order to achieve seismic network congruity. }
\end{array}
$$ No natural seismic signals have been noted during the limited real time support of this instrument. The instrument's uncage/arm fire circuitry was commanded to OT state to deliver maximum heat into the sensor assembly. The experiment's sensor were commanded to the 50 gamma range at 0818 G.m.t.,

4 July for lunar night-time operations. Currenty the instrument has executed
540 flip calibration sequence since activation. The experiment's y-axis sensor
head remains fixed at a 180 degree position, not responding to flip cal comands.
The x-axis and z-axis sensors are returned to the 180 degree position following
each flip cal sequence to maintain sensor head synchronization.

$$
\begin{aligned}
& \text { Presently in standby. At } 1815 \text { G.m.t., } 30 \text { June, the instruments telemetry data } \\
& \text { became invalid coincident with a central station reserve power decrease of } \\
& \text { approximately } 7 \text { watts, indicating the instrument was drawing } 13 \text { watts (current } \\
& \text { Iimited) of power from the central station. During support periods, l July and } \\
& 3 \text { July, the instrument was cycled from operate select to standoy, verifying } \\
& \text { the solar wina experiment was drawing excess power. At } 1607 \text { G.m.t., } 3 \text { July, } \\
& \text { the instrument was commanded to standby until further analysis can be performed. } \\
& \text { Plans are presently being formulated for an instruent data verification, } \\
& 25 \text { July. }
\end{aligned}
$$

Central station

 Lunar surfacemagnetometer
experiment

[^7]| Central station | Sunset of the station's l2th lunation ocourred 3 July; power from the RTG continues steady and tramsmitter "A" downink signal strength is reported at -137.0 ± 2.1 dibm. After verification of the 18-hour timer's 264 th output pulse on 5 July, the Iunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150, twice daily at 1300 G.m.t. and $2100 \mathrm{G} . \mathrm{m} . t$. was initiated. The data subsystem"s average thermel plate temperature is presently stabilized at -3.7° F. |
| :---: | :---: |
| Passive seismic experiment | Operation is in the auto on themal control mode, sensor gains are $0 d b$, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. No natural seismic signals have been noted during the limited real time support of this instrument. The instrument's uncage/arm fire circuitry was commanded to OT state to deliver maximum heat into the sensor assembly. |
| Iunar aurface magnetometer experiment | The experiment's sensor were commanded to the 50 gamma range at 0818 G.m.t., 4 July for lunar night-time operations. Currently the instrument has executed 540 flip calibration sequence since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. |
| Solar wind spectrometer experiment | Presently in standby. At 1815 G.m.t., 30 June, the instruments telemetry data became invalid coincident with a central station reserve power decrease of approximately 7 watts, indicating the instrument was drawing 13 watts (current Iimited) of power from the central station. During support periods, l July and 3 July, the instrument was cycled from operate select to standby, verifying the solar wind experiment was drawing excess power. At 1607 G.m.t., 3 July, the instrument was commanded to standby until further analysis can be performed. Plans are presently being formulated for an instrument data verification, 25 July. |

Apo110 15 ALSEP (continued)
Presently operating in the fuil automatic stepping sequence with the Channeltron Itages were not bove sequence
tepime support.

$$
\mathrm{a} \text { is } 253.1^{\circ} \mathrm{K}
$$

$$
\begin{aligned}
& \text { instrument's measurement TREF } 2 \text { has continually displayed erroneous data. A } \\
& \text { duplicate measurement TREF } 1 \text { is operating normally so that no data are lost. }
\end{aligned}
$$

dGeIV tr ottody
Sunset of the 18 th Iunar day at the Apollo 14 landing site occurred 4 July; power output of the radioisotope source is unvarying; and, transmitter "A" sicnal strength was reported as $-137.6+3.7 \mathrm{abm}$. The central station's DSS-1 heater (10 watts) was commanded ON at 1723 G.m.t., 5 July, when the average thermal plate temperature indicated 16.2° F. Currently the central station's average thermal plate temperature is stable at $35.6^{\circ} \mathrm{F}$. This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUL) in order to match seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 Narch 1972. No seismic events have been noted during the limited real time support of this experiment. Currently in standby. On 30 June, experiment commandeă on at 1416 G.m.t., and to high bit rats ON at $1430 \mathrm{G} . \mathrm{m} . t$. , for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was
 listening mode operation. High bit rate terminated at 1500 G.m.t., and the instrument commanded to standby at 1501 G.m.t. No significant events were noted in real time. Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded on. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments. Unintercupted operations in the manual mode (electronics heater on) I July
through 4 July, collecting science data in the -35 and +350 voltage ranges
of analyzer A. Preceding the station's ephemeris sunrise (4 July) the
experiment was commanded to the automatic sequence (heater ons) and has
continued uninterrupted operations in the automatic sequence to date. The
experiment's analyzen A high voltage renains substantially constant at the
2700 vac level. Analyzer . high voltage remains Delow nominal levels. It
is planed that the experiment will continue to operate in this configura-
tion throughout the lunar night. Central station Passive seismic Active seismic
experiment Suprathermal ion detector/cola cathode gauge Charged particle Iunar environmental experiment
Apollo 12 ALSEP
Operational status from 30 June $1972,1200 \mathrm{G} . \mathrm{m} . t .$, to 7 JuIy $1972,1300 \mathrm{G} . \mathrm{m} . t$.
Sunset of the 33rd lunar day occurred 5 July; RTG power output is constant; age he av
wiy.

$$
\begin{aligned}
& \text { have been sensed during the limited real time support for the Apollo } 12 \\
& \text { experiment. The instrument's a axis drive motor was commanded on at } 1529 \text { G.m.t. } \\
& 5 \text { July, in an effort to maximize the heat input to the sensor assembly during }
\end{aligned}
$$

Scientific and engineering data have been static since 4 June. The instrument's gator that all flip calibration requirements of the magnetometer be terminated, effective 26 June 1972, until further notice. The flip cal sequences will be instituted again if the experiment's science data indicates the need.

 of 153 degrees.

पот7e7s Texquep

[^8]Solar wind
spectrometer
experiment
Suprathermal ion

$$
\text { Iunar night operations. DI-07 indicated } 126.4^{\circ} \mathrm{F} \text { at } \mathrm{z} \text { motor ON. }
$$ digital filter remains commanded IN. It is requested by the principal investi-
The instrument is operating in full automatic stepping sequence with the

14 July 1972
G.m.t.: 1300

ApO110 16 ALSEP
Lunar gumpise at the Descartes site will occur on 17 July The engineerm ing data being received and processed from the Apollo 16 ALSEP indicates continued steady central station and experiments lunar night operations.

Central station downlink data indicates continued stable operation in operating power and radiated power, and equilibrated thermal characm teristics. The procedure of inhibiting the 18 -hour timer output pulses generated in the delayed comand sequencer remains in effect.

The passive seismometer experiment and lunar surface magnetometer experiment continue to provide unintermupted science and engineering data. All data, 24 hours per day, are being recorded on magnetic tape at the MGFN tracking stations for subsequent detailed analysis. In general, the experiments package telemetry data continues to indicate stabilized temperature characteristics. The passive seismic instrum ment's sensor temperature, $D T .07$, continues stabilized at $125.7^{\circ} \mathrm{F}$. The magnetometer's internal electronios temperature remains stable at $-5.4{ }^{\circ} \mathrm{C}$. Currently the 16 LSM has executed 103 flip calibration sequences since activation.

The active seismic experiment is currently in standby OFF The experiment was commanded to operate select at $0858 \mathrm{G} . \mathrm{m} . t ., 7$ July and to high bit rate ON at $0915 \mathrm{G} . \mathrm{m} . \mathrm{t}$. . for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode opexation. High bit rate operations wexe terminated at og45 G.m.t., and the experiment commanded to standby OFF at 0947 G.m.t. No significant signals were noted in real time. The experiment's roll angle sensor (DS-06) and pitch angle sensor (DSmO7) indicated offscale HIGH throughout the high bit mode operation. A 30 minute passive listening mode operation is planned for today.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TT5, telephone 483-5067.
dWSTV GT OTTOdV

Central station	Sunrise of the station's 13 th lunation will ocour 18 July; power from the RTG continues steady and transmitter "A" downink signal strength is solid at $-138.0 \pm 2.3 \mathrm{dbm}$. The lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150, twice daily at $0100 \mathrm{G} . \mathrm{m} . t$. and $1300 \mathrm{G} . \mathrm{m} . t$. continues in effect. The data subsystem's average thermal plate temperature is presently stabilized at $-0.8^{\circ} \mathrm{F}$,
Passive seismic experiment	Operation is in the auto oN thermal control mode, sensor gains are odb, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. The instrument's uncage circuitry is configured to the or state in an effort to maximize the heat input to the sensor assembly. No seismic signals have been noted during the limited real time support periods.
Lunar surface magnetometer experiment	The experiment's sensors are in the 50 gamma range for the duration of lunar night. Currently the instrument has executed 550 flip ealibration sequences since activation. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x axis and z axis sensors are returned to the 180 degree position following each flip cal sequence to maintain senaor head synchronization.

The instrument remains in standby. Analysis of instrument's high power demand anomaly continues.

[^9]Solar wind
spectrometer
experiment

duprathermal ion cathode gauge experiment

Heat flow
experiment
Apollo 14 ALSEP

Operational status from 7 July, $1200 \mathrm{G} . \mathrm{m} . t .$, to 14 July , $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.	
Central station	The 19th Iunar suncise of the 14 station will occur 19 July; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-138.6 \pm 1.8 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) is ONV.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter oUH) in order to match seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972. No events have been noted during limited real time support.
Active seimic experiment	Currently in standby. On 7 July the scheduled listening mode operation was not conducted because of the revised operations procedure limiting experiment turn on when the grenade launch assembly temperature ($A S-03$) is $-60^{\circ} \mathrm{C}$ or below. Next listening mode operation is scheduled for 21 July.
Suprathermal ion detector/cold eathode gauge expeximent	Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the acientific outputs of the experiments.
```Charged particle Iunar environmentai experiment```	Uninterrupted operations in the automatic sequence (electronics heater on) collecting science data in the six voltage ranges of analyzer $A$. The Experiment's analyzer A high roltage (AC-03) has remained substantially constant at the 2700 vac level. Analyzer B.high roltage remains below nominal levels. The current plan is to operate the instrument in the automatic sequence, with the electronics heater ON, through the station's ephemris sunrise.

APOLLO 16 ALSEP



Status as of 1500 G.m.t., l2 July, was as follows:

## TM POINT

$$
\begin{aligned}
& \text { Total Days of Operation } \\
& \text { Total Commands to Date }
\end{aligned}
$$

Total Days of Operation
Total Commands to Date $\quad 13992$
70.4 W
DSS-1 ON (10W)
A11. ON
$17.6 .{ }^{1} \mathrm{~F}$

$15.6^{\circ} \mathrm{C}\left(3.9^{\circ} \mathrm{F}\right)$
$\left.10.6^{\circ} \mathrm{F}\right)$

APOLLO 12 ALSEP

OFF
电
N/A

21 July 1972
G.m.t.: 1200

APOL10 16 AISEP
The station is in its glst day of operation with the moon approaching the earth's bowshock. The central station's 10 watt heater, DSS-I, was command ed OFF at 1254 G.m.t. 17 July, when the average thermal plate temperature increased to $46.7^{\circ} \mathrm{F}$. The central station's data subsystem components continue to seek thermal equilibrium. The central station's average thermal plate temperature continues to track precisely when compared with identical sun angles of the station's preceding lunar day operations. The data subsystem's thermal plate currently continues to experience an average temperature increase of $0.4^{\circ} \mathrm{F}$ per hour. The thermoelectric power source output remains steady. The reported signal strength of transmitter "A" at the various 30 -foot antennas is $-138.9 \pm 0.9 \mathrm{dbm}$. The procedure of inhibiting the 18 -hour timer output pulses generated in the delayed command sequencer remains in effect.

The passive seismic experiment's operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature increasing at a rate of $0.1^{\circ} \mathrm{F}$ per hour (auto on thermal control mode). The seismometer's temperature (DT-07) is tracking previously observed temperatures with identical sun angle. The uncage/arm fire circuit is configured to the UNCAGE state minimizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar day.

The lunar surface magnetometer is operating normally, and contimues to measure magnetic fields as the moon passes through interplanetary space. The experiment correcty performed its lo6th through llath flip calibration sequences, by command, at various times during the past week. The experiment's internal electronics continue to experience a temperature increase of approximately $0.1^{\circ} \mathrm{C}$ per hour. The experiment's internal electronics temperature is precisely tracking previously recorded temperatuxes at the identical sun angles. The magnetometer's sensors are presently operating in the 200 gama range, with the flip cal inhibit logic and the digital filter commanded In ( 1336 G.m.t., 17 July).

The active seismic experiment is currently in standby OFF, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at 1338 G.m.t., 14 July, and to high bit rate ON at 1400 G.m.t., for a passive Iistening mode operation. Data output of all geophones appeared normal. No geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at $1430 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , and the experiment commanded to standby OFF at 1432 G.m.t., 14 July. No significant signals were noted in real time. The experiment's roll angle sensor (DS-O6) and pitch angle senson (DS-O7) indicated offscale HIGH throughout the high bit mode operation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, TN, telephone 483-5067.
Apol10 15 ATSEP



Suprathermal ion Presently operating in the full automatic stepping sequence with the Channel-	
detector/cold	tron high voltages commanded on. The instruments high voltages will remain on
cathode gave	for the duration of lunar day operations, based on the fact that no experiment
experiment	mode changes or command register loads were noted during real time operations

$$
\text { APO110 } 14 \text { AJSEP }
$$

Operat Central station	an status from 14 July 1972, 1300 G.m.t., to 21 July 1972, 1200 G.m.t.   The 19th Iunar sunrise of the 14 station occurced 19 July; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-137.2 \pm 2.2 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) was commanded OFF at 1922 G.m.t., 20 July , at an average thermal plate temperature of $73.3^{\circ} \mathrm{F}$.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, $O$ db gain on all sensors, and filtex OUT) in order to match seismic reaponse. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972. INo events have been noted during the limited real time support periods.
Active seismie experiment	Currently in standby. On 14 July the scheduled Iistening mode operation was not conducted because of the revised operations procedure limiting experiment tum ON when the grenade launch assembly temperature (AS-03) is -60 0 or below. Next listening mode operation is scheduled for today, 21 July.
Suprathermal ion detector/cold cathode gauge experiment	Presentiy operating in the full automatic stepping sequence ( $0-127$ frames) With the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occured 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar envirormental experiment```	Uninterrupted operations from 2 June 1972 under a revised operations procedure to avoid degradation of the instrument's analyzer's high roltage to hold a aubstantial operating level. The instrument operated in the automatic sequence (July 4 through July 20) collecting science data in the six voltage ranges of analyzer A. The experiment was commanded to the manual mode (electronics heater OFF) at 0859 G.m.t., 20 July, collecting science data in the -35 voltage range of analyzer $A$. It is planned that the experiment will continue to operate under the revised Iunar day operations procedure that was implemented during the station's I8th Iunation.

ApO110 12 ALSEP

Operational status from 14 July $1972.1300 \mathrm{Grm.t.} ,\mathrm{to} \mathrm{21} \mathrm{JulJ} \mathrm{1972} .\mathrm{1200} \mathrm{G.m.t}$.	
Central station	Sunrise of the package's $34 t h$ lunar day occurred 20 July; RTG power output is constant; and, transmitter " B " signal strength was reported at -140.0 ± 1.0 dim. The central station's DSS-l heater was commanded OFF at 1902 G.m.t., 20 July, when the station's average thermal plate temperature increased to 44. 3 . F .
Passive seismic experiment	The instrument's themal control mode is auto ON, the component gains at 0 db, and the feedback loop filter commanded. OUT, identical to the other seismic instruments. The instrument's z axis arive motor was commanded OFF at $1912 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 20 \mathrm{July}$, as the sensor assembly temperature increased to 126.3 F . No seimic signals have been noted during the limited real ime support periods.
Iunax surface magnetometer experiment	Scientific and engineering data have been static since 4 June 1972 . The instrum ment's digital filter remains commanded IN.
Solar wind spectrometer experiment	At 1327 G.m.t., 14 July, the experiment was commanded to the normal range mode. The principal investigator prefers to have the instrument in the normal range mode, as the anomalous operation of the Apolio 15 ALSEP experiment's high power demand is not sufficiently analysed.
Suprathermal ion detector experiment	The instrument is currently operating in full automatic stepping sequence with the Chaneltron high voltage ON. The experiment's high voitage will be commandea. OFF to preclude mode changes when the internal electronics temperature is above $55^{\circ} \mathrm{C}$.

28 July 1972
G.m.t.: 1300

All Iunar science stations emplaced on the moon's surface by the Apollo astronauts experienced a partial eclipse of the moon on 26 July . This event was the sixth such eclipse, partial or total, experienced by the Apollo 12 station. As in previous eclipses, no unusual scientific data resulting from the effects of this eclipse was noted in real time analyses from the ALSEP stations. A table of eclipse event times and a table of ALSEP temperature deviations during the eclipse are included in this report.

Apcl10 16 ALSEP
The Apollo 16 ALSEP Iunax operations remain essentially unchanged trom the preceding week, with the exception of a continual temperature decrease as a function of sun elevation angle at the ALSEP site. Lunar sunset at the Descartes site will occur on 1 August.

The station's average thermal plate temperature is tracking as expected when compared with identical sun angles of the station's second lunar day operations. Presently the central station's telemetry downlink data indicates that the data subsystem electronics thermal plate is experiencing an average temperature decrease of $0.1^{O_{F}}$ per hour. The RTG output and transmitter downlink signal remain unchanged. Inhibiting the effects of the 18-hour timer output pulses continues.

The passive seismometer's real time data indicates that the instrument continues to sense signals of various characteristics (variable amplitudes, duration times, etc.) typical of thermal gradients preceding the impending optical terminator. The sensor's temperature transducer output indicated offscale HTGH at the start of phase II operations on 23 July. Prior to indicating offscale HIGH the sensor's assembly temperature tracked its second lunar day thermal profile identically (DL-O7 went offscale HIGH between a normalized sun angle of 72 degrees). It is projected that the seismometer's temperatuxe will return onscale 31 July (sun angle of 170 degrees).

The lunar surface magnetometer experiment is presently indicating the moon's passage through the earth's magnetosheath. The instrument is operating normally in the 200 gama range with the digital filter and the flip cal inhibit logic IN. The temperature history of the magnetometer's internal electronics is precisely tracking that of the second lunar day. The instrument contines to correctiy execute, by command, the sets of flip calibration sequences being performed under the experiment's operational plan. The instrunent was inadvertently turned OFF from 2203 G.m.t. till 2258 G.m.t. on 21 July.

AISEP Status
28 July 1972
G.m.t.: $1300 \quad$ Page 2

The active seismic experiment is currently in standby orr, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at 2114 G.m.t. 21 July and to high bit rate ON at $2130 \mathrm{G} . \mathrm{m} . t$. for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at $2200 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standby OFF at 2300 G.m.t. . 21 July. One significant signal was noted in real time. The expeximent's roll angle sensor (DS-06) and pitch angle sensor (DS-O7) indicated offscale HIGF throughout the high bit mode operation.

It is requesbed that ary oxganization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch. TN, telephone 483-5067.
ADO110 15 ALSEP

$$
\text { Apol10 } 15 \text { ATSEP }
$$

dTSTV + T Trod \forall

Operational status from 21 July $1972,1200 \mathrm{G} . \mathrm{m} . t .$, to $28 \mathrm{July} 1972,1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.

 The 18th lunar noon of the 14 station occurred 27 July; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $139.7 \pm 1.7 \mathrm{dbm}$. On 22 July the passive seismometer responded to a spurious feedback filter IN command at 1732 G.m.t. The supporting ground station noted a command verification word for the command (octal 101). The instrument's filter was reset, by command, without problem. This instrument is configured identically to the other seismometer's (thermal control auto ON, 0 db gain on all sensors, and filter OUI) in order to match seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972. No seismic events have been noted during the limited real time support periods. Currently in standby. On 21 July experiment commanded ON at 2203 G.m.t., and to high bit rate ON at $2225 \mathrm{G} . \mathrm{m} . t$. for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $2255 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and the instrument time. Next listening mode operation is scheduled for today, Presently operating in the full automatic stepping sequence ($0-127$ frames)with the Chaneltron high voltages commanded on. Intermittent positive
engineering data interruptions (anomaly occurred 9 May lg Tl) in one section
of the analog-tomigital filter are having no adverse effect on the scientific
outputs of the experiments. $\begin{array}{ll}\text { Charged particle Presently the experiment is in standby. The instrument was commanded to } \\ \text { lunar } & \text { operate select in the automatic mode with heater ofF during the partial } \\ \text { environmental } & \text { eclipse of } 26 \text { July. Medium energy electrons from the plasma sheet were } \\ \text { experiment } & \text { detected during both penumbral phases. The boundary effects of photo } \\ & \text { electrons were not as pronounced as had been expected, but were present in } \\ & \text { the data recorded. During the remainder of this reporting period, operation } \\ & \text { of the experiment has been per the revised lunar day operations plan. }\end{array}$ Central station

TM Point	Penumbra Entry				Umbra Exit			
	Apol10 12 ALSEP	Apol10 14 ALSEP	$\begin{gathered} \text { Apollo } 15 \\ \text { ALSEP } \end{gathered}$	$\underset{\text { ALSEP }}{\text { Apolio } 16}$	$\begin{gathered} \text { Apolilo } 12 \\ \text { ALSEP } \end{gathered}$	$\mathrm{ApOl1O}_{\text {ATSEP }}$	$\begin{gathered} \text { Apolio } 15 \\ \text { ALSEP } \end{gathered}$	$\begin{gathered} \text { Apo } 11016 \\ \text { ALSEP } \end{gathered}$
C / S Sunshield (F)	173.9	188.1	145.6	142.8	-89.2	-99.1	106.2	-84.2
AVG Thermal Plate (O)	89.3	111.1	113.4	103.8	67.4	85.1	93.7	83.7
PSE DI-O7 Temp (${ }^{(1)}$	130.6	121.1	139.4	HIGH	130.1	119.9	136.1	HIGH
ISM Internal Temp ($\left.{ }^{0} \mathrm{C}\right)$	Unkrown	N/A	67.7	42.4	Unknown	N/A.	57.8	34.6
SWS Mod 300 Temp (${ }^{\circ} \mathrm{C}$)	62.6	N/A	Standby	N/A	51.1	N/A	Standiby	N/A
SIDE Temp 2 ${ }^{\circ}{ }^{\text {C }}$)	44.0	Uniknowa	85.5	N / A	44.9	Unknown	75.6	N/A
CCGE Temp (${ }^{\text {K }}$)	HIGH	Unknown	364.0	N/A	HIGH	Unknown	323.8	N/A
ASE GLA Temp (${ }^{\circ} \mathrm{K}$)	N/A	78.8	N/A	OFE	N/A	72.7	N/A	OFT
HFE TCe2 Temp (${ }^{(} \mathrm{K}$)	D/A	N/A	366.0	OF'F	N/A	N / A	362.4	OFF
Note: Experiment temperatures listed are taken at various times, limited by real time readout constraints, and may not reflect the lowest actual values.								

LUNAR EVEVYTS

Moon enters penumbra	0438
Moon enters umbra	0555
Middle of eclipse	0716
Moon exits umbra	0836
Moon exits penumbra	0954
Duration of eclipse:	5 h 16 m
Magnitude of eclipse:	0.548

ALSEP EVENTS (TTMES ARE APPROXIMATE)

	ALSEP 1	ATSEP 4	ALSEP A2	AISEP A3
ALSEP enters penumbra	0501	0504	0526	0521
ALSEP enters umbra	0634	0637	-	0653
ALSEP at maximum phase	0704	0707	-	0725
ALSEP exits umbra	0733	0736	-	0756
ALSEP exits penumbra	0905	0908	0905	0927
Duration of eclipse at ALSEP sites:	4h 4m	4 h 4 m	3h 39m	4 h 6 m
Duration of total phase at ALSEP sites:	59 m	59 m	-	63 m

4 August 1972
G.m.t.: 1300

Apol10 16 ALSEP

The Apollo 16 ALSEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations. Sunset at the Descartes site occurred I August. The central station's average thermal plate temperature remains stabilized, with the DSS-I heater ON (10 watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady. The themoelectric power source output remains constant. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with occassional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto on thermal control mode). The uncage/arm fire circuit is configured to the OI state maximizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar night to maintain maximum heat input to the sensor assembly.

The Iunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. Fngjneering data indicates that the y axis sensor's heater thermostat is maintaining the experiment's internal thermal equilibrium. During the past week, flip cal sequences \#12l through \#128 were executed.

The active seismic experiment is currently in standby OFF, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at $1633 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 28 \mathrm{JuIy}$, and to high bit rate ON at 1645 G.m.t., for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at 1715 G.m.t., and the experiment commanded to standby OFF at $1717 \mathrm{G} . \mathrm{m} . \mathrm{t}$. One significant signal was noted in real time. The experiment's roll angle sensor (DS-06) and pitch angle sensor (DS-O7) indicated offscale HIGH throughout the high bit mode operation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch, WN, telephone 483-5067.

ApO110 15 ALSEP

Central station	Sunset of the station's I3th Iunation occurced I August; power from the RTG continues steady and transmitter "A" downink sigral strength is reported at 135.7 ± 1.7 dbm. After verification of the 18 -hour timer's 283rd output pulse on 2 August, the lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150 , twice daily at 1300 G.m.t. and 2100 G.m.t. was initiated. The data subsystem's average thermal plate temperature is presently stabilized. at $-3.7^{\circ} \mathrm{F}$.
Passive seismic experiment	Operation is in the auto on thermal control mode, sensor gains are $0 d b$, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. No natural seismic signals have been noted during the limited real time support of this instrument. The instrument's uncage/arm fire circuitry was commanded to or state to deliver maximum heat into the sensor assembly.
Lunar surface magnetometer experiment	The experiment's sensor was commanded to the 50 gamma range at 1510 G.m.t. . 2 August for lunar night-time operations. Currently the instrument has executed 569 flip calibration sequence since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 aegree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	Presently in standby. The instrument has been commanded to operate select only during real time support periods continuing to demand excessive power, while the instrument's telemetry data continuously indicated all zeros. The instrument was returned to standby after each data check.

$$
\text { (penviguoo) dESTF } S T \text { ottod }
$$

Sunset of the 19 th lunar day at the Apolio 14 landing site occurred 3 August; power output of the radioisotope source is unvarying; and, fransmitter "A" 2 dom. The central station's 2 d527. we cental suavion the $65.7^{\circ} \mathrm{F}$. Currentiv the central is stable at $35.6^{\circ} \mathrm{F}$.

This instrument is configured identically to the other seismometer's (thermal control auto ON, O ab gain on all sensors, and filter OUI) in order bo match seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 23 March 1972. No seismic events have been noted duming the limited real time support of this experiment.

$$
\text { Currentry in standby. On } 28 \text { August, experiment commanded ON at } 1545 \mathrm{G} \cdot \mathrm{~m} . \mathrm{t}, \text {, }
$$ and to high bit rate on at 1600 Gm a 16 oreration. Data output of geophones I and 2 appeared nomal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rote termisated at $1630 \mathrm{G} . \mathrm{m} . t$. , and the instrument commarded to standby at $1632 \mathrm{G} . \mathrm{m} . \mathrm{t}$. No significart everta were noted in real time.

 Presently operating in the full automatic stepping aequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly oceurred 9 May 197l) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments. For a 12 houx period 3 August, the instrument was commanded to the reset frame counter at 79 mode to record a solar flare event. Uninterrupted operations during real time support, in the manual mode (electronics heater oN) 28 July through 30 July, collecting science data in the -35 and +350 voltage ranges of analyzer A. Preceding the station's ephemeris sunset (3 August) the experiment was comanded to the automatic sequence (heater ON and has contimed uninterrupted operations in the automatio
sequence to date. The experiment's analyer A high voltage remains subster tially constant at the 2700 vdc level. Analyzer B high voltage remains below nominal levels. It is planned that the experiment will continue to operate in this configuration throughout the Iunar night.

DSS-l heater (10 watts) was commanded ON at
average thermal plate temperature indicated
station's average thermal plate temperature

Passive seismio experiment Active seismic
Active seismic
experiment

Suprathermal ion detector/cold cathode gauge experiment

-

Charged particie Iunar
environmental experiment

Central station
dESTV LI OTTOdG

Status as of 1400 G.m.t., 3 August 1972, was as follows:

Total Days of Operation

 Total Commands to DateSun Angle
Input Power
Heater and Power Dumps
Experiment Avg Thermal A

Bendix $\begin{aligned} & \text { Aerospace } \\ & \text { Systems Division }\end{aligned}$
SHMN:
SUNRISE

APOLLO (ALSEP)	DAY/HOUR, GMT					
	MIDNIGHT	SUNRISE		NOON	SUNSET	MIDNIGHT
16		15 AUG/1724	(5TH)	23 AUG/0226	30 AUG/1142	6 SEP/2026
15		16 AUG/1639	(14TH)	24 AUG/0145	31 AUG/1059	7 SEP/1940
14	11 AUG/0132	18 AUG/1010	(20TH)	25 AUG/1922	2 SEP/0430	
12	11 AUG/1308	18 AUG/2205	(35TH)	26 AUG/0702	2 SEP/1519	

APOILO IUNAR SURFACE EXPERTMENIS PACKAGE STATUS REPORT
11 August 1972
G.m.t.: 1200

Three major solar flares have been experienced by all the operating ALsep's this past week, with particularly significant data observed in the suprathermal ion detectors, solar wind spectrometer, charged particle and magnetometer experiments science outputs.

Apol10 16 ALSEP

The Apollo 16 ALSFP continues functioning as planned during the limited phase II operations. Mianight at the Descartes site occurred 8 August. The central station's average thermal plate temperature remains stabilized, with the DSS-1 heater ON (10 watts). The signal strength from transmitter "A", as reported by the $30-f 00 t$ antenna tracking stations, is between -137.5 dbm and -140.7 dbm . The themoelectric power source output remains constant. Inhibiting the effects of the 18-hour timer output pulses contimues.

The typical night--time pattem of low background noise with occassional small, high frequency signals. is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded OUP, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto on thermal control mode). The uncage/arm fire circuit is configured to the uncage state. The instrument will be configured in this manner through the remainder of lunar night.

The Iunar surface magnetometer, functioning as planed, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded out, the flip cal inhibit logic commanded. IN, and the sensors configured to the 200 gamma range. Engineering data indicates that the y axis sensor's heater thermostat is maintaining the experiment's internal thermal equilibrium. During the past week, flip cal sequences \#127 through \#l30 were executed.

The active seismic experiment is currently in standby OFF, with a 30 minute passive listening mode operation planned for today. The experiment was not commanded to the high bit rate ON during 4 August so as not to lose data from the experiments recording the solar flare activity,

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements and Operations Branch. TN, telephone 483-5067.
むHSTV ST OTTOdV

(penutquoo) d.ESTV ST otrody

Operational status from 4 August $1972.1300 \mathrm{G} . \mathrm{m} . t .$, to 11 August $1972.1200 \mathrm{G} . \mathrm{m} . \mathrm{t}$.	
Central station	Midnight of the 19 th Iunar day at the Apollo I4 Ianding site occurred 3 August, power output of the radioisotope source-is unvarying; and, transmitter "A" signal strength was reported at $-135.5 \pm 1.5 \mathrm{dbm}$. The central station's DSS-I heater (10 watts) remains ON during lunar night operations. Currently the central station's average thermal plate temperature is stable at 34.4 F .
Passive seismic experiment	This instrument is configured identically to the othex seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUI) in order to match seismic response. The instrument's long period z axis has not displayed valid data on responded to a command since 23 March 1972. No seismic events have been noted during the limited real time support of this experiment.
Aotive seismic experiment	Currently in standby without a 30 minute passive listening mode operation planed for today as the $A S-03$ temperature is below $-60^{\circ} \mathrm{C}$. The experiment was not commanded to high bit rate on during 4 August ao as not to loze data from the experiments recording the solar flare activity.

 Urinterrupted operations in the auto mode (electronics heater ON) 4 August to 11 August collecting science data in all voltage ranges of analyzer A. The experiment's analyzer A high voltage remains substantially constant at the is plannea that the experiment will continue to operate in this configuration throughout the Iunar night.
wot Teuxəuqexdns
detector/cold
cathode gauge
experiment
detector/cold
cathode gauge
experiment
detector/cold
cathode gauge
experiment

Charged particle
Iunar
environmental
experiment
Iunar
environmental
experiment
Iunar
environmental
experiment

Active seismic
APOIIO 12 ALSEP

Central station	onal status from 4 August 1972, 1300 G.m.t., to 11 August 1972, 1200 G.m.t. Midnight of the 34 th Iunar day occurred 11 August; RIG power output is constant; and, transmitter "B" signal strength was reported at $-137.6 \pm 1.6 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) remains ON.
Passive seismic experiment	The instrument's thermal control mode is auto ON, the component gains at O db, and the feedback loop filter commanded OUT. No lunar seismic signals have been sensed during the limited real time support for the Apollo 12 experiment. The instrument's z axis drive motor remains ON in an effort to maximize the heat input to the sensor assembly during lunar night operations. DL-O7 indicates 126.1 F a motor ON.
Lunar surface magnetometer experiment	Scientific and engineering data have been statio since 4 June 1972. The instrument's digital filter remains commanded IN.
Solar wind spectrometer experiment	The instrumert was commanded to the extended range for the solar flare activity at 0602 G.m.t. 4 August 1972 and remained in this range until 1328 G.m.t., 7 August 1972. The instrument is presently operating in the normal range mode.
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with the Channeltron high voltage ON. The experiment remains ON for continuous lunar night operations. On 3 August, the instrument was commarded to the reset frame counter at 79 mode to record the solar flare activity. The instrument was commanded to normal range at $1322 \mathrm{G} . \mathrm{m} . \mathrm{t} . \mathrm{F} 7$ August 1972.

APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT
18 August 1972
G.m.t.: 1300

Iunar sunrise at the Descartes site occurred on 15 August. The engineering data being received and processed from the Apollo 16 ALSEP indicates continued steady central station and experiments lunar operations. The station is in its $119 t h$ day of operation with the moon, approaching the earth's transition region. The central station's average thermal plate temperature continues to track precisely when compared with identical sun angles of the station's previous lunar day operations.

The passive seismic experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature increasing at a rate of 0.03 F per hour (auto on thermal control mode). The uncage/arm fire circuit is configured to the UNCAGE state minimizing heat into the sensor assembly. The instrument will be configured in this manner throughout Iunar day.

The lunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is opexating with the digital filter commanded OUP, the fip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. As plamed, the digital filter was commanded OUP for this lunation, on 16 August at 1317 G.m.t. The instrument's internal eleem tronics temperature continues to increase at a rate of $0.7^{\circ} \mathrm{C}$ per hour, tracking the instrument's second lunar day temperature profile.

The active seismic experiment is in standby OFF. A 30 minute listening period is scheduled for today. The experiment was commanded to operate select at 1403 G.m.t., 11 August, and to high bit rate ON at 1415 G.m.t.. for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at $1445 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , and the experiment commanded to standby at 1448 G.m.t., 11 August. No significant signals were noted in real time.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Bcience Project Support Branch, TM3, telephone 483-5067.

$$
\text { Apol1o } 15 \text { ALSEP }
$$

Apollo 15 ALSEP

Suprathermal ion detector/cola. cathode gauge experiment	Presently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON. At the start of support on 17 August the instrument's command register was observed to contain SIDE command Load 15 (reset command register). The command register was not cleared by mission control, as command Load 15 causes no detrimental effect on the instrument's science output or eiectronic component operations. Currently the experiment's command register contains command Ioad 15.
Heat fllow experiment	The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.7^{\circ} \mathrm{K}\left(-8.4^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable themocouples on the lunar surface indicate a temperature of approximately $279.0^{\circ} \mathrm{K}\left(42.8^{\circ} \mathrm{F}\right)$. TREF 2 is curcently outputting erroneous data. A duplicate measurement, TREF I, is operating normally so that no data are lost.

$$
\text { Apollo } 14 \text { AISEP }
$$

Central station	The 20th Iunax sunrise of the 14 station will occur today 18 August; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-137.7 \pm 1.7 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) is ON.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUT) in order to match seismic response. During phase II support, I4 August, the instrument's long period z axis displayed valid data. At the stant of phase II support, 16 August, the long period z data was again invalia. This anomaly was first detected on 23 March, 1972. No events have been noted during limited real. time support. On 14 August at 0502 G.m.t. the instrument experienced a spurious command (octal 067) placing the experiment's short period z axis gain to the -10 db range. The expeximent was commaded back to the 0 db gain at 1308 G.m.t., 14 Alagust, 1972 with no adverse effects.
Active seismic experiment	Currently in standiy. On 11 August 1972 the scheduled listening mode operation was not conducted because operations procedure limiting experiment turn On wher the grenade launch assembly temperature ($\mathrm{AS}-03$) is $-60^{\circ} \mathrm{C}$ or below. Next listening mode operation is scheduled. for 19 August 1972.
```Suprathermal ion detector/cold cathode gauge experiment```	Presently operating in the full automatic stepping sequence ( $0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar environmental experiment```	Uninterrupted operations in the automatic sequence (electronics heater onf) collecting science data in the six voltage ranges of analyzer $A$, The experiment's analyzer A high voltage (AC-03) remained substantially constant at the 2600 vac level. Analyzer $B$ high voltage remains below nominal levels The current plan is to operate the instrument in the automatic sequence, with the electronics heater $O \mathbb{N}$, through the station's ephemris sunrise.


Status as of 1800 G.m.t., 17 August, was as follows:

25 August 1972
G.m.t.: 1300

Apolio 16 ALSEP
Lunar noon occurred on 23 August at the Descartes site, The station is in its l26th day of operation with the moon in the earth's geomagnetic tail. The central station's average thermal plate temperature compares exactly with the temperatures for identical sun angles of the station's preceding lunar day operations. The thermoelectric power output remains steady. Inhibiting the 18 -hour timer output pulses continues. The signal strength, as reported by the 30 -foot antenna tracking stations. of transmitter "A" is between -1.38 .0 dbm and -141.5 dbm .

The passive seismometer is configured for lunar day operation with the feedback loop filter commanded oUT, the sensor gains of all components to $O \mathrm{db}$, auto ON thermal control mode and the uncage/arm fire circuit to the UNCAGE state. The sensor's temperature transducer output (DI-O7) indicated offscale FIGH during phase II operations on 21 August at a normalized sun angle of 72°. It is projected that the temperature will return onscale on 29 August (sun angle of 170°).

The lunar surface magnetometer continues normal operation and is presently indicating the moon's passage through the earth's geomagnetic tail. The instrument is operating in the 200 gamma range and with the digital filter commanded OUT and the flip cal inhibit logic commanded IN. The experiment's internal electronics continue tracking previously recorded temperatures at the identical sun angles. The experiment correctly performed its l39th through 144 th flip calibration sequences during the past week.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On 19 August the experiment was commanded to operate select at $0727 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , and to high bit rate ON at 0745 G.m.t. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real time. High bit rate operations were terminated at $0815 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standby at $0819 \mathrm{G} . \mathrm{m} . t .$, 19 August.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Project Support Branch, TN3, telephone 483-5067.
APOI1O 15 ALSEP

Central s	Noon of the station's I4th Iunation occurred 24 August; power from the RrG continues steady and transmitter "A" downlink signal strength is between -134.5 dbm and -138.0 dbm . The data subsystem's timer continues to function normally, having generated output pulses consistently since initialization (31 July 1971).
Passive seismic experiment	Operation is in the auto ON thermal control mode, sensor gains are 0 db , and the feedback loop filter commanded out in order to achieve seismic network congruity No seismic signals have been noted during the limited real time support periods.
Iunar surface magnetometer experiment	The experiment's sensors are presently in the 100 gamma range for lunar day-time operations. The experiment's internal electronics temperature exceeded $62^{\circ} \mathrm{C}$ on 23 August 1972 . Flip calibration sequences have been suspended by request of the principal investigator whenever the internal electronics temperature increases above $62^{\circ} \mathrm{C}$. Currently the instrument has executed 589° flip calibration sequences since activation. The experiment's Y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The next flip calibration sequence is projected for 26 August 1972.
Solar wind spectrometer experiment	The instrument has been in standby since 17 August 1972. The instrument will remain in standby pending further analysis per SMEAR \#45.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence with the Channeltron high voltages commanded ON,
Heat flow experiment	The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}$ $\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.7^{\circ} \mathrm{K}\left(-8.0^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $328.4 \stackrel{\circ}{\mathrm{~K}}(131.7 \mathrm{~F})$. TREF 2 is currently outputting erroneous data. A duplicate measurement. TREF I, is operating normally so that no data are lost.

Apollo 14 ALSEP

Central station	The 20th lunar noon of the 14 station will occur 25 August; power output of the raäioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-137.5 \pm 2.0 \mathrm{dbm}$.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, 0 db gain on all sensors, and filter OUT) in order to match seismic response. The instrument's long period z axis has not displayed valid data since 14 August 1972 or responded to a command since 14 August 1972. No seismic events have been noted during the limited real time support periods.
Active seismic experiment	Currently in standby. On 19 August experiment commanded on at 0638 G.m.t., and to high bit rate ON at 0645 G.m.t. for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously ercatic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 0725 G.m.t., and the instrument commanded to standby at $0726 \mathrm{G} . \mathrm{m} . \mathrm{t}$. No seismic events were noted in real time. Next listening mode operation is scheduled for today.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded on. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
Charged particle Iunar environmental experiment	Presently the experiment is in standiby. At 2445 G.m.t., 22 August 1972 the experiment was placed in the manual mode (-35 V) during real time support and returned to standby during Phase IV support at 0500 G.m.t., 23 August 1972. The experiment was turned on at 1627 G.m.t., 23 August 1972 and placed in manual mode (-350 V). During real time support on 24 August 1972 , the experiment was turned to STAADBY at 1450 G.m.t.

$$
\text { Status as of } 1400 \text { G.m.t., } 24 \text { August, was as follows: }
$$

I September. 1972
G.m.t.: 1300

Apo110 16 ATSEP
The Apollo 16 ALSEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations. Sunset at the Descartes site occurred 30 August. The central station's average thermal plate temperature remains stabilized, with the DSS-1 heater ON (10 watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady. The thermoelectric power source output remains constant. Inhibiting the effects of the 18-hour timer output pulses contimues.

The typical night-time pattern of low background noise with occassional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to O db, and the sensor assembly temperature stabilized (auto on thermal control mode). The uncage/arm fire circuit is configured to the OT state maximizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar night to maintain maximum heat input to the sensor assembly.

The lunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded oUT, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. Engineering data indicates that the y axis sensor's heater thermostat is maintaining the experiment's internal thermal equilibrium. During the past week, flip cal sequences \#144 through \#152 were executed.

The active seismic experiment is currently in standby OFF, with a 30 minute passive listening mode operation planned for today. The experiment was commanded to operate select at 1420 G.m.t., 25 August, and to high bit rate ON at $1435 \mathrm{G} . \mathrm{m} . t$. , for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at 1505 G.m.t., and the experiment commanded to standby OFF at 1507 G.m.t. No significant signals were noted in real time. The experiment's roll angle sensor (DS-06) and pitch angle sensor (DS-O7) indicated offscale HIGH throughout the high bit mode operation.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Project Support Branch, TN3, telephone 483-5067.
Apolio 15 AISEP

Sunset of the station's Itth Iunation occurred 31 August; power from the RTG
continues steady and transmitter "A" downlink signal strength is reported at
-137.6 ± 1.8 dbm. The data subsystem's timer continues to function normally,
having generated output pulses consistently since initialization (31 July l97l).
Sunset of the station's I4th Iunation occurred 31 August; power from the RTG
continues steady and transmitter "A" downlink signal strength is reported at
-137.6 ± 1.8 dbm. The data subsystem's timer continues to function normally,
having generated output pulses consistently since initialization (31 July la7l).
Sunset of the station's I4th lunation occurred 31 August; power from the RTG
continues steady and transmitter "A" downlink signal strength is reported at
-137.6 ± 1.8 dbm. The data subsystem's timer continues to function normally,
having generated output pulses consistently since initialization (31 July l97l). 1971) Passive seimsic
experiment Passive seimsic
experiment

Central station Passiverment Lunar surface magnetometer experiment Solar wind spectrometer

$$
\text { Operation is in the auto ON thermal control mode, sensor gains are } O d b \text {, and }
$$

the feedback loop filter commanded oUN in order to achieve seismic network

The instrument has been in standby since 17 August 1972. The instrument will
remain in standby pending further analysis per SMEAR \#4.
Sunset of the station's I4th lunation occurred 31 August; power from the RTG
continues steady and transmitter "A" downlink signal strength is reported at
-137.6 ± 1.8 dbm. The data subsystem's timer continues to function normally,
having generated output pulses consistently since initialization (31 July la7l). experiment

Heat flow
experiment
Heat flow
experiment
eathode gau.
experiment
Operational status from 25 August 1972,1300 G.m.t., to 1 September 1972,1300 G.m.t.

$$
\begin{aligned}
& \text { The } 20 t h \text { lunar sunset of the } 14 \text { station will oceur } 2 \text { September; power output of the } \\
& \text { radioisotope source is unvarying; and, transmitter "A" signal strength was reported } \\
& \text { as lil. } 5 \pm .5 \text { dbm. } \\
& \text { This instrument is configured identically to the other seismometer's (thermal } \\
& \text { control auto oN, o db gain on ali sensors, and filter oum) in order to match } \\
& \text { seismic response. The instruent's Iong period a axis has not displayed valid } \\
& \text { data since l4 August lg72 or responded to a command since } 14 \text { August } 1972 \text {. No } \\
& \text { seismic events have been noted during the limited real time support periods. }
\end{aligned}
$$

Currently high bit r of geophon phone cali rate termi No seismic for today.		

Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred 9 May l97l) in one section of the analog-to-digital experiments.

$$
\begin{aligned}
& \text { On } 29 \text { August, the experiment was commanded to the automatic sequence (heater on) } \\
& \text { and has continued uninterrupted operations in the automatic sequence to date. The } \\
& \text { experiments analyzer A high voltage remains suostantially constant at the } 2700 \text { vdc } \\
& \text { level. Analyzer B high voltage remains below nominal levels. It is planed that } \\
& \text { the experiment will continue to operate in this configuration throughout the lunar } \\
& \text { night. From } 26 \text { August through } 28 \text { August, the instrumt was commanded on for } \\
& \text { limited periods of manual operation, collecting science data in the }-35 \text { and }+350 \\
& \text { voltage ranges of analyzer A. }
\end{aligned}
$$

Central station
Passive seismic

Active seismic
Suprathermal ion
detector/cold
Charged particle
experiment cathode gauge Iunar
environmental.
experiment
experiment
Apol1o 12 ATSEP

8 September 1972
G.m.t.: 1200

APO IlO 16 AISEP

The Apollo 16 ATSEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations of the past week. Lunar midnight at the Descartes site occurred 6 September 1972. The central station's average thermal plate temperature remains stabilized, with the DSS-I heater ON (10 watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady. The thermoelectric power source output is normal. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with occasional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto on thermal control mode). The uncage/arm fire circuit is configured to the uncaged state. The instrument will be configured in this manner throughout lunar night. No significant seismic events were noted during the limited real time support of this instrument.

The lunar surface magnetometer continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal imibit logic commanded IN, and the sensors configured to the 200 gamma range. The instrument's 156 th flip calibration sequence was executed correctly by command, on 6 september 1972.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On I September 1972 the experiment was commanded to operate select at 1508 G.m.t., and to high bit rate on at 1615 G.m.t. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real time. High bit rate operations were terminated at $1645 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standby at $1647 \mathrm{G} . \mathrm{m} . t$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Wiley, Science Project Support Branch, TN3, telephone 483-5067.

APOLIO I5 ATSEP

Midnight of the atation's 14th Iunation ocourred 7 september 1972: power from the RTG continues steady and transmitter "A" downink signal strength is reported at $-139 \pm 2.0 \mathrm{dbm}$. After verification of the 18 -hour timer's 305 th output pulse on 1 September 1972, the lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150, twice daily at $1300 \mathrm{G} . \mathrm{m} . t$, and $2100 \mathrm{G} . \mathrm{m} . t$. was initiated. The data subsystem's average thermal plate termperature is presently stabilized at 0.8 F .
Operation is in the auto oN thermal control mode, sensor gains are o db, and the feedback loop filter commanded OUI in order to achieve seismic network congruity. No major seismic signals have been noted during the limited real time support of this instrument. The instrument's uncage/arm fire cirouitry was commanded to op state to deliver maximum heat into the sensor assembly.

> The experiment's sensors were commanded to the 50 gamma range at 1420 G.m.t., 1. September 1972. Currently the instrument has executed 605 flip calibration sequences since artivation. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal command. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain aensor head synchronization.
Presently in standoy, The instrument has not been commanded to operate select since 17 August 1972 .
Presenty operating in the full automatio stepping sequence with the Chanmeltron high voltages commanded oN.

$$
\begin{aligned}
& \text { The temperature of probe } 1 \text { at the bottom of the lowest probe section is } 253.1 \mathrm{~K} \\
& (-3.8 \mathrm{~F}) \text { with probe } 2 \text { indicating a temperature of } 250.7 \mathrm{~K}(-8.1 \mathrm{~F}) \text { at its lower- } \\
& \text { most point. The instruments cable thermocouples on the } 1 \text { unar surface indicate } \\
& \text { a temperature of approximately } 88.3 \mathrm{~K}(-305.0 \mathrm{~F}) \text {. Since } 29 \text { May } 1972 \text {, the instru- } \\
& \text { ment's measurement TREF } 2 \text { has continually displayederroneons data. A duplicate } \\
& \text { measurement TreF } 1 \text { is operating normally so that no data are lost. }
\end{aligned}
$$ Central station Passive seismic experiment Iunar surface magnetometer Solar wind Supratheral ion detector/cold cathode gauge experiment

This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter ouT) in order to match seismic response. The instrument's long period z axis has not displayed valid data or responded to a command since 14 August 1972. No seismic events have been noted during the limited real time support of this experiment.

$$
\text { Currently in standby. On } 1 \text { September } 1972 \text { experiment commanded oN at } 1507 \mathrm{G} . \mathrm{m} . t .
$$ and to high bit rate ON at $1540 \mathrm{G} . \mathrm{m} . t$. for a passive listening mode operation. Data output of geophones 1 and 2 appeared nomal; geophone 3 was continuously erratic, No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1610 \mathrm{G} . \mathrm{m} . \mathrm{t}_{0}$., and the instrument commanded to standby at 1612 G.m.t. No seismic events were noted in real time. Next Iistening mode is scheduled for 22 September 1972 following sunrise of this package.

$$
\begin{aligned}
& \text { Presently operating in the full automatic stepping sequence (} 0-127 \text { frames) with } \\
& \text { the Chaneltron high voltages commanded oN. Intermittent positive engineering } \\
& \text { data intermptions (anomaly ocoured } 9 \text { May } 1971 \text {) in one secion of the analog-to- } \\
& \text { digital filter are having no adverse effect on the scientific outputs of the } \\
& \text { experiments. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Unintermpted operations in the auto mode (electronics heater on) collecting } \\
& \text { \& } \\
& \begin{array}{l}
n \\
4 \\
4 \\
4
\end{array}
\end{aligned}
$$

ADOLIO 22 ASEP

Operational status from 1 September 1972, 1300 G.m.t., to 8 September 1972, 1200 G.m.t. Midnight of the 35 th lunar day will ocur 10 September 1972 ; RTG power output is constant; and, transmitter "B" signal strength was reported at $-136.5 \pm 2.5 \mathrm{dbm}$. The central station"s DSS-I heater (10 watts) remains ON. On 31 August 1972 the ALSEP transmitter A started to experience occasional dropouts of the downlink. No site or networix operational problems were discovered that could be attributed to causing intermittent losses of downlink. Due to a significant amount of downink dropouts, and interpreted as a repeat of previous transmitter "A" operatons. Ans transmitter was selectea. The comand to change transm. interruption since 26 August 7972 when an antomatic switoh-orer from transmitter "B" to transmitter "A" was experienced. Transmitter "B" has not experienced signal dropouts since its implementation.

s.7uәumatsut eut The instrument is operating in full automatic stepping sequence with the Channeltron high voltages ON. Central station

Passive seismic

Lunar surface
magnetometer
experiment

[^10]
APOLIO 15 ALSEP

\[

$$
\begin{aligned}
& \text { ON } \\
& \text { ASE Stby } \\
& 34.4^{\circ} \mathrm{F} \\
& \text { I24. } 3^{\circ} \mathrm{F} \\
& \mathrm{~N} / \mathrm{A} \\
& \mathrm{~N} / \mathrm{A} \\
& \text { Invalid } \\
& \text { Invalia } \\
& -22.0^{\circ} \mathrm{C}\left(-7.6^{\circ} \mathrm{F}\right) \\
& -63.0^{\circ} \mathrm{C}\left(-81.4^{\circ} \mathrm{F}\right) \\
& \mathrm{N} / \mathrm{A}
\end{aligned}
$$
\]

APOLIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
15 September 1972
G.m.t. : 1300

Lunar sumpise at the Descartes site occurred on 14 September. The engineering data being received and processed from the Apollo 16 ALseP indicates continued steady central station and experiments lunar operations. The station is in its 148 th day of operation with the moon, approaching the earth's transition region. The central station's average thermal plate temperature continues to track previous lunar day operations at comparable sun angles. The DSS -1 heater (10 watts) was commanded OFF at sunrise. The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is between -138.0 dm and -139.9 dbm . Inhibiting the effects of the 18 -hour timer output pulses continues.

The passive seismic experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to $0 \mathrm{db}^{2}$ and the sensor assembly temperature increasing at a rate of $0.01 \mathbb{F}$ per hour (auto on thermal control mode). The uncage/ arm fixe circuit is configured to the UVCAGE state minimizing heat into the sensor assembly. The instrument will be configured in this manner throughout Iunar day.

The lunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal inhibit logic commanded. IN, and the sensors configured to the 200 gamma range. The instrument's internal electronics temperature continues to increase at a rate of $0.7^{\circ} \mathrm{C}$ per hour, tracking the instrument's second lunar day temperature profile. During the past week, flip cal sequences \#159 through \#164 were executed.

The active seismic experiment is in standby OFF. A 30 minute listening period is scheduled for today. The experiment was commanded to operate select at 1409 G.m.t., 8 September and to high bit rate ON at 1430 G.m.t., for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the listening mode operation. High bit rate operations were terminated at 1500 G.m.t.o, and the experiment commanded to OFF at $1503 \mathrm{G} . \mathrm{m} . \mathrm{t} . \mathrm{S} 8$ September. No significant signals were noted in real time.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Project Support Branch, TN3, telephone 483-5067.
Apollo 15 ALSEP
Operational status from 8 September 1972, 1200 G.m.t., to 15 September 1972,1300 G.m.t.
Sunrise of the station's I5th Iunation will occur boday, power from the RTG continues steady and transmitter "A" downlink signal strength is reported at $-135.5 \pm 1.5 \mathrm{dbm}$. The lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150, twice daily at 1300 G.m.t. and 2100 G.m.t., will be suspended today. The data subsystem's average thermal plate temperature is presently stabilized at $-0.8^{\circ} \mathrm{F}$.
Operation is in the auto ON thermal control mode, sensor gains are 0 db , and the feedback loop filter commanded OUT in order to achieve seismic network congruity
 of this instrument. The instrument's uncage/arm fire circuitry was commanded to OI state to deliver maximum heat into the sensor assembly.
The experiment's sensors were commanded to the 100 gamma range at 1443 G.m.t.,
13 september, due to increased science activity. Curcently the instrument has
executed 613 flip calibration sequences since activation. The experimentis y axis
sensor head remains fixed at a 180 degree position, not responding to flip cal
comands. The x-axis and z-axis sensors are returned to the 180 degree position
following each flip cal sequence to maintain sensor head synchronization.

The instrument has been in standby since 17 August 1972. The instrument will

remain in standby pending further analysis per SMEAR \#+5.
 high voltages commanded ON. The experiments have operated continuously in the automatic sequence since 1 May 1972. The temperature of probe 1 at the bottom of the lowest probe section is
 ate a temperature of approximately $83.7 \mathrm{~K}(-308.7 \mathrm{~F})$. Since 29 May 1972 , the
 Central station Passive seismic experiment Lunar surface magnetometer experiment Solar wind Suprathermal ion detector/cold cathode gauge experiment
Heat flow
Apollo 14 AISEP

Central station	Sunrise of the 21st lunar day at the Apollo 14 landing site will occur 16 September, power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported at $-136.7 \pm 2.7 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) remains ON during lunär aight operations. Curcently the central station's average thermal plate temperature is stable at $33 \cdot 3^{\circ} \mathrm{F}$.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, $O \mathrm{db}$ gain on all zensors, and filter OUI) in order to match seismic response The instrument's long period. z axis has not displayed valid data or responded to a command since 23 March 1972. No seismic events have been noted during the limited real time support of this experiment. A the start of reai-time support, $1315 \mathrm{G} . \mathrm{m} . \mathrm{t}$. ; 8 September, it was noted that the seismometer had responded to a spurious level speed HIGF command (octal 075). No command verification word had been reported by the remote stations between $1700 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 6$ september and the start of real-time support. The instrument was reset to the IOW speed mode, by command, without problem.
Active seismic experiment	Currently in standby without a 30 minute passive listening mode operation planned for today as the AS-03 temperature is below $-60^{\circ} \mathrm{C}$. The experiment was not commanded to high bit rate on 8 September due to this same temperature restraint.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
```Charged particle Iunar environmental experiment```	Uninterrupted operations in the auto mode (electronics heater ON), collecting science data in all voltage ranges of analyzer $A$. The experiment's analyzer $A$ high voltage remains substantially constant at the 2700 vac level. Analyzer B high voltage remains below nominal levels.

Apollo 12 ALSEP

Operational status from 8 September $1972.1200 \mathrm{G} \cdot \mathrm{m} . t$. , to 15 September $1972.1300 \mathrm{G} . \mathrm{m} . t$.	
Central station	Sunrise of the $36 t h$ lunar day will oceur 17 September; RTG power output is constant: and, transmitter "B" signal strength was reported at $-137.9 \pm 1.9 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) remains ON.
Passive seismic experiment	The instrument's thermal control mode is auto ON, the component gains at $O$ db, and the feedback loop filter commanded OUT. No Iunar seismic signals have been sensea during the limited real time support for the Apollo 12 experiment. The instrument's z axis drive motor remains on in an effort to maximize the heat input to the sensor assembly during lunar night operations. DI-O7 indicates 126.0 F ( Z motor ON).
Lunar surface magnetometer experiment	Scientific and engineering data have been static since 4 June 1972. The instrument's digital filter remains commanded. IN.
Solar wind spectrometer experiment	Uninterrupted operations in the normal range mode since 7 August 1972 .
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with the Chameltron high voltages ON. At 1314 G.m.t., 9 September, the digital electronica of the instrument ceased to process data (all O's in the downlink). Two analog parameters, AI-O1, (low energy counts) and AI-O2, (high energy counts), continue to be processed. and downinked through the ALSEP 90 channel multiplexer. This anomaly is presently under investigation.



as follows:
APOLIO 14 ALSEP


22 september 1972
G.m.t.: 1300

Apollo 16 ALsEP
Lunar noon occurred on 21 September at the Descartes site. The station is in its 155 th day of operation with the moon in the earth's geomagnetic tail. The central station's average thermal plate temperature compares exactly with the temperatures for identical sun angles of the station's preceding lunar day operations. The thermoelectric power output remains steady. Inhibiting the 18-hour timer output pulses continues. The signal strength. as reported by the $30-f 00 t$ antenna tracking stations. of transmitter "A" is between -139.0 dbm and -140.0 dbm .

The passive seismometer is configured for Iunar day operation with the feedback loop filter commanded. OUT, the sensor gains of all components to $O$ db, auto ON thermal control mode and the uncage/arm fire circuit to the UNCAGE state. The sensor's temperature transducer output (DI-O7) indicated offscale HIGH during phase II operations on 20 September at a normalized sun angle of $79^{\circ}$. It is projected that the temperature will return onscale on 28 September (sun angle of $170^{\circ}$ ).

The Iunar surface magnetometer continues normal operation and is presently indicating the moon's passage through the earth's geomagnetic tail. The instrument is operating in the 200 gamma range and with the digital filber commanded IN and the flip cal inhibit logic commanded IN. The experiment's internal electronics continue tracking previously recorded temperatures at the identical sun angles. The experiment correctly performed its 165 th through l70th flip calibration sequences during the past week.

The active seismic experiment is in standby ofr with a 30 minute passive listening period scheduled for today. On 15 September the experiment was commanded to operate select at $1357 \mathrm{G} . \mathrm{m} . t$. , and to high bit rate on at $1415 \mathrm{G} . \mathrm{m} . t$. for a passive Iistening period. Three geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and one significant signal was noted in real time. High bit rate operations were terminated at $1445 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and the experiment commanded to standoy at $1448 \mathrm{G} . \mathrm{m} . \mathrm{t}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact $R$. Miley, Science Project Support Branch. TN3. telephone 483-5067.
Operational status from 15 september 1972: $1300 \mathrm{G} . \mathrm{m} . t$. , to 22 september 1972. 1300 G.m.t. Noon of the station's l5th lunation will occur today; power from the RTG continues steady and transmitter "A" downink signal strength is between -135.0 dbm and -137.5 d bm . The data subsystem's timer continues to function normally, having generated output pulses consistently since initialization ( 31 July 1971). Operation is in the auto on thermal control mode, seasor gains are 0 db, and the feedback loop filter commanded OUP in order to achieve seismic network congruity. No seismic signals have been noted during the limited real time support periods. The experiment's sensors are presently in the 100 gamma range for lunar day-time operations. The experiment's internal electronics temperature exceeded $62^{\circ} \mathrm{C}$ on 19 September. Flip calibration sequences have been suspended by request of the principal investigator whenever the internal electronics temperature increases above 62 C . Currently the instrument has executed 623 fip calibration sequences since activation. The experiment's $Y$ axis sensor head remains fixed at a 180 degree position. not responding to flip cal commands. The next flip calibration sequence is projected for 25 September 1972 . At 1637 G.m.t. 20 September, the
 investigation.
The instrument has been in standby since 17 August 1972. The instrument will remain in standoy pending further analysis pex SMEAR \#45. Presently operating in the full automatic stepping sequence with the Chaneltron high voltages commanded ON. The temperature of probe $I$ at the bottom of the lowest probe section is 253.1 K
$\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.7 \mathrm{~K}(-8.0 \mathrm{~F})$ at its Iower-
most point. The instruments cable themocouples on the lunar surface indicate
a temperature of appoximately $367.0 \mathrm{~K}(201.2 \mathrm{~F})$. TREF 2 is currenty out-
putting erroneous data. A duplicate measurement. TREF I, is operating normally
so that no data are lost. wotqeqs texquap Passive seismic Lunar surface magnetometer experiment Solar wind spectrometer
experiment Suprathermal ion detector/cola cathode gauge experiment
Heat flow experiment

Apollo 14 ALSEP	
Operational status from 15 September $1972,1300 \mathrm{G} . \mathrm{m} . \mathrm{t.}$,to 22 September 1972,1300 G.m.t.	
Central station	The 21st lunar noon of the 14 station will occur 24 September; power ontput of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-136.8+2.8 \mathrm{dbm}$.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, $O$ db gain on all sensors, and filter OUT) in order to match seismic response. The instrument's long period $z$ axis has not displayed valid data since 14 August 1972 or responded to a command since 14 August 1972 . No seismic events have been noted during the limited real time support periods.
Active seismic experiment	Currently in standby with a 30 minute passive listening mode operation planned for today. The experiment was not comnarded to high bit rate on 15 September due to the temperature restraint of $-60^{\circ} \mathrm{C}$.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence ( $0-127$ frames) with the Channeltron high voltages commanded On. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-todigital filter are having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar environmental experiment```	Presently operating in the manual mode ( -350 volt range) since 18 september. The present plan is to operate continuously through this lunation if the analyzer A high voltage remains above 2300 vdc. At the start of support. 17 september, it was roted that the instrument had changed from auto sequence mode to manual (-O vdc) with no CVW activity reported by the supporting MSFN stations. The instrument was commanded back to auto sequence without incident.

Apol1o 12 ALSEP
 Noon of the package's 36 th Iunar day will ocur 24 September. RTG power output is constant; and, transmitter "B" signal strength was reported at $-137.5 \pm 2.5 \mathrm{dm}$. The centrel station's DSS-1 heater was commanded OFF at $0351 \mathrm{G} . \mathrm{m} . t$., 18 September, when the station's average thermal plate temperature increased to 63.1 F .
The instrument's thermal control mode is auto oN, the component gains at $0 d b$, and the feedback loop filter commanded OUP, identical to the other seismic instruments. No seismic signals have been noted during the limited real time support periods, The instrument's z axis motor was commanded OFF, at 1558 G.m.t.,
Scientific and engineering data have been static since 4 June 1972. The instrument's digital filter remains commanded IN

Uninterrupted operations in the normal range mode since 7 August 1972.

 At $0547 \mathrm{G} . \mathrm{m} . t$. 16 September, the instruments digital data returned. This anomaly,which occurred 1314 G.m.t. 9 September, is still under investigation. Cyclic
comnanding of instrument in the full automatic stepping sequence with Channeltron
high voltages or to experiment power orf continues, initiated this Iunar day on
19 September. The experiment is commanded in this manner to preclude instrument
mode changes at internal temperatures above $55^{\circ} \mathrm{C}$. Passive seismic
Iunar surface
magnetometer
experiment
Lunar surface
magnetometer
experiment Solax wind
spectrometer
experiment
SuprathermaI ion detector
experiment
Central station
experiment
0.

Operational status from 15 September 1972 , $1300 \mathrm{G} . \mathrm{m} . t$. , to 22 September 1972 , $1300 \mathrm{G} . \mathrm{m} . t$.	
Central station	Noon of the package's 36 th lunar day will oceur 24 september. RTG power output is constant; and, transmitter "B" signal strength was reported at $-137.5 \pm 2.5 \mathrm{dbm}$. The centrel station's DSS-1 heater was commanded OFF at 0351 G.m.t., 18 September, when the station's average thermal plate temperature increased to 63.1 F .
Passive seismic experiment	The instrument's thermal control mode is auto ON, the component gains at 0 db, and the feedback loop filter commanded our, identical to the other seismic instruments. No seismic signals have been noted during the limited real time support periodn, The instrument's z axis motor was commanded OFF, at $1558 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , 17 September, as the sensor assembly temperature increased to $126.2^{\circ} \mathrm{F}$.
Iunar surface magnetometer experiment	Scientific and engineering data have been static since 4 June 1972. The instrum ment's digital filter remains commanded IN.
Solar wind spectrometer experiment	Uninterrupted operations in the rormal range mode since 7 August 1972.
Suprathermal ion detector experiment	At 0547 G.m.t., 16 september, the instruments digital data returned. This anomaly which occurred 1314 G.m.t., 9 September, is still under investigation. Cyclic commanding of instrument in the full automatic stepping sequence with Chaneltron high voltages ON to experiment power orf continues, initiated this Iunar day on 19 september. The experiment is commanded in this manner to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

29 September 1972
G.m.t.: 1300

Apo110 16 ATSEP
Lunar sunset occurred 28 September at the Descartes site. The station is in its l $62 n$ day of operation. The central station's DSS-1 heater (10 watts) was commanded ON at 1342 G.m.t. , 28 September when the average thermal plate temperature dropped to 52 F . The thermoelectric power output remains steady. Inhibiting the 18 -hour timer output pulses continues. The signal strength, as reported by the $30-$ foot antenna tracking stations, of transmitter "A" is between -138.5 dbm and -141.0 dbm.

The passive seismometer is configured for lunar night operation with the feedback loop filter commanded OUT, the sensor gains of all components to $O \mathrm{db}$, auto ON thermal control mode and the uncage/arm fire circuit to the UNCAGE state. The sensoris temperature transducer output (DT-O7) is projected to returned onscale 29 september.

The Iunar surface magnetometer continues normal operation. The instrument is operating in the 200 gamma range and with the digital filter commanded IN and the flip cal inhibit logic commanded IN. The experiment's internal electronics continue tracking previously recorded temperatures at the identical sun angles. The experiment correctly performed its $169 t h$ through I74th flip calibration sequences during the past week.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On 22 september, the experiment was commanded to operate select at 1532 G.m.t., and to high bit rate ON at 1542 G.m.t. for a passive Iistening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real time. High bit rate operations were terminated at 1612 G.m.t. and the experiment commanded to standby at 1613 G.m.t.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R . Miley, Science Project Support Branch, TN3, telephone 483-5067.
Apollo 15 ALSEP

 The instrument has been in standby since 17 August 1972. The instrument will remain in standby pending further analysis per SMEAR \#45.
Presently operating in the full automatic stepping sequence with the Channeltron The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}$ $\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.7^{\circ} \mathrm{K}\left(-8.0^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $293.1^{\circ} \mathrm{K}\left(68.2^{\circ} \mathrm{F}\right)$. TREF 2 is currently outputting erroneous data. A duplicate measurement, TREF I. is operating normally so that no data are lost.
ApOL10 14 AISEP

A00110 12 AISED

Central station Noon of the package's $36 t h$ lumar day occurrea 24 September; RIG power output is
constant; and, transmitter "B" signal strength was reported at $-139.5 \pm 1.1 \mathrm{dbm}$.
The instrument's themmal control mode is auto on, the component gairs at 0 db, and the feedback loop filter commanded OUI, identical to the other seismic
instruments, No seismic signals have been noted during the limited real time support periods.

Tine

 Chaneltron high voltages oN to experiment power off continues, initiated this
lunar day on 19 september. The experiment is commanded in this maner to preclude instrument mode changes at internal temperatures about $55^{\circ} \mathrm{C}$.

Status as of 1500 G.m.t., 28 September, was as follows:
APOLIO 14 ALSEP

A11 OFF
ASE \& CPLEE Stby
$93.8^{\circ} \mathrm{F}$
N/A
Invalid

TM POINT

Total Days of Operation

 Total Commands to DateSun Angle
Input Power
Heater and Power Dumps
uper Ther Avs Ther Assembly Temp PSE Sensor Assembly Temp
LSM Internal Temp SWS Module 300 Temp
SIDE Temp SIDE Temp
CPTEE Electronic Temp
 HFE Temp Ref Junction
Bendix $\begin{aligned} & \text { Aerospace } \\ & \text { Systems Division }\end{aligned}$

$$
\xrightarrow{\substack{\text { MIDNIGHT }}}
$$

$$
\begin{aligned}
& \text { APOLLO } 14 \text { ALSEP } \\
& \text { APOLLO } 12 \text { ALSEP }
\end{aligned}
$$

NOTE: DATES NOTED ARE
MARKED AT Oh GMT

6 October 1972
G.m.t. : 1300

Apol1o 16 ALSEP
The Apollo 16 ALsEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations of the pasi week. Iunar midnight at the Descartes site will oceur today. The central station's average thermal plate temperature remains stabilized, with the DSS-1 heater ON (10 wattr). The signal strength from Gansmitter "A", as repoxted by the 30 -foot antena tracking stations. is steady. The thermoelectric power source output is normal. Trhibiting the effects of the 18 -hour timer output pulses continues.

The typical night-time pattern of Iow background noise with occasional small. high frequency signals. is currently veing sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded OUI, the sensor gains of all components configured to o db, and the sensor assemibly temperature stabilized (auto ON themal control mode). The uncage/arm fire circuit is configured to the uncaged state. The instrument will be configured in this mannex throughout lunar night. No significant seismic events were noted during the Iimited real time support of this instrument.

The lunar surface magnetometer continues to measure time-deperdent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN the flip cal inhibit logic commanded IN, and the sencors configured to the 200 gamma range. The instrument's l8oth flip calibration sequence was executed correctly by command, on 4 Oetober 1972 .

The active seismic experiment is in standby OFF with a 30 mimute passive listening period scheduled for today. On 29 September 1972 the experiment was commanded to operate select at $1758 \mathrm{G} . \mathrm{m} . t$. , and to high bit rate on at $1849 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophonea appeared normal and one significant signal was noted in real time. High bit rate operations were terminated at $1919 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and the experiment commanded to standby at 1921 G.m.t.

It is requested that any organization having comments. questions, or suggestions concerning this report contact R. Miley, Science Project Support Branch. TH3, telephone 483-5067.

むZSTH 已T OTTOdF

Operational status from 29 September 1972. 1300 G.m.t. to 6 October 1972, 1300 G.m.t.	
Central station	Midnight of the 36 th Lunar day will occur 9 October 1972 ; RTG power output is constant; and, transmitter "B" signal strength was reported at -138.1 ± 1.8 drm. The central station's DSS-1 heater (10 watts) was commanded ON at 0318 G.m.t. 2 October when the central station's average thermal plate temperature decreased to $30.6^{\circ} \mathrm{F}$, Presently the average thermal plate has stabilized at $17.9^{\circ} \mathrm{F}$.
Passive seismic experiment	The instrument's themal control mode is auto oN, the component gains at 0 db, and the feedback loop filter commanded OUT. No lunar seismic signals have beeri sensed during the limited real time support for the Apollo 12 experiment. The instrument's z axis drive motor was commanded ow at $0316 \mathrm{G} . \mathrm{m} . t .2$ october when the instrument temperature, DI-07, indicated $126.6^{\circ} \mathrm{F}$ in an effort to maximize the heat input to the sensor assembly during lunar night operations. DL-O7 was stabilized at $126.2^{\circ} \mathrm{F}$ with the z motor of.
Iunar surface magnetometer experiment	Scientific and engineering data have been static aince 4 June 1972. The instrument's digital filter remains commanded IN.
Solar wind spectrometer experiment	Uninterrupted operations in the nomal range mode since 7 August 1972 .
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with the Chaneltron high voltages ON.

Apollo 14 ALSEP
Operational status from 29 September 1972, 1300 G.m.t., to 6 October 1972, 1300 G.m.t.

Midnight of the 21st lunar night at the Apollo 14 landing site will occur 9 October. The central station's DSS-I heater (10 watts) was commanded ON at 1341 G.m.t., 30 september, when the central station's average thermal plate temperature decreased to $68.4^{\circ} \mathrm{F}$. Powex output of the RIG is unvarying; and, transmitter "A" signal strength was reported at $-138.5 \pm 1.5 \mathrm{dbm}$.

The four experiments, the passive seismometer, the active seismic, the suprathermal ion detector/cold catbode gauge and the chaxged particle continue to provide science and engineering data.

On 5 october at $2300 \mathrm{C} . \mathrm{m} . t$. mission control was notified by the supporting MSEN tracking station (Goldstone) that the experiment status words AB-04 (passive seismoneter and active seismic status) and $A B-05$ (suprathermal ion detector/cold cathode gauge and chaxged particle status) indicated that all experiments were in standby select. Phase II operations were resumed and research of the tracking station's tape indicated that all expeximents went to standby select status at $1415 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 5$ October. The passive seismic experiment was commanded to operate select at 2327 G.m.t., the charged particle experiment was commanded to operate select at 2329 G.m.t. and then to standby select at 2330 G.m.t., and the suprathermal ion detector/cold cathode gauge experiment commanded to operate select at 2331 G.m.t. 5 october.

Review of the central station's and experiments telemetry data in real time indicates no anomalous operations. Because this phenomena has not been fully analyzed, it is planned to operate the charged particle experiment during phase IT operations only based on the previous operating characteristics of the instrument in April 1972. The passive seismometer and supram thermal ion detector/cold cathode gauge experiments were reconfigured to there previous operational modes without problem.
Apol1o 15 ATSEP

Central station

Midnight of the station's 15th Iunation will occur 7 October 1972; power from the RTG continues steady and transmitter "A" downlink signal strength is reported at $-135.5 \pm 1.5 \mathrm{dbm}$. After verification of the 18 -hour timer's 327 th output pulse on cubsyst timer cunar nigh spoperaional procedure of elimmating the 150 , twice daily at $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and $2100 \mathrm{G} . \mathrm{m} . \mathrm{t}$. was initiated. The data subsystem's average thermal plate temperature is presently stabilized at 0.8 F . Operation is in the auto ON thermal control mode, sensor gains are 0 db , and the feedback loop filter commanded ouT in order to achieve seismic network congruity. No major seismic signals have been noted during the limited real time support of this instrument. The instrument's uncage/arm fire circuitry was commanded to or state to deliver maximum heat into the sensor assembly.

The experiment's sensors were commanded to the 50 gamma range at 1259 G.m.t. sequences since activation. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors ace returned to the 180 degree position following each finp calsor has indicated off-scale LOW (static) since 20 September 1972. This anomaly is

Presently in standiby. The instrument has not been commanded to operate select

 since 17 August 1972. Presently operating in the full automatic stepping sequence with the Chaneltron high voltages commanded ON. At 1001 G.m.t. 29 September, the Hawaii tracking station noted a command octal 105 (SIDE Load 1) in the ALSEP downlink. During support 29 September, the spurious functional was verified and cleared without incident. This was the 3lst spurious for this ALSEP package.Passive seismic experiment Iunar surface magnetometer
experiment
Suprathermal ion
Solar wind
spectrometer
detector/cold
cathode gauge
experiment

Status as of 1600 G.m.t., 4 October 1972, was as follows:
APOLIO 14 ALSEP
607
7139
215°
71.0 W
ON
ASE Stby
34.2^{F}
$124.3_{\mathrm{F}}^{\mathrm{F}}$
N / A
\mathbb{N} / A
$\operatorname{Invalia}$
$\operatorname{InvaIid}$
$-22.0^{\circ} \mathrm{C}\left(-7.6^{\circ} \mathrm{F}\right)$
$-57.1^{\circ} \mathrm{C}\left(-70.8^{\circ} \mathrm{F}\right)$
\mathbb{N} / A

The attached Apollo 14 ALSEP report supersedes the operational status report you may have recevied on 5 October 1972 prior to notification by the MSFN tracking station at Goldstone that all of the Apollo 14 ATSEP experiments went to standby select.

13 October 1972
G.m.t.: 1300

Apolio 16 ALSEP

The Apollo 16 ALSEP. functioning as plamed, experienced no unusual scientific events during the Iimited phase II operations of the past week. Lunar sumxise at the Descartes site will occur 13 october 1972 . The central station's average thermal plate temperature remains stabilized, with the DSS-1 heater ON (10 watts). The signal atrength from transmitter "A". as reported by the 30 foot antema tracking stations, is reported at $-140 \pm 3.0 \mathrm{abm}$. The thermoelectric power source output is normal. Thhibiting the effects of the 18 -hour timer output pulses contimues.

The bypical night-time pattex of Low background noise with occasional small, high frequency signals. is currently being sensed by the passive seimometer. Experiment operation contimes with the feedback loop filter commanded OUI, the sensor gains of all components configured to $O \mathrm{db}$, amd the sensor assembly temperature stabilized (auto on thermal control mode). The uncage/arm fire circuit is configured to the uncaged state. The instrument will be configured in this mamer throughout lunar night. No significant seismic events were noted during the limited real time eupport of this instrument.

The Iunar surface magnetometer continues to measure time dependent solar and induced magnetic Iunar fields. The instrument is operating with the digital filter commanded JN, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. The instrument's 184 . fip calibration sequence was executed correctly by command, on 9 octobex 1972.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On 6 October 1972 the experiment was commanded to operate select at $1342 \mathrm{G} . \mathrm{m} . t$. , and to high bit rate ON at 1352 G.m.t. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real time. High bit rabe operations were terminated at 1422 G.m.t. and the experiment commanded to standby at 1423 G.m.t.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Project Support Branch, TN3, telephone 483-5067.

dasty bI ottoãy

A00110 15 ALSEP

$\begin{array}{r} \text { Operatio } \\ \text { Central station } \end{array}$	I status from 6 October 1972, 1300 G.m.t., to 13 October 1972, 1300 G.m.t. Suncise of the station's 16th Iunation will ocour 14 Ootober 1972; power from RTG continues steady and tranmitter "A" downink signal strength is reported at $-135.5 \pm 1.5 \mathrm{dbm}$. The Iunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150 , twice daily at $1300 \mathrm{G} . \mathrm{m} . t$. and $2100 \mathrm{G} . \mathrm{m} . t$. will be suspended on 14 October 1972. The data gubsysten's avewage thermal plate temperature is presently stabilized at 0.8 F . At 0351 G.m.t., 1000 ober 1972 an unexpected functional change cocurred when the central station's data processor began processing data in the low-bit-rate mode. Since no valid command verification word is received when a bit-rate change takes place, it oannot be definitely detemined whether on not the change was due to a spurious comand. However, it is genexally assumed this was the case. The data processor was commanded. back to nomal-bit-rate by the Camarvon ground station at $0418 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , lo October 1972 at the direction of mission control.
Passive seismic experiment	operation is in the auto oN themel control mode, sensor gains are 0 db, and the feedback loop filter commanded out in order to achieve seismic network congruity. No major seismic signais have been noted during the Imited real time support of this instmment. The instmment's uncage/am fire cincuitry was comanded to on state to deliver maximum heat into the sensor assembly.
Lunar surface magmetometer experiment	The experiment's sensors are presently in the 50 gama nonge for lunar night operation. Currently the instmment has exeouted 647 file ealibration sequences since activation. The experiment's y axis sensor head remains fixed at a 180 degree position, not respondine to fitp cal commands. The $x-a x i s$ and z-axis sensors are retumed to the 180 degree position following each flip cal sequence to maintain sensor head symohronization.
Solax wind spectrometer experiment	Presently in standby. The instmment has not been commanded to operate select since 17 August 1972.
Suprathermal ion detector/cold cathode grage experiment	Presently operating in the full automatio stepping sequence with the Channeltron high voltages commanded ON.

APOLT

20 October 1972
G.m.t.: 1300

APO110 16 ALSEP

Iunar noon at the Descartes site will occur on 21 October. The engineering data being received and processed from the Apollo 16 ALSEP indicates continued steady central station and experiments lunar operations. The station is in its 182 nd day of operation with the moon, and is in the earth's transition region. The central station's average thermal plate temperature continues to track previcus lunar day operations at comparable sun angles. The DSS-I heater (IO watts) was commanded OFF at sunrise. The signal strength from trancmittor "A", as reported by the $30-f o o t$ antenna tracking stations, is between -137.0 dbm and -142.0 dbm . Inhibiting the effects of the 18 -hour timer output pulses continues.

The passive seismic experiment operation coninues with the feedback loop filter commanded OUT, the sensor gains of all components configuced to 0 db . The sensor's temperature transducer output (DT-O7) indicated offscale HIGH during phase II operations on 19 October at a nomalized suy angle of 73°. It is projected that the temperature will return onscale on 28 october (sun angle 170°). The uncage/arm fire circuit is configured to the UNCAGE state minimizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar day. No significant seismic events were noted during the limited real time support of this instrument.

The lunax surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal inhibit logic commanded. IN, and the sensors configured to the 200 gamma range. The instrument's internal electronics temperature continues to increase at a rate of $0.7^{\circ} \mathrm{C}$ per hour, tracking the instrument's second lunar day temperature profile. During the past week, flip cal sequences \#187 through \#190 were executed.

The active seismic experiment is in standby OFF. A 30 minute listening period is scheduled for today. The experiment was commanded to operate select at 1400 G.m.t., 13 October and to high bit rate on at 1440 G.m.t.. for a passive listening mode operation. Data output of all geophones appeared normal. Two geophone calibration pulses were sent to the instrument during the Iistening mode operation. High bit rate operations were terminated at $1510 \mathrm{G} . \mathrm{m} . t$. , and the experiment commanded to OFF at 1513 G.m.t., 13 October. No significant signals were noted in real time.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Solax wind
apectrometer
experiment
Presently operating in the full automatic stepping sequence with the Channeltron

$$
\begin{aligned}
& \text { Apollo } 15 \text { ATSEP (continued) } \\
& \text { Operational status from } 13 \text { October } 1972 \text {, } 1300 \text { G.m.t., to } 20 \text { october } 1972,1300 \text { G.m.t. }
\end{aligned}
$$

©

$$
5
$$

Apolio 14 ALSEP

Operational status from 13 October 1972, $1300 \mathrm{Gm} . \mathrm{t} . \mathrm{to} 20$ October $1972.1300 \mathrm{G} . \mathrm{m} . t$.	
Central station	Noon of the 22nd lunar day at the Apollo 14 Ianding site will occur 23 October; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported at $-140.5+1.5 \mathrm{dbm}$, The central station's DSS-1 heater (10 watts) was turned OFF at $045 \overline{0}$ G.m.t. . 17 October 1972 for Iunar day operations. On 18 october 1972 the 5 wat heater responded to a spurious on command (octal 056) at $0133 \mathrm{G} . \mathrm{m} . t$. A command verification word was noted by the supporting ground station. The heater was returned to OFF (octal O57), by command, by the supporting ground station at $0336 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 18$ October 1972 , at the instruction of mission control.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUF) in order to matoh seismic reaponse. The instrument's long period z axis begar displaying valid data during real time support on 13 october 1972 and is responding to commands. No seismic events have been noted during the limited real time support of this experiment.
Active seismic experiment	Currently in standby with a 30 minute passive listening mode operation planned for today as the $A S-03$ temperature is above $-60^{\circ} \mathrm{C}$. The experiment was not commanded to high bit rate on 13 October due to this same temperature restraint.
detector/cold cathode gauge experiment	Presentiy operating in the full automatio stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded on. Intemittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the solentific outputs of the experiments.
```Charged particle Imnar environmeatal experiment```	Currently in standby. At the start of support, 17 October, it was noted that the instrument had changed from the $-35 v$ mode to to vde with no CVW activity reported by the supporting ground station. The instrument was commanded back to the -35 v mode without incident ON 17 October. At $1950 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 17$ October the instrument was commanded to standby. Experiment will remain in standby select until start of continual 45 day support of Apollo 17 ALSEP


Central station

Passive seismic
experiment
Lunar surface magnetometer experiment Solar wind spectrometer
experiment



as follows:
APOLLO 14 ALSEP


27 October 1972
G.m.t.: 1300

Apollo 16 ALSEP
Lunar noon occurred on 21 October at the Descartes site. The station is in its l89th day of operation with the moon in the earth's geomagnetic tail. The central station's average thermal plate temperature compares exactly with the temperatures for identical sun angles of the station's preceding lunar day operations. The thermoelectric power output remains steady. Inhibiting the 18 -hour timer output pulses continues. The signal strength, as reported by the 30 -foot antenna tracking stations, of transmitter "A" is between -138.6 dbm and -142.5 dbm .

The passive seismometer is configured for lunar day operation with the feedback loop filter commanded OUT, the sensor gains of all components to 0 db , auto ON thermal control mode and the uncage/arm fire circuit to the UNCAGE state. The sensor's temperature transducer output (Di-07) indicated offscale HIGH during phase II operations on 19 October at a normalized sun angle of $73^{\circ}$. It is projected that the temperature will return onscale on 28 october (sun angle of $170^{\circ}$ ).

The Iunar surface magnetometer continues normal operation and is presentIy indicating the moon's passage through the earth's geomagnetic tail. The instrument is operating in the 200 gamma range and with the digital filter commanded OUT and the flip cal inhibit logic commanded IN. The experiment's internal electronics continue tracking previously recorded temperatures at the identical sun angles. The experiment correctly performed its 191st through 196th flip calibration sequences during the past week.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On 20 October the experiment was commanded to operate select at 1803 G.m.t., and to high bit rate ON at 1822 G.m.t. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal. High bit rate operations were terminated at 1852 G.m.t. and the experiment commanded to standby at 1854 G.m.t.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Project Support Branch, TN3, telephone 483-5067.

## APOI10 15 AISEP

Operational status from 20 October 1972,1300 G.m.t., to 27 October 1972, 1300 G.m.t.	
Central station	Noon of the station's I6th Iunation occurred 22 October; power from the RTG continues steady and transmitter "A" downlink signal strength is between -135.0 dbm and -138.2 dbm . The data subsystem's timer continues to function normally, having generated output pulses consistently since initialization (31 July 1971).
Passive seismic experiment	Operation is in the auto ON thermal control mode, sensor gains are $O d b$, and the feedback loop filter commanded out in order to achieve seismic network congruity. No seismic signals have been noted during the limited real time support periods. On 23 October 1972 the PSE $X$ drive motor responded to a spurious ON commanded (octal 070) at $1303 \mathrm{G} . \mathrm{m} . \mathrm{t}$. A command verification word was noted by the Hawaii ground station, The motor was commanded OFF at 1349 G.m.t. without incident.

The experiment's sensors are presently in the 100 gamma range for lunar day-time operations, Currently the instrument has executed 657 flip calibration sequences The experiment's $Y$ axis sensor head remains fixed at a 180 cated offscale IOW (static) since 20 September. This anomaly is presently under investigation.
The instrument has been in standby since 17 August 1972. The instrument will remain in standby pending furcher analysis per SMEAR \#45.
 high voltages commanded ON. no data are lost.

$$
A 0011014 \text { ALSEP }
$$

Central station	The 22nd Iunar noon of the 14 station occurred 23 October; power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported as $-141.5 \pm 2.5 \mathrm{dbm}$.
Passive seismic experiment	This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUT) in order to match seismic response. No seismic events have been noted during the limited real time support periods.
Active seismic experiment	Currently in standby. On 20 October, experiment commanded on at 1801 G.m.t., and to high bit rate ON at 1857 G.m.t. for a passive listening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 1927 G.m.t., and the instrument commanded to standby at 1928 G.m.t. No seismic events were noted in real time. Next listening mode operation is scheduled for today.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence (0-127 frames) with the Chameltron high voltages commanded on. Intermittent positive engineering data interruptions (anomaly occurred 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
```Charged particle lunar environmental experiment```	Currently in standby. Experiment will remain in standby select until the start of continual 45 day support of Apollo 17 AISEP.


Status as of 1700 G.m.t., 25 october, was as follows:
Apollo 12 ALSEP

Operational status from 20 October 1972, $1300 \mathrm{G} . \mathrm{m} . t .$. to 27 October 1972, 1300 G.m.t.	
Central station	Noon of the package's 37 th lunar day occurred 24 October, RTG power output is constant; and, transmitter " B " signal strength was reported at $-140.2 \pm 2.2 \mathrm{dbm}$.
Passive seismic experiment	The instrument's thermal control mode is auto on, the component gains at O ab, and the feedback loop filter commanded OUT, identical to the other seismic instruments. No seismic signals have been noted during the limited real time support periods.
Lunar surface magnetometer experiment	Scientific and engineering data have been static since 4 June 1972 . The instrument's digital filter remains commanded IN.
Solar wind spectrometer experiment	Uninterrupted operations in the normal range mode since 7 August 1972 .
Suprathermal ion detector experiment	Cyclic commanding of instrument in the full automatic stepping sequence with Channeltron high voltages ON to experiment power OFF continues, initiated this Iunar day on 18 October. The experiment is commanded in this manner to preclude instrument mode changes at internal temperatures above $55^{\circ} \mathrm{C}$.

APOIIO LUNAR SURFACE EXPERTMENIS PACKAGE STATUS REPORT

3 November 1972
G.m.t.: 1300

ADO110 16 ALSEP

The Apollo 16 ALSEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations of the past week. Iunar midnight at the Descartes site will occur 4 November. The central station's average thermal plate temperature remains stabilized, with the DSS-I heater ON (IO watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady at $139.5 \pm 2.5 \mathrm{db}$. The thermoclectric power source output is normal. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with occasional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment opexation continues with the feedback loop filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto ON thermal control mode). The uncage/arm fire circuit is configured to the uncaged state. The instrument will be configured in this manner throughout lunar night. No significant seismic events were noted during the limited real time support of this instrument.

The Iunar surface magnetometer continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal inhibit logic commanded TN, and the sensors configured to the 200 gamma range. The instrument's 202nd flip calibration sequence was executed correctly by command, on 1 November 1972.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On 27 October 1972 the experiment was commanded to operate select at 1358 G.m.t., and to high bit rate ON at $1417 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and one significant signal was noted in real time. High bit rate operations were terminated at $1447 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standiby OFF at 1450 G.m.t.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

$$
\text { Apol10 } 15
$$

Midnight of the station's I6th Iunation will occur 5 November 1972 ; power from the RTG continues steady and transmitter "A" downink signal strength is reported at -134.0 to -137.5 dbm . After verification of the 18 -hour timer's 351 st output pulse on 2 November 1972, the lunar night's operational procedure of eliminating the data subsystem's timer outputs by uplinking the timer's reset command, octal 150 , twice daily at 1300 G.m.t. and 2100 G.m.t. was initiated. The data subsystem's average thermal plate temperature is presently stabilized at 1.40F.

Operation is in the auto on thermal control mode, sensor gains are 0 dib, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. No major seismic signals have been noted during the limited real time support of this instrument. The instrument's uncage/arm fire circuitry was commanded to or state at 1432 G.m.t., 2 November 1972 , to deliver maximum heat into the sensor assembly for lunar night operations. The experiment's sensors were commanded to the 50 gamma range at 1502 G.m.t., 29 october 1972 for Iunar night-time operations. Currently the instrument has executed 673 flip calibration sequences since activation. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. The experiment's y axis sensor has indicated off-scale LoW (static) since 20 September 1972. This anomaly is presently under investigation.

Presently in standby pending further analysis per SMEAR \#45. The instrument has not been commanded to operate select since 17 August 1972 .

[^11] Iunar surface magnetometer experiment Solar wind
spectrometer experiment мот teuxәч7exdns detector/cola cathode gauge experiment

[^12]?
0

Central station

Operational status from 27 October $1972,1300 \mathrm{G} . \mathrm{m} . t$. ，to 3 November 1972 ， $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$

 0
0
0
0
0

析的

 bottom
景
 a） 10.0 ． of probe 1 at the
obe 2 indicating
instrument＇s cab
approximately 90
t TREF 2 has con
of
0 The temperatur
$\left(-3.80^{5}\right)$ with
most point．
a temperature a temperature of a measurement，TREF
Heat fllow

Midnight of the 22nd Iunar day at the Apollo 14 landing site will occur on

 7 November 1972. Power output of the radioisotope source is unvarying; and, transmitter "A" signal strength was reported at -136.0 to -141.5 dbm. The central station's DSS-I heater (10 watts) was conmanded ON Por Iunar night operations on 30 october. Currently the central station's average thermal plate temperature is stable at $35.6^{\circ} \mathrm{F}$. At 1716 G.m.t., I November 1972, an unexpected functional change occurred when the central station's data processor began processing data in the low-bit-rate mode. Since no valid comma verification word is received when a bit-rate change takes place, it cannot be definitely determined whether on not the change was due to a spurious command. However, it is generally assumed this was the case. The data processor was commanded back to normal-bit-rate by the Texas ground station at 1738 G.m.t., 1 November 1972, at the direction of mission control. This instrument is configured identically to the other seismometer's (thermalcontrol auto 0N, 0 db gain on all sensors, and filter oUII) in order to match The instrument's long period z axis has displayed valid data No seismic events have been of this experiment.

Currently in standby. On 27 October 1972 the experiment was commanded oiv at

 1359 G.m.t., and to high bit rate ON at 1452 G.m.t. for a passive Iistening mode operation. Data output of geophones I and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at 1522 G.m.t., and the instrument commanded to standby at $1524 \mathrm{G} . \mathrm{m} . \mathrm{t}$. No seismic events were noted in real time. Next listening mode is scheduled for 3 November 1972.| Suprathermal ion | Presently operating in the full automatic stepping sequence ($0-127$ frames) with |
| :--- | :--- |
| detector/cold | the Channeltron high voltages commanded olv. Intermittent positive engineering |
| cathode gauge | data interruptions (anomaly occurred 9 May I97l) in one section of the analog-to-
 experiment |
| | digital filter are having no adverse effect on the scientific outputs of the
 experiments. |
| Charged particle Currently in standby. Experiment will remain in standby select until the start | | of continual 45 day support of Apollo 17 ALSEP. Central station DTUSTQS $\theta \Lambda$ tssed experiment

Active seismic
experiment
Innar
envinommental
experiment
Apolic 12 ALSEP

Operational status from 27 October 1972 , $1300 \mathrm{G} . \mathrm{m}$, t, , to 3 November $1972,1300 \mathrm{G} . \mathrm{m} . t$.	
Central station	Midnight of the 37th lunar day will occur 8 November 1972; RTG power output is constant; and, transmitter "B" signal strength was reported at $-139.5 \pm 2.5 \mathrm{dbm}$. The central station's DSS-I heater (IO watts) was commanded ON at $1743 \mathrm{G} . \mathrm{m} . t$. 31 October, when the central station's average thermal plate temperature decreased to $27.3^{\circ} \mathrm{F}$. Presently the average thermal plate has stabilized at 16.20 F .
Passive seismic experiment	The instrument's thermal control mode is auto ON, the component gains at 0 db. and the feedback loop filter commanded OUT. No lunar seismic signals have been sensed during the limited real time support for the Apollo 12 experiment. The instrument's z axis drive motor was commanded ON at 1737 G.m.t., 31 October, when the instrument temperatuxe, DI-07, indicated 126.80^{F} in an effort to maximize the heat input to the sensor assembly during lunar night operations. DI-O7 was stabilized at $126.3^{\circ} \mathrm{F}$ with the z motor ON.
Lunar surface magnetometer experiment	Scientific and engineering data have been static since 4 June 1972. The instrument's digital filter remains commanded IN.
Solar wind spectrometer experiment	Uninterrupted operations in the normal range mode since 7 August 1972.
Suprathermal ion detector experiment	The instrument is operating in full automatic stepping sequence with the Channeltron high voltages ON.

10 November 197 ?
G.m.t.: 1300

Apollo 16 ATSEP
The Apollo 16 AISEP, functioning as plamed, experienced no unusual scientific events during the limited phase II operations of the past week. Iunar sunrise at the Descartes site will occur 12 November 1972. The cer. tral station's average thermal plate temperature remains stable at $40.0^{\circ} \mathrm{F}$ with the DSS -1 heater ON (10 watts). The signal strength from transmittex "A" to the 30 -foot antenna tracking at,ations is reported at $-139.5+1.5$ dbm. The thermoelectric power source output is normal. Inhibiting the effects of the 18-hour timer output pulses continues.

The typical night-time pattern of low background noise with occasional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation contimues with the feedback loop filtex commanded OUP, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto on thermal control mode) at $124.7^{\circ} \mathrm{F}$. The uncage/arm fire circuit is configured to the uncaged state. The instrument will be configured in this manner for the remainder of Iunar night. One significant seismie event was noted during the limited real-time support of this instrument at $1900 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 8$ November 1972.

The Iunar surface magnetometer continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded IN, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range, The instrument's 208th flip calibration sequence was excuted correctly by command, on 8 November 1972.

The active seismic experiment is in standby OFF with a 30 minute passive listening period scheduled for today. On 3 November 1972 the experiment was commanded to operate select at $1454 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , and to high bit rate oIN at $1515 \mathrm{G} . \mathrm{m} . t$. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real time. High bit rate operations were terminated at 1545 G.m.t. and the experiment commanded to standky at 1547 G.m.t.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Apollo 15 ALSEP
Operational status from 3 November 1972. 1300 G.m.t.. to 10 November 1972, 1300 G.m.t.

Operation is in the auto ON thermal control mode, sensor gains are 0 db , and oop Hiter commanded out in oraer to achieve seismic network congruity. No major seismic signals have been noted during the limited real-
time support of this instrument. The instrument's uncage/arm fire circuitry
was commanded to OT state to deliver maximum heat into the sensor assembly.
The experiment's sensors are presently in the 50 gamma range for lunar night operation. Currently the instrument has executed 681 flip calibration sequences since activation. The experiment's y axis sensor head remains x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Presently in standby. The instrument has not been commanded to operate select since 17 August 1972 pending fucther analysis per SMEAR \#45.
 high voltages commanded ON. Central station
Passive seismic
experiment
Lunar surface
magnetometer
Solar wind
spectrometer
Suprathermal ion
detector/cold
cathode gauge
experiment
(permtquoo) desTH ST OtTody

Oper	tus from 3 November 1972, $1300 \mathrm{G} . \mathrm{m} . t$. , to 10 November $1972,1300 \mathrm{G} . \mathrm{m} . t$.
Heat flow experiment	The temperature of probe 1 at the bottom of the lowest probe section is 253.1 K $\left(-3.8^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.70 \mathrm{~K}\left(-8.10_{\mathrm{F}}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indicate a temperature of approximately $85.40 \mathrm{~K}\left(-302.6{ }^{\circ} \mathrm{F}\right)$. Since 29 May 1972 , the instrument's measurement TrEF 2 has continually displayed erroneous data. A duplicate measurement. TREF I, is operating normally so that no data are lost.

Apol1o 14 ALSEP

[^13]Central station
Passive seismic experiment Active seismic experiment Suprathermal ion detector/cold. cathode gauge experiment

[^14]

TM POINI

APOLIO LUNAR SURFACE EXPFRTMENTS PACKAGE STATUS REPORT

17 November 1972
G.m.t.: 1300

There will be no ALSEP status report published on 24 November, in observance of Thanksgiving. The status report to be published on I December will cover the previous two weeks of ALsEP operations.

On November 19, the Apollo 12 Alspl will have completed three years of uninterrupted lunar operation.

Apol 1016 AIsEP
Iunar noon at the Descartes site will occur on 19 November. The engineerm ing data being received and processed from the Apollo 16 ATsEP indicates continued steady central station and experiments lunar operations. The station is in its $2 l 0$ th day of opexation with the moon approaching the earth's transition region. The central station's average themal plate temperature continues to track previous Iunar day operations at comparable sun angles. The DSS-1 heatex (10 watts) was commanded OFF at sunrise. The signal strength from transmitter "A", as reported by the 30 foot anterna tracking stations, is between $-138,0 \mathrm{dbm}$ and -141.5 dbm . Inhibiting the effects of the 18 mour timer output pulses contimues.

The passive seismic experiment operation continues with the feedback loop filter commanded OfP, the sensor gains of all components configured to 0 db , and the sensor assembly temperature increasing at a rate of 0.01 F per hour (auto ON thermal control mode). The uncage/arm fire circuit is configured to the UNCAGE state minimizing heat into the sensor assembly. The instrument will be configured in this manner throughout lunar day. No significant seismic events were noted duxing the limited real time support of this instrument.

The lunar surface magnetometer, functioning as planned, continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded ouT, the flip cal inhibit, logic commanded IN, and the sensors configured to the 200 gamma range. The instrument's internal electronics tempexature contimues to increase at a rate of $0.7^{\circ} \mathrm{C}$ per hour, fracking the instrument's second Iunar day temperature profile. During the past week, flip cal sequences \#209 through \#214 were executed.

The active seismic experiment is in standby OFF. A 30 minute Iistening period is scheduled for tomorrow. The experiment was commanded to operate select at 1901 G.m.t., 10 November and to high bit rate ON at 1925 G.m.t., for a passive listening mode operation. Data output of all geophones
appeared normal. Two geophone calibration pulses wexe sent to the instrument during the Iistening mode operation. High bit rate operations were terminated at $1955 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to OFF at 1959 G.m.t., 10 November. No significant signals were noted in real time.

It is requested that any organization having comments, questions, or suggestions concerming this report contact R. Miley, Bcience Requirem ments Branch, TN3, telephone 483-5067.
APOIIO 15 ATSEP

Operati	al status from 10 November 1972,1300 G.m.t., to 17 November 1972,1300 G.m.t. Noon of the station's 17 th Iunation will oceur on 20 November, power from the $R T G$ continues steady and tramsmitter "A" downink signal strength is reported at -137.0 ± 1.0 dibm. The Iunar night's operational procedure of eliminating the data subsystem' \quad timer outputs by uplinking the timer's reset commana, octal 150 . twice daily at $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and $2100 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , was suspended at $1725 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , 12 November and will remain uninhibited for lunar day operation. At 1501 G.m.t. 11 November 1972 ar unexpected functional change occurred when Transmitter A tumed off and loss of signal was noted by Ascension ground station. since no valid command verification word is received when a transmitter turns off, is canot be definitely detemined whether on not the change was due to a spurious comman. However, it is generally assumed this was the case. Transmitter A was commanded back to on oy the Ascension ground station at $1526 \mathrm{G} \cdot \mathrm{m} . t, 11$ November 1972 at the direction of mission control.
Passive seismic experiment	Operation is in the auto ON themal control mode, sensor gains are 0 db, and the feedback loop filter commanded our in order to achieve seismic network congruity. No major seismic signals have been noted during the limited real time support of this instrument.
Lunar surface	The expeximent's sensors were commanded to the 100 gamma wange at 1733 G.m.t., 12 November for lunar day operation. Currently the instrument has executed 691 fip calibration sequences since activation. The experiment's y axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization.
Solar wind spectrometer experiment	The instrument has beem in stanaby since 17 August 1972.

	Apollo 15 ALSEP (continued)
Operational	status from 10 November 1972, 1300 G.m.t., to 17 November 1972, $1300 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
Suprathermal ion detector/cold cathode gauge experiment	Presently operating in the full automatic stepping sequence with the Chaneltron high voltages commanded ON. Prion to the close of real-time support on 14 November the instrument's command register was observed to contain SIDE command Load 008 (Master reset). Mission control cleared the command register by sending octal 053 (SIDE Standby) and octal 153 (SIDE ON). Currently the experiment's command register is clear.
Heat flow experiment	The temperabure of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrumeri's cable thermocougles on the lunax surface indicate a temperature of approximately $325.5^{\circ} \mathrm{K}\left(126.5^{\circ} \mathrm{F}\right)$. Since 29 May 1972, the instrument's measurement TREF 2 has continually aisplayed erroneous data. A duplicate measurement TREF I is operating normally so that no data are lost.

Apollo 14 ALSEP

This instrument is configured identioally to the other seismometer's (thermal
 seismic response.

$$
\begin{aligned}
& \text { Currently in standby, On } 16 \text { November } 1972 \text { the experiment was commanded on at } \\
& \begin{array}{l}
1718 \text { G.m.t., and to high bit rate on at } 1730 \mathrm{G} . \mathrm{m} . \mathrm{t} \text {. for a passive listening } \\
\text { mode operation. Data output of geophones } 1 \text { and } 2 \text { appeared normal; geophone } 3
\end{array}
\end{aligned}
$$

was continuous operation. High bit rate terminated at i800 G.m.t., and the
real time. Next listening mode is scheduled for 24 November 1972. Central station Passive seismic Active seismic experiment
（panutgroo）disity ti otrody

我景葛
Bis

$\because \otimes$
until the
B 荡名

款品
day support of Apolio 17 ALSEP．
． 8
． 8

Suprathermal ion
detector／cola
cathode gauge
experiment
Charged particle
lunar
environmental
start of continual 45
experiment
Apolin 12 ALSEP
Operational status from 10 November 1972,1300 G.m.t., to 17 November 1972 , I300 G.m.t.
Noon of the 38 th Iunar day will occur 22 November; RTG power output is constant;
and, transmitter "B" signal strength was reported at $-138.5 \pm 1.5 \mathrm{dom}$. The central station's DSS-1 heater (10 watts) was commanded OFF on 15 November for lunar day operations when the central station's average thermai plate temperature increased to 400 F .
The instrument's thermal control mode is auto ON, the component gains at 0 db , and the feedback loop filter commanded OUT. No Iunar seismic signals have been sensed during the limited real-time support for the Apollo 12 experiment. The instrument's z axis drive motor was conmanded OFF on 15 November 1972, as the sensor assembly temperature increased to $126.3^{\circ} \mathrm{F}$. instrument's digital filter remains commanded IV.

$$
\text { Uninterrupted operations in the normal range mode since } 7 \text { August } 1972 \text {. }
$$ with Channeltron high voltages ON to experiment power OFF will be initiated today. The experiment is commanded in this manner to preclude instrument

mode changes at internal temperatures about $55^{\circ} \mathrm{C}$. Central station

[^15]Iunar surface

Uninterrupted operations in the normal range mode since 7 August 1972.

Cyclic commanding of the instrument in the full automatic stepping sequence

```
APOLLO 16 ALSEP
```


AII OFF 70.2°
 N/A

N/A

APOLIO I2 ALSEP

を
π

APOILO LUNAR SURFACE EXPERTMENTS PACKAGE STAIUS REPORT

30 November 1972
G.m.t.: 0600

This report covers the presently operating ALSEP's activity and data from the previous two weeks.

Apollo 12 ALSEP
November 19th, marked the completion of three full years of continuous operation on the Iunar surface by the Apollo 12 ALSEP science station. The package, which was deployed by the crew of the Intrepid on 19 Novembex 1969, has thus exceeded by two years its original design life specification. The central station continues its successful operation, showing little sign of degradation. Power output of the RTG remains stable, and the signal strength from the package's transmitter is essentially unchanged from its initial value at the commencement of operation three years ago. To date more than 15.473 commands have been received and executed by the central station and experiments. Currently the Apollo 12 ALSEP is in its 38th lunar night.

The passive seismometer is operating as in past lunar nights, with the thermal control mode in auto ON, and the feedback loop filter OUT. The magnetometer experiment science and engineering data have been invalid since 4 June 1972. The solar wind spectrometer continues to record plasma data in the normal range mode. The suprathermal ion detector is operating with the high voltage commanded ON and is in the full automatic stepping sequence. The cold cathode gauge experiment high voltage remains inoperative, while the temperature sensor continues to read offscale high. No significant scientific events have been detected during the intermittent periods of phase II support this past two weeks.

Apollo 16 ATSEP
The Apollo 16 ALSEP, functioning as planned, experienced no unusual scientific events during the limited phase II operations of the past two weeks. Lunar midnight at the Descartes site will occur 4 December. The central station's average thermal plate temperature remains stabilized, with the DSS-I heater ON (10 watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady at $-139.5 \pm 1.5 \mathrm{db}$. The themoelectric power source output is normal. Inhibiting the effects of the 18 -hour timer output pulses continues.

The typical night-time pattern of low background noise with occasional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop

ALSEP STATUS REPORT (continued)

filter commanded OUT, the sensor gains of all components configured to 0 db , and the sensor assembly temperature stabilized (auto ON thermal control mode). The uncage/arm fire circuit is configured to the uncaged state. No significant seismic events were noted during the limited real-time support of this instrument.

The Lunax surface magnetometer continues to measure time-dependent solar and induced magnetic Iunar fields. The instrument is operating with the digital filter commanded OUT, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. The instrument's 230 th flip calibration sequence was executed correctly by command, on 29 November 1972.

The active seismic experiment is curcently in standby. on 23 November 1972 the experiment was commanded to operate select at $1405 \mathrm{G} . \mathrm{m} . t$. , and to high bit rate ON at It $20 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal. High bit rate operations were terminated at $1450 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standby OFF at 1452 G.m.t. The next Iistenjng mode is scheduled for 1 December 1972.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Lunar surface magnetometer experiment Solar wind
spectrometer
experiment Solar wind
spectrometer
experiment Solar wind
spectrometer
experiment

[^16]Presently operating in the full automatic stepping sequence with the Channeltron
high voltages commanded ON.

The temperature of probe 1 at the bottom of the lowest probe section is $253.1^{\circ} \mathrm{K}$

 a temperature of approximately $96.6^{\circ} \mathrm{K}\left(-285.5^{\circ} \mathrm{F}\right)$. Since 29 May 1972 , the instrument's measurement TREF 2 has continually displayed erroneous data. A duplicate

[^17]

 Midnight of the station's l7th lunation will occur 5 December 1972 ; power from the
RTG contimes steady and transmiter "A" dowlink signal strength is reported at
-136.0 to - 138.0 dbm. After verification of the 18 -hour timer's 373 rd output pulse
on 30 November $197 c$, the lunar nights operational procedure of eliminating the
data subsystem's timer outputs by uplinking the timer seset comand, octal I50,
twice daily at 1300 G.m.t. and $2 l 00$ G.m.t. will be initiated.

Apol1o 14 ALSEP
Operational status from 17 November $1972,1300 \mathrm{G} . \mathrm{m}, \mathrm{t} .$, to 30 November 1972 , $0600 \mathrm{G} . \mathrm{m} . t$.

> This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUP) in order to match seismic response. The instrument's long period z axis has not displayed valid
> data or responded to commands since 19 November 1972 . No seismic events have
> been noted during the limited real time support of this experiment.

$$
\text { Currently in standby. On } 23 \text { November } 1972 \text { the experiment was commanded on at }
$$

$1410 \mathrm{G} . \mathrm{m} . t$, , and to high bit rate $O N$ at $1500 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive Iistening mode operation. Data output of geophones 1 and 2 appeared normal; geophone 3 was continuously erratic. No geophone calibration pulses were sent during the listening mode operation. High bit rate terminated at $1530 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and the instrument commanded to standiby at $1532 \mathrm{G} . \mathrm{m}$. t. No seismic events were noted in real time. Next listening mode is scheduled for 1 December 1972.
Presently operating in the full automatic stepping sequence (0-127 frames) with the
Channeltron high voltages commanded ON. Intermittent positive engineering data
interruptions (anomaly occurred 9 May 1971) in one section of the analog-tomigital
filter are having no adverse effect on the scientific outputs of the experiments.
ON, with heater off in the fixed mode at the -35 volt step, for 12 minutes of operation.
At 1418 G.m.t., 22 November, the instrument was commanded ON, with heater off in
the fixed mode at the +350 volt step, for 68 minutes of operation. During both supports,
Suprathermal ion
Charged particle
$\begin{aligned} & \text { Iunar } \\ & \text { enviro }\end{aligned}$
environmental the experiment's analyzer A high voltage remained substantially constant at 2600 Vde

[^18]
Passive seismic

Active seismic
experiment level. Analyzer B high voltage remained below nominal levels.
APOIIO 16 ATSEP
222
3596
210°
70.4 W
DSS-1 ON $(10 \mathrm{~W})$
ASE OFF
$41.5^{\circ} \mathrm{F}$
$125.9^{\circ} \mathrm{F}$
$-7.7^{\circ} \mathrm{C}\left(18.1 \mathrm{O}^{\mathrm{F}}\right)$
N / A
N / A
N / A
N / A
OFF
OFF

Status as of 1600 Gom.t. 29 November 1972 , was as foliows:
APOITO 14 ATSEP
663
7547
177°
71.0 W
DSS-1 ON (IOW)
CPIEE \& ASE Stiby
$49.1^{\circ} \mathrm{F}$
$124.7^{\circ} \mathrm{F}$
N/A
N/A
Invalid
Invalid
Standby
$33.8^{\circ} \mathrm{C}\left(92.8^{\circ} \mathrm{F}\right)$
N/A

8 December 1972
G.m.t.: 1300

With the deployment of Apollo 17 ALSEP on 11 December 1972 , a daily status report will be provided for its initial 45 days of operation. The weekly status report for the other AISFPS will continue to be published each Friday.

Apol1o 16 ALsEP

The Apollo 16 ALSEP, functioning as plarned, experienced no unusual scientific events during the limited phase II operations of the past week. Iunar midnight at the Descartes site occurred on 4 Decembex. The central station's average thermal plate temperature remains stabilized, with the DSS-1 heater oN (10 watts). The signal strength from transmitter "A", as reported by the 30 -foot antenna tracking stations, is steady at $-141.0 \pm 2.5 \mathrm{dbm}$. The thermoelectric power source output is normal. Inhibiting the effects of the 18 -hour timer output pulses continues.

The typical night-time pattem of low background noise with occasional small, high frequency signals, is currently being sensed by the passive seismometer. Experiment operation continues with the feedback loop filter commanded oUT, the sensor gains of all components configured to $O \mathrm{db}$, and the sensor assembly temperature stabilized (auto ON thermal control mode). The uncage/arm fire circuit is configured to the uncaged state. The instrument will be configured in this manner throughout lunar night. No significant seismic events were noted during the limited real-time support of this instrument. During realtime support on 4 December 1972 the y-axis would not level in either auto or forced modes. The anomaly is presentily under investigation.

The lunar surface magnetometer continues to measure time-dependent solar and induced magnetic lunar fields. The instrument is operating with the digital filter commanded OUT, the flip cal inhibit logic commanded IN, and the sensors configured to the 200 gamma range. The instrument's $234 t h$ flip calibration sequence was executed correctly by command, on 4 December 1972.

The active seismic experiment is in standby OFF with a 30 mimute passive listening period scheduled for today. On 1 December 1972 the experiment was commanded to operate select at $0907 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , and to high bit rate on at 0915 G.m.t. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real-time. High bit rate operations were terminated at 0945 G.m.t. and the experiment commanded to standby OFF at 0948 G.m.t.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Apol10 15

Operational status from 30 November $1972,0600 \mathrm{G} \cdot \mathrm{m} . \mathrm{t} .$, to 8 December 1972, $1300 \mathrm{G} \cdot \mathrm{m} . t$. Central station Passive seismic Lunar surface magnetometer operation. Currently the instrument has executed 713 filp calibration sequences since activation, The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor head synchronization. The experiment's ywis sensor has Presently in standby pending further analysis per SMEAR \#45. The instrument has

[^19] Suprathermal ion Solar wind Solar wind
spectrometer
experiment cathode gauge experiment

Heat fllow
むESIV tT OtTOdも
to 8 December 1972, 1300 G.m.t.
 functional change for this AISEP.
This instrument is configured identically to the other seismometer's (thermal control auto ON, O db gain on all sensors, and filter OUT) in order to match seismic response. The instrument's long period z-axis has not displayed valid data nor responded to commands since 17 November 1972. No seismio events have been noted during the limited real-time support of this experiment.

Presently operating in the full automatic stepping sequence ($0-127$ frames) with the Channeltron high voltages commanded ON. Intermittent positive engineering data interruptions (anomaly occurred. 9 May 1971) in one section of the analog-todigital filter are having no adverse effect on the scientific outputs of the experiments.
At the request of the Principal Investigator the expeximent was commanded to on, fixed mode and -35 v step, at 1425 G.m.t., 4 December 1972. It is presently planed for the experiment to remain in this step until Apollo SIVB impact.

40т7e7s Texquan

Passive seismic
experiment
Active seismic
experiment
Suprathermal ion detector/cola cathode gauge experiment
ADO110 12 ATSEP
Operational status from 30 November 1972, 0600 G.m.t., to 8 December 1972, 1300 G.m.t.
operational period, returning more than three years of scientific data on solar wind plasma, magnetosphere plasma and magnetopause crossings, by sensing the direction and energies of both electrons and positive ions.

The instrument is operating in full automatic stepping sequence with the Channeltron high voltages ON. At 0934 G.m.t., 30 November, the digital electronics of the instrument ceased to process data (all o's in the downink). Two analog parameters, AI-OI, (Iow energy counts) and AI-O2, (high energy counts), continue to be processed and downlinked through the ALSEP 90 channel multiplexer. The anomaly occurred previously on 9 september 1972. The experiment is expected to process data normally

> 4 F Midnight of the 38 th Iunam day occurred. 7 December 1972; RTG power output is constant; and transmitter " B " signal strength was reported at $-139.1 \pm 1.9 \mathrm{dmm}$. The central station's DSS-1 heater (10 watts) was commanded on at 0749G.m.t., 30 November when the central station's average thermal plate temperature decreased to $22.4^{\circ} \mathrm{F}$. Presently the average thermal

$$
\begin{aligned}
& \text { The instrument's thermal control mode is auto oN, the component gains at o db, } \\
& \text { and the feedback loop filter commanded our. No Iunar seismic signals have been } \\
& \text { sensed during the limited real-time support for the Apollo l2 experiment. The } \\
& \text { instruments z-axis drive motor was commanded ON at O729 Gm.t., } 30 \text { November, } \\
& \text { when the instrument temperature, DI-o7, indicated } 127.50 \mathrm{~F} \text { in an effort to maxi- } \\
& \text { mize the heat input to the sensor assembly during lunar night operations. } \\
& \text { DLm was stabilized at } 126.20 F \text { with the z motor ON. }
\end{aligned}
$$

Scientific and engineering data have been static since 4 June 1972. The instrument's digital filter remains commanded IN.

This experiment continues to perform its design function well beyond its plamed
votzeqs Texquen Passive seismic experiment Iunar surface
magnetometer
experiment Lunar surface
magnetometer
experiment Lunar surface
magnetometer
experiment Solar wind spectrometer experiment Suprathermal ion detector experiment S

> APOLLO LUNAR SURFACE EXPERTMENTS PACKAGF STATUS REPORT

13 December 1972
G.m.t.: 0700

Apollo 17 ALSEP

The Apollo 17 ALSEP was deployed on the moon on 12 December at approximately 155 meters NW of the Challenger's location (LM-17 preliminary coordinates on the EVA timeline map are DN. 1 and 83.2). Initial acquisition of a downlink signal was reported by the Goldstone (-133.0 dbm) and Texas (-140.0 dmm) ground stations at $0253 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , following activation of the central station's shorting switch. Acquisition cccurred 72 minutes after reported fueling of the radioisotope thermoelectric generator (RTG). Initial conditions of the central station were normal. Power output of the RTG was 56.8 watts, and the central station's thermal plate temperature averaged 84.9° F initially. Per the planned work schedule the central station electronics were reconfigured to Power Conditioning Unit 2 at 0301 G.m.t., with the Command Decoder Switch Inhibit command executed at 0306 G.m.t.

Experiments were initially turned on at the following times: Heat flow Fxperiment, 0302 G.m.t.; Lunar Ejecta and Meteorite Experiment, 0319 G.m.t.; Lunar Seismic Profiling Experiment, 0358 G.m.t.; Lunar Atmospheric Composition Experiment, 0428 G.m.t.; and, the Lunar Surface Gravimeter Experiment, 0523 G.m.t.

The Heat Flow Experiment was emplaced. successfully to nominal depths, with all temperature sensors returning data and the probes presently equilibrating with the surrounding lunar soil. About 12 hours after instrument turn-on temperatures of approximately $258^{\circ} \mathrm{K}$ were observed between I and $2 \frac{1}{2}$ meters in depth. Thermocouple temperatures indicate a Iunar surface temperature of about $340^{\circ} \mathrm{K}$.

The Lunar Surface Gravimeter was deployed nominally. Following initial experiment turn-on the instrument's downlink data, science and engineering, indicated normal operations. Set-up of the instrument was then initiated, and during this initial set-up procedure nulling of the instrument's sensor beam has not been successfuily accomplished. Failure to achieve null will limit science output from the experiment. Near the end of EVA 2 the LMP returned to the ALSEP site and confirmed a nominal experiment deployment. The LMP then re-leveled the experiment. Currently nulling operations are continuing. The current condition of the instrument has no adverse effect on the experiment's engineering data.

Page 2
13 Decembex 1972
G.m.t. : 1200

The Tunar Seismic Profiling Experiment was commanded to operate select to verify instrument operation, but was not commanded to high bit rate. Explosive Packages $\# 6(1 \mathrm{Ib}$.$) and \# 7\left(\frac{1}{2} 1 \mathrm{~b}.\right)$ were deployed during EVA 1. Explosive Packages \#4 (1/8 Ib.), \#1 (61b.), and \#8 (1 1 Ib.$)$ were deployed during the second traverse.

Explosive Package Deployment Time Detonation Window
EVA 1 \#6 (1 10.)
$12 \mathrm{Dec} / 0458 \mathrm{G} . \mathrm{m} . t$.
$15 \mathrm{Dec} / 2317 \mathrm{G} \cdot \mathrm{m} . \mathrm{t} .-16 \mathrm{Dec} / 0011 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
EVA $1 \# 7(1 / 21 \mathrm{D}$.
$12 \mathrm{Dec} / 0535$ G.m.t.
16 Dec/0154 - 0248 G.m.t.
EVA 2 \# (1/8 1b.)
$13 \mathrm{Dec} / 0029 \mathrm{G} . \mathrm{m} . t$.
$16 \mathrm{Dec} / 1846$ - $1940 \mathrm{G} . \mathrm{m} . \mathrm{b}$.
EVA 2 \# (6 1k.)
13 Dec/0500 G.m.t.
$17 \mathrm{Dec} / 0018-0112 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
EVA 2 \#8 (1/4 1b.)
$13 \mathrm{Dec} / 0556$ G.m.t.
$17 \mathrm{Dec} / 0315-0409 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
The Iunar Atmospheric Composition Experiment electronics have been turned on and verified. The instrument's temperatures were approximately as expected. A low voltage circuit check was made, and the commandable functions verified to be in the appropriate states to allow proper sequence of high voltage operation. The experiment was cycled from operate sem lect to power off on December 12 (operate select 12 December/0428 G.m.t.power off $12 \mathrm{Dec} / 0509 \mathrm{G} . \mathrm{m} . t \mathrm{t}$; and, operate select $12 \mathrm{Dec} / 2221 \mathrm{G} . \mathrm{m} . \mathrm{t} .-\mathrm{power}$ off 12 Dec/ 2238 G.m.t.). The experiment will now remain in the unpowered state until after detonation of the last ISPH explosive package.

The Lunar Ejecta and Netorites Experiment operabed for 3 hours and 38 minutes following the intial turn-on command at $0319 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 12$ December. A software documentation error has prevented proper synchronization of the insturment's digital data to date. Correction of the error is expected to be completed boday.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Require ments Branch, TN3, telephone 483-5067.

APOLLO 16 ALSEP

APOLLO 15 ALSEP

TM POINT

TM POINI

APOTITO IUNAR SURFACE EXPERIMENTS PACKAGE STATUS REPORT
14 December 1972
G.m.t.: 0600

Apol10 17 ALSEP

Near the end of EVA-3 the LMP returned to the ALSEP site to manually excite and re-level the Lunar Surface Gravimeter Experiment, and verify that lunar soil was not blocking the field of view of the central station's power dissipation module panel. Manual freeing of the gravimeter's sensor beam was not successful. The IMP cleared lunar soil that was blocking the field view of the station's power dissipation module panel and the panel's temperature decreased immediately 30 degrees. It is currently indicating a temperature of 249.2 F . While at the central station the IMP re-level the station's antenna, after noting that it was not optimum. Downink RF signal strength is satisfactory at -137.0 $\pm 1.5 \mathrm{dbm}$. Power output from the radioisotope source remains constant at 75.4 watts, about 2 watts higher than any other AIsBP generator upon station activation. The central station's Command Decoder Switch Inhibit command was executed at $1807 \mathrm{G} . \mathrm{m} . t ., 12$ December. The decoder switch inhibit command sets a one-time inhibit circuit in the command decoder such that the next internally generated 61 -hour pulse does not cause automatic switchover to the opposite receiver/decoder. Only one 6l-hour pulse can be inhibited at a time. It is planned procedure to maintain the automatic switchover capability of the central station's command decoder to the opposite receiver/decoder inhibited. If command. capability were lost to the central station, then the autonatic switchover would occur on the second 6l-hour pulse following the last inhibit command.

The Heat Flow Experiment continues to perform nommally, with all temperature sensors returning data. The transient disturbance to the Iunar temperatures, caused by the emplacement of the probes and drillstems, are dissipating and the temperatures are returning to their undistuxbed values. Thermocouple temperatures indicated a lunax surm face temperature of approximately $343^{\circ} \mathrm{K}\left(70^{\circ} \mathrm{C}\right)$.

The IMP inspected leveling and verified that the Lunar Surface Gravimeter Experiment is level and the gimbal is swinging freely near the end of 姡A-2. Continuous nulling operations of the experiment sensor beam have not been successful. Near the end of EVA-3 the LMP reburned. to the ALSEP site to manually excite and re-level the gravimeter in an attempt to free the sensor beam. This second re-leveling was not successful. Currentiy the experiment's sensor beam remains against the upper stop. The instrument's subsystem components continue to operate normally.

Page 2
14 December 1972
G.m.t.: 0700

The Lunar Seismio Profiling Experiment explosive packages \#t ($1 / 4 \mathrm{lb}$.) , \#3 (1/8 Ib.) and \#5 (3 1b.) were deployed during EVA-3.

Explosive Package Deployment Time Detonation Window
EVA 3 \#5 (3 1b.) $\quad 14$ Dec/0332 G.m.t. $\quad 17 \mathrm{Dec} / 2250-2344$ G.m.t.
EVA 3 \#2 (1/4 1b.) $\quad 14 \mathrm{Dec} / 0405 \mathrm{G} . \mathrm{m} . \mathrm{t} \quad 18 \mathrm{Dec} / 0023-.0117 \mathrm{G.m.t}$. .
EVA 3 \#3 (1/8 1b.) $14 \mathrm{Dec} / 0517 \mathrm{G} . \mathrm{m} . t . \quad 18 \mathrm{Dec} / 0236-0330 \mathrm{G} . \mathrm{m} . t$.
The Lunar Atmospheric Composition Experiment remains in the unpowered state. It will remain off with the dust cover over the optical surface radiator until after the last explosive charge detonation. Bakeout will begin at first lunar noon, followed by mass spectrometer tummon during the first lunar night.

Correction of the software documentation error was completed and the Iunar Tjecta and Meteoroites Experiment commanded to operate select at 2050 G.m.t., 13 December. Four calibrate commands were also transmitted verifying the overall sensor electronics and data storage system of the experiment. The experiment was commanded off at 2101 G.m.t. The LEAM will remain in the unpowered state with the optical surface radiator and thermal covers in place until after explosive packages detonation.

```
\begin{tabular}{|l|}
\hline \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}
```


Status as of $0600 \mathrm{G} . \mathrm{m} . \mathrm{t}$..14 December 1972, was as follows:
APOLIO 12 ALSEP APOITO 14 ALSEP

APOTIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

15 December 1972
G.m.t.: 0800

Apo110 17 ALSEP
The Apollo 17 scientific station measured the effects of the Challenger's Iunar surface Iiftoff at $2254 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 14$ December, and the subsequent Iunar surface impact of IM-12 at 0650 G.m.t., 15 December.

The central station's average thermal plate temperature continues to increase at a rate of about $0.3^{\circ} \mathrm{F}$ per hour, within the expected operation Ievel. The RrG output continues steady at 75.4 watts. Since ALSEP activation, network receiving stations have reported downlink signal strength fluctuations which appear and disappear at about 6 minute intervals. When present, the fluctuations are sinusoidal (+1.5 db around the steady-state value) with a period of about 45 seconds; gradually building up and decaying. At times the period is 75 to 90 seconds pex cycle; occasionally it then changes to 22 to 30 seconds per eycle. These changes occur at 6 to 10 hour intervals. There is no frequency shift and the stations are supporting multiple ALSEP's; hence, it is not an atmospheric disturbance. The signal strength, at minimum, is well within the acceptable range for ALSEP normal bit rate. Calculated link margins based on MSFN compatibility tests at KSC indicate that even with present signal strength fluctuations there will be a two db margin with the system in high bit rate. These signal strength fluctuations have no effect on collection of the telemetry data, and the variations continue to be monitored for possible changes.

The Heat Flow Experiment probes and electronics are performing normally. The experiment is operating in the gradient mode (mode I), with all sensors being sampled in full sequence. In addition to the normal measurements in mode 1 , temperature measurements are periodically made at the ring sensors, with the probe heaters not energized (ring bridge survey): The ring sensors are space 29.7 cm apart and 9.9 cm from the end of each probe section.

The Lunar Surface Gravimeter sensor's initial onscale temperature (48.4 ${ }^{\circ} \mathrm{C}$) readout occurred at about 2054 G.m.t., 14 December, some 63 hours after initial tum-on. The sensor's temperature is currently $51.8^{\circ} \mathrm{C}$. Nulling operations are continuing. Presently the instrument's sensor beam remains against the upper stop. The experiment's subsystem components contimue to operate normally.

Page 2
15 December 1972
G.m.t.: 0800

The Lunar Seismic Profiling Experiment was commanded ON at 2228 G.m.t., 14 Decembex, and to LSP daba rate (3533.3 bps), at $2229 \mathrm{G} . \mathrm{m} . t$. to rem cord the IM-12 Iunar Iift-off. During the experiment's high bit rate mode two calibration pulses were transmitted and verified, and four instrument high/low gain changes were also executed correctly. At 0000 G.m.t., 15 December, the experiment's transmitter on command was executed. The instrument's telemetry data displayed a normal ISP transmitter functional readout. The LSP transmitter OFF command was sent at 0002 G.m.t. The four geophone outputs of the instrument were normal. ISP data rate operation was teminated at $0003 \mathrm{G} . \mathrm{m} . t$. , and the instrument returned to standby select at 0006 G.m.t., 15 December.

The Iunar Seismic Profiling Experiment was again commanded oN at 0627 G.m.t. 15 December, to record the LM-I2 ascent stage impact. The experiment was commanded to high bit rate at 0636 G.m.t. The geophone outputs of the instrument were normal. High bit rate operation was terminated at 0741 G.m.t., and the experiment commanded to standby select at $0743 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 15$ December.

The LSP geophone data recorded during the LM ascent stage activities will be used in correlation with explosive packages detonation data in order to determine the velocity profile of the near surface structure.

The Lunar Atmospheric Composition Experiment remains powered down. The instrument's curcent average tempexature rise is $0.9^{\circ} \mathrm{F}$ per hour.

The Lunar Ejecta and Meteorite Experiment remains powered down. Temperature rise of the unpowered electronics will probably require $x e-$ moval of the optical surface reflector dust cover between LM lift-off and explosive package detonation. Current avexage temperature increase of $1.1{ }^{\circ} \mathrm{F}$ per hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

[^20]Passive seismic experiment

Lunar surface
magnetometer
experiment
Active seismic
experiment
Operational status from 8 December $1972,1300 \mathrm{G} . \mathrm{m} . t$. to 15 December $1972,1200 \mathrm{G} . \mathrm{m} . \mathrm{t}$.
Sunrise of the station's I8th lunation ocourred 12 December 1972 ; power from the
RTG continues steady and transmitter "A" downink signal strength is reported at
$-135.3 \pm 1.7 \mathrm{dbm}$. The 18 -hour timer was initiated for day operations at $2355 \mathrm{G} . \mathrm{m} . t$. ,
13 December.

$$
\begin{aligned}
& \text { Operation is in the auto ON thermal control mode, sensor gains are o db, and the } \\
& \text { feedback loop filter commanded OUI in order to achieve seismic network congruity. } \\
& \text { Apollo } 17 \mathrm{~S}-\mathrm{IVB} \text { seismic signals were noted in the playback of data of this } \\
& \text { instrument at a distance of approximately } 1,032 \mathrm{~km} \text { from ALSEP } 15 \text {. }
\end{aligned}
$$

> nar ay since activation. The experiment's y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence $t o$ maintain sensor head synchronization. The experiment's y-axis sensor has indicated off-scale LOW (static) since 20 September 1972.
Presently in standby pending further analysis per SMEAR \#45. The instrument has not been commanded to operate select since 17 August 197 . At 2018 G.m.t., 10 December, the instrument was commanded to master reset and to reset frame counter at frame 39 simultaneously with the Apollo 14 AISEP SIDE instrument. This places both instruments in synchronization with each other and eliminated cal sequences. At six hour intervals, the master reset and reset at 39 sequence is repeated with sufficient delay to get two cal sequences. This mode of operation optimizes science return at a time when command capability is available during the 45 day support period for the Apollo 17 ALSEP. Presently
 Challenger. Energy levels which were recorded were in the 50 FV range and both the thermal ion detector and mass analyzer observed the ions. The event lasted for approximately 15 minutes.

experiment

spectrometer
experiment
Apol1o I5 ATSEP (continued)

$$
\text { Apolio } 14 \text { AISEP }
$$

Apolio I2 AISEP

APOTLO 16 AISEP
 6
6
6
6
6
6
6
6 $\stackrel{m}{0}$

0
0
0

Status as of 0500 G.m.t., 15 December 1972, was as follows:

$\frac{\text { T10 } 0 \text { OTV }}{}$

APOLIO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
16 December 1972
G.m.t.: 0400

Apol10 17 ALSEP
Power from the radioisotope source remains constant at 76.2 watts. The average temperature of the central station electronics thermal plate continues increasing at a rate of about $0.3^{\circ} \mathrm{F}$ pex hour. Downlink signal strength is adequate at -138.0 dbm , plus or minus 1.5 dmm . A stabus change in the station's command decoder switch inhibit telemetry point. $A B-18$, verified that the intemally generated $61-h o u r$ pulse that would cause automatic switchover to the opposite receiver/decoder if it were not inhibited is occurring every $6 \ln 49 \mathrm{~m} 35 \mathrm{~s}+22 \mathrm{~s}$. At $0050 \mathrm{G} . \mathrm{m} . t . \ln$ December, the command to maintain the automatic switchover capability of the central station's command decoder to the pposite receiver/dem coder inhibited was executed as planned.

The Heat Flow Expeximent temperature sensors and thexmocouples in the cable are continuing to track the temperatures on and below the Iunar surface. The experiment electronics continue to operate nomally, with periodic ring bridge survey's being accomplished. The experiment's thermocouples, above the surface, are reading $363^{\circ} \mathrm{K}\left(90^{\circ} \mathrm{C}\right)$, and the temperature at the lowermost sensors is about $257^{\circ} \mathrm{K}\left(-16^{\circ} \mathrm{C}\right)$.

Nulling operations of the Lunar Surface Gravimeter's sensor beam have not been successfully accomplished. Investigation of the instrument ${ }^{*}$ mechanical and electrical functions to determine probable failure or propose remedial action continues. The possibility also exists that the experiment does operate to some extent as a vertical seismometer. The instrument's housekeeping data continues to be normal.

The Lunar Surface Profiling Experiment explosive charges, \#6 and \#7, deployed during the EVA-I traverse activated normally. The TsPE four geophones responded to the detonation of both explosive packages. Instmment calibrate pulses were executed during the high bit rate operations. 1

EP	Size	$\frac{\text { Detonation }}{\text { G.m.t. }}$	$\frac{\operatorname{LSP} O N}{\text { G.m.t. }}$	$\frac{\mathrm{HBR} \text { ON }}{\text { G.m.t. }}$	$\frac{H B R O F B}{G . m \cdot t .}$	$\frac{\operatorname{LSP} \text { stby }}{\text { G.m.t. }}$
6	11 b	$15 \mathrm{Dec} / 2348$	2238	2244	-	-
7	$1 / 210$	$16 \mathrm{Dec} / 0218$	-	-	0226	0228

Page 2
16 December 1972
G.m.t.: 0400

The Lunar Atmospheric Composition Experiment remains powered down. The instrument's current average temperature rise is about 0.7 F per hour. Because of the excessive temperature rise of the unpowered electronics it would have probably required removal of the dust cover over the instrument's optical surface radiator prior to detonation of the last LSP explosive package. Therefore, the experiment's mission rule ($32-2-B$) has been restated to reflect a maximum allowable non-operating temperature of $167^{\circ} \mathrm{F}$ (reference telemetry point AM-47). The projected nonoperating temperature of the LACE is approximately $155^{\circ} \mathrm{E}$.

The Lunar Ejecta and Meteorite Experiment remains powered down. Temperature rise of the unpowered electronics would have probably required removal of the optical surface reflector dust cover betore the last, explosive package detonation, The LEAM upper limit non-operating temperature was increased to $180^{\circ} \mathrm{F}$ (reference mission rule $32-3-1$, and instrument telemetry point AJ-11). The expeximent's projected nonoperating temperature will probably approach $180^{\circ} \mathrm{F}$. The current average temperature increase of the instrument's electronics is about 0.5 F per houx.

It is requested that any organization having comments, questions or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOIIO IUNAR SURFACE EXPERTMENPS PACKAGE STATUS REPORT
17 December 1972
G.m.t.: 0500

Apol10 17 AISEP
The central station is operating nominally. Over 2600 command have been sent and executed to date. Radioisotope thermal generator (RTG) power output and downlink signal strength remain steady.

There has been essentially no change in status on the ALSEP experiments. Heat Flow sensors continue to equilibrate. Iunar Ejecta and Meteroites (IFAM) and Iunar Atmospheric Composition (IACE) temperatures continue to rise with the approach of lunar noon. New temperature Iimitations were established for these experiments before the dust covers which cover the themal radiation surfaces must be removed.

$$
\begin{array}{ll}
\text { IIAM } & 167^{\circ} \mathrm{F} \text { to } 180^{\circ} \mathrm{F} \\
\text { LACE } & 160^{\circ} \mathrm{F} \text { 6o } 167^{\circ} \mathrm{F}
\end{array}
$$

Based on the temperature rises which these experiments are experienoing, it appears that the dust cover will not have to be removed prior to the last EP detonation. The Lunar Surface Gravimeter (LSG) status remains unchanged. It is not planned to exercise the experiment unill the results of the studies underway have been evaluaied and a new course of action agreed upon. LSG sensor temperature is essentially stabilized at $49.16^{\circ} \mathrm{C}$.

The Tunar Surface Profiling Fxperiment (ISPF) explosive charges, \#t, \#1 and \#8, deployed during the EVA-2 traverse detonated normally. The Lsper four geophones responded to the detonation of each explosive package. Instrument calibrate pulses were executed during the experiment's operating period.

EP	Size	$\frac{\text { Detonation }}{\text { G.m.t. }}$	$\frac{\text { LSPE ON }}{\text { G.m.t. }}$	$\frac{\mathrm{HBR} \text { ON }}{\mathrm{G} \cdot \mathrm{~m} \cdot \mathrm{t}}$	$\frac{\mathrm{HBR} \text { OFF }}{\mathrm{G}_{\mathrm{m}, \mathrm{t}} \mathrm{t}}$	$\frac{\text { LSPE Stiby }}{\text { G.m.t. }}$
4	$1 / 81 \mathrm{~b}$	$16 \mathrm{Dec} / 1908$	1805	1814	1923	1931
1	610	$17 \mathrm{Dec} / 0042$	2342	2344	0057	0102
8	$1 / 41 \mathrm{~b}$	$17 \mathrm{Dec} / 0346$	0239	0241	0351	0353

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, IM3, telephone 483-5067.

APOLLO 16 ALSEP

0
0
0
0
4
2
-1
0
9
-3
0
4

APOLLO 14 ALSEP

APOLLO 12 ALSEP

TM POINT
Total Days of Operation Total Days of Operation
Total Commands to Date Sun Angle

Input Power
APM Status (AB-13) APM Status Dump Status (AB-14) Experiment Status Avg Thermal Plate Temp IMS Temp (AM-41) LEAM Temp (AJ-11) HFE Temp Ref 1 (DH-13)
LSG Temp (DG-04) LSP Temp (AP-01)

18 December 1972
G.m.t.: 0430

Apol10 17 ALSEP

All experiments are operating as planned, including the Lunar Surface Gravimeter in its limited mode. Power from the RTG remains constant. The downink received signal is steady at $-137.0+1.0$ dbm. The central gtation ${ }^{\circ} \mathrm{s}$ command decoder switch inhibit pulse occurred as anticipated, verified by a status change in telemetry point $A B-18$. The command to inhibit the next intexally generated 61-hour pulse was transmitted at 1551 G.m.t., 17 December. The central station's ayerage themal plate temperature contimues to increase at a rate of about $0.06 \mathrm{~F} /$ hour.

The Heat Flow Experiment continues to operate nominally, Thermocouple tem perature measured at the lunar surface is approximately $388+8^{\circ} \mathrm{K}$. The temperature at 230 cm depth is 256.6 K at probe \#l, and $257.0^{\circ} \mathrm{K}$ at probe \#2. Both heat probes indicate an increase of temperature with depth for depths greater than 65 cm reflecting heat flow from the interior of the moon.

There is no change in the Lunar Gurface dravimeter Experiment status. The experiment will not be exercised until studies have been completed and an agreed course of action is approved. The experiment's sensor temperature is stabilized at $49.161^{\circ} \mathrm{C}$ (slave heater oN).

The Lunar Surface Profiling Experiment (ISPE) explosive charges \#5, \#2 and \#3, deployed during the EVA-3 traverse detonated as planned. The four LSPE geophones responded to the detonation of each explosive package. Instrument calibrate pulses wexe executed during the experiment's operating mode.

$E P$	Size	$\frac{\text { Detonation }}{\text { G.m.t. }}$	$\frac{\text { ISPT ON }}{\text { G.m.t. }}$	$\frac{\mathrm{HBR} \text { ON }}{\mathrm{G} \cdot \mathrm{~m} \cdot \mathrm{t}}$	$\frac{\mathrm{HBR} \text { OFF }}{\mathrm{G} \cdot \mathrm{~m} \cdot \mathrm{t} .}$	$\frac{\text { LSPE Stby }}{\text { G.m.t. }}$
5	31 lb	17 Dec/2316	2213	2217	2330	-
2	1/4 1b	18 Dec/0045	-	0000	0057	-
3	1/8 1b	$18 \mathrm{Dec} / 0307$	-	0213	0318	0408

The Lunar Atmospheric Composition Experiment (TACE) remains powered down. Approximately one hour after detonation of the last Lsper explosive charge the LACE was commanded to operate select and the instrument's dust cover over the optical surface radiator commanded off (0420 G.m.t., 18 December). The experiment was then commanded to off at $0425 \mathrm{G} . \mathrm{m} . \mathrm{t}$. The current plan is to leave the JACE powered down until the internal temperature (AM-41) decreases to $130^{\circ} \mathrm{F}$, at which time the instrument's bakeout sequence will be initiated. The internal temperature of the instrument in the powered down mode with the dust cover on reached $154.1^{\circ} \mathrm{F}$. With removal of the experiment's dust cover, the internal temperature decreased. Presently the instrument's internal temperature is $148.9^{\circ} \mathrm{F}$.

Page 2
18 December 1972
G.m.t.: 0430

The Junar Ejecta and Meteroites Experiment (LEAM) remains powered down. The internal temperature of the instrument is currently 174.9 F . The projected non-operating temperature of the LEAM is $176^{\circ} \mathrm{F}$. based on the rate of increase over the past 24 hours.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch. TN3, telephone 483-5067.

APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT
19 December 1972
G.m.t.: 1300

Apollo 17 ALSEP

The central station continues operating normally. Engineering measurements of the station's data subsystem components are currently indicam ting a average temperature decrease of $0.6^{\circ} \mathrm{F} /$ hour. The central stam tion's data subsystem components attained a maximum temperature value near 0600 G.m.t. 18 December, as the average thermal piabe temperature peaked at $129.0^{\circ} \mathrm{F}$ (93° sun angle at the site). Radioactive thermo generator output is constant. Downlink signal strength vawies between -136 dbm to -139 dbm depending on the receiving site.

The Heat Flow Experiment continues to operate normally, with all temperature sensors returning data and the probes continuing to equilibrate with the surrounding Iunar soil. Maximum surface temperature measured by the Heat Flow Fxperiment thermocouples was $388+8^{\circ} \mathrm{K}$ at lunar noon. The maximum temperature reached by the experiment's electronics was $55^{\circ} \mathrm{C}$ (sun angle $93,0600 \mathrm{G} . \mathrm{m} . \mathrm{t}, \mathrm{c}, 18$ December).

There has been no change in status of the Lunar Surface Gravimeter since the last report.

The Lunar Surface Profiling Experimert remains in standby, with a 30 minute passive listening mode planned for 22 December.

The Iunar Atmospheric Composition Experiment (LACE) currently is off. Following completion of the experiment's nine hour bake-out sequence, the instrument's engineering measurements (high voltage power supply and ion source filaments off) were monitored for the next seven hours to establish trend data. The LACE was commanded off at 0927 G.m.t., 19 Degember, after the instrument's temperature (AM-41) increased to 126.1 F (reference mission rule $32-52$). It is planned that the IACE remain in the powered down mode for a minmum of 50 hours after ephemeris sunset (25 December) at which time full operations would be initiated. The LACE's radiator plate temperature peaked at 154.1 F (92 sun angle, about 0400 G.m.t., 18 December).

The Lunar Ejecta and Meteroites Experiment (LEAM) remains powered down. New temperature limitations were established for the LEAM experiment befgre the thermal radiation surface dust cover is removed ($\mathrm{AJ}-11=$ $160^{\circ} \mathrm{F}$), and full operation is initiated (AJ-11 $\left.=125^{\circ} \mathrm{F}\right)$. The LEAM attained a maximum temperature of $176.0^{\circ} \mathrm{F}$, and stabilized at this peak temperature for a period of about 15 hours ($93^{\circ}-99^{\circ}$ sun angle). The instrument's temperature is currently decreasing at a rate of $0.04 \mathrm{~F} /$ hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 15 ALSEP

TM POINT
Total Days of Operation Total Commands to Date Sun Angle

Input Power
APM Status (AB-13) APM Status (AB-13) (AB-14) Avg Thermal Plate Temp AvS Temp (AM-41)

LMS Temp (AM-41) LFAM Temp Ref 1 (DH-13) HFE Temp Ref 1
LSG Temp (DG-04)
LSP Temp (AP-O1)

20 December 1972
G.m.t.: 1300

Apol10 17 ALSEP
Currently, the central station's electronics thermal plate average temperature is $124.8^{\circ} \mathrm{F}$, holding steady. Data subsystem component operation is nominal. RTG output power xemains constant at 75.8 watts. Downink signal strength is ample at $-137.0 \pm 1.0 \mathrm{dbm}$. A status change in the station's command decoder switch inhibit telemetry point, $A B-18$, verified that the internally generated 61 -hour pulse occurred as anticipatied. At 0507 G.m.t., 20 December, the commana to maintain the automatic switchover capability of the central station's command decoder to the opposite receiver/decoder inhibited was executed as planned.

The Heat Flow Experiment temperature sensors and themocouples in the cable are continuing to track the temperatures on and below the lunar surface. The experiment electronics continue to operate normally. with periodic ring bridge survey's being accomplished. The experiment's thermocouples, above the surface, are reading $374 \pm 8^{\circ} \mathrm{K}$, and the temperabure at the lowermost sensors is about $257^{\circ} \mathrm{K}$.

There has been no change in status of the Lunar Surface Gravimeter Experiment or Lunar Surface Profiling Experiment since the last reporf.

The Lunar Atmospheric Composition Experiment (LACE) currently is off. The instrument was commanded on (high voltage power supply off, ion source filaments off, back-up heater off, and low voltage power supply on) at 1316 G.m.t., 19 December, to monitor engineering measurements for additional data correlation. The LACE was commanded off at 1804 G.m.t., 19 December, after the instrument's low voltage power supply temperature ($\mathrm{A} M-15$) increased to $128.3^{\circ} \mathrm{F}$. It is planned that the experiment remain in the off mode until its temperature ($A M-41$) decreases to $32^{\circ} \mathrm{F}$, at which time the LACE would be placed in standby select prior to the ephemeris sunset. The instrument's temperature is curcently decreasing at a average rate of $3.2^{\circ} \mathrm{F} /$ hour .

The Lunar Ejecta and Meteroites Experiment (INAM) remains powered down. New temperature limitations were established for the LEAM experiment before the thermal radiation surface dust cover is removed ($\mathrm{AJ}-11=160^{\circ} \mathrm{F}$), and full operation is initiabed ($\mathrm{AJ}-11=125^{\circ} \mathrm{F}$). The instrument's temperature is currently decreasing at an average rate of $0.2 \mathrm{~F} / \mathrm{hour}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch. TN3, telephone 483-5067.

APOLLO 15 ALSEP

21 December 1972
G.m.t.: 1300

ApO110 17 ALSEP
The central station continues operating normally. Radioactive themo genecator output is constant. Downink signal strength varies between -136 dbm to -139 dbm depending on the receiving site.

The Heat Flow Experiment probes and electronics are performing normally. The experiment is operating in the gradient mode (mode 1), with all sensors being sampled in full sequence. In addition to the nomal measurements in mode 1 , temperature measurements are periodically made at the ring sensors, with the probe heaters not energized (ring bridge survey). The experiment's themocouples, above the surface, are reading $374+8{ }^{\circ} \mathrm{K}$.

The Lunar Surface Gravimeter Experiment's status is unchanged since the Last report, The instrument is configured to seismic high gain select, in an effort to operate to some extent as a rertical seismometer. The instrument's housekeeping data contimues to be normal.

The Lunar Surface Profiling Experiment remains in standby, with a 30 minute passive Iistening mode planned for 22 December.

The Lunar Atmospheric Composition Expeximent (TACE) currently is off. It is planned that the experiment remain in the off mode until its temperature (AMm4I) decreases to $32^{\circ} \mathrm{F}$, at which time the LACF would be placed in standby select prior to the ephemexis sunset. The instrument's temperature is currently decreasing at an average rate of $0.7{ }^{\circ} \mathrm{F} / \mathrm{hour}$.

The Lunar Fjecta and Meteroites Experiment (LEAM) remains powered down. New temperature limitations were established for the IEAM experiment before the thermal radiation surface dust cover is removed ($\mathrm{AJ}-11=160^{\circ} \mathrm{F}$), and full operation is initiated (AJ-11 $=125^{\circ} \mathrm{F}$). At $0957 \mathrm{G} \cdot \mathrm{m} . \mathrm{t}_{\mathrm{o}}$. 21 December, the experiment's themal radiation surface dust cover was removed successfuliy ($A J-11=159.8^{\circ} F$), and the experiment powered down. The instrument's bemperature is curpently decreasing at an average rate of 2.1 $\mathrm{F} /$ hour.

It is requested that any organization having comments, questions, or suggestions conceming this report contact R. Miley, Science Requirements Branch. TIV3, telephone 483-5067.

APOLLO 16 ALSEP

22 December 1972
G.m.t.: 1300

Apollo 17 ALSEP

The central station continues operating normally. Engineering measurements of the station's data subsystem components are currently indicating an average temperature decrease of about $0.4^{\circ} \mathrm{F} /$ hour. Downlink RF signal strength is satisfactory at $-137.0 \pm 1.5 \mathrm{dbm}$. Since ALsEP activation, network receiving stations have reported downlink signal strength filuctuations which appear and disappear at about 6 minute intervals. When present, the fluctuations are sinusoidal ($\pm 1.5 \mathrm{db}$ around the steady-state value) with a period of about 45 seconds; gradually building up and decaying. At times the period is 75 to 90 seconds per cycle; occasionally it then changes to 22 to 30 seconds per cycle. These changes occur at 6 to 10 hour intervals. There is no frequency shift and the stations are supporting multiple ALSPP's. The signal strength, at minimum, is well within the acceptable range for ALSEP normal bit rate. These signal strength fluctuations have no effect on collection of the telemetry data, and the variations continue to be monitored for possible changes. Power output from the radiom isotope source remains constant at 75.8 watts.

The Heat Flow Experiment continues to operate nominally. Thermocouple temperature measured at the lunar surface is approximately $358+80^{\circ} \mathrm{K}$. The temperature at 230 cm depth is $256.4^{\circ} \mathrm{K}$ at probe \#1, and $257.0^{\circ} \mathrm{K}$ at probe \#2. Both heat probes indicate an increase of temperature with depth for depths greater than 65 cm reflecting heat flow from the interion of the moon.

There has been no change in status of the Lunar Surface Gravimeter Experiment,

The Lunar Surface Profiling Experiment was commanded on at 0657 G.m.t. , 22 December, and to LSPE data format processing (high bit rate) at 0710 G.m.t., for a thirty minute passive listening period. Two geophone calibration pulses were sent to the experiment during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real time. ISPE processing was texminated at 0740 G.m.t., and the instrument commanded to standby select at 0743 G.m.t.

The Lunar Atmospheric Composition Experiment (LACE) currently is off. It is planned that the experiment remain in the off mode until its temperature (AM-41) decreases to $32^{\circ} \mathrm{F}$, at which time the LACE would be placed in standby select prior to the ephemeris sunset. The instrument's temperature is currentiy decreasing at an average rate of about $0.4^{\circ} \mathrm{F}$ /hour.

The Iunar Ejecta and Meteorites Experiment (IFAM) remains powered down. New temperature limitations were established for the IEAM experiment before full operation is initiated (AJ-11 $=125^{\circ} \mathrm{F}$). The instrument's temperature is currently decreasing at an average rate of approximately $0.9^{\circ} \mathrm{F} /$ hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
 The y-axis continues to respond to leveling commands in the forced mode and auto mode since 13 December 1972. Experiment operation continues with the feedback loop filter commanded OUT, the sensor gains of all components configurea to caged state. The instrument will be configured in this manner throughout Iunax day. The instrument's DI-07 sensor assembly temperature was off-scale HIGH at 1100 G.m.t., 17 December. It is projected to return on-scale 26 December 1972. The experiment continues to measure time-dependent solar and induced magnetic fields with increased activity as the moon passes through the earth's geomagnetic tail. The instrument's 248 th flip calibration sequence was executed correctly by command on 20 December 1972. The experiment is presently configured with the digital filter commanded. IN, the flip cal inhibit logic commanded IN and the sensors in the 200 gamna range.

The experiment is in standby OFF with a 30 -minute passive listening period scheduled for today. On 15 December 1972 the experiment was commanded to operate select at $1233 \mathrm{G} . \mathrm{m} . \mathrm{t}$. and to high bit rate on at $1245 \mathrm{G} . \mathrm{m} . \mathrm{t}$. for a passive listening period. Two geophone calibration pulses were sent to the instrument during the listening mode. Data output of all geophones appeared normal and no significant signals were noted in real-time. High bit rate operations were terminated
at $1315 \mathrm{G} . \mathrm{m} . t$. and the experiment commanded to standby OFF at $1318 \mathrm{G} . \mathrm{m} . \mathrm{t}$.

woTzeqs texquan

Passive seismic
experiment

Lunar surface
magnetometer
experiment

Active seismic
ApOIIO 15 ALSEP
Operational status from 15 December 1972, 1200 G.m.t., to 22 December 1972,1200 G.m.t.
The instrument's DL-O7 sensor assemblr temperature was offscale HIGH at $1230 \mathrm{G} . \mathrm{m} . t$., The instrument's DL-O7 sensor assembly temperature was offscale HIGH at $1230 \mathrm{G}, \mathrm{m} . \mathrm{t}, \mathrm{n}$
18 December. Operation is in the auto oN themal control mode, sensor gains are 0 do, and the feedback loop filter commanded OUT in order to achieve seismic network congruity. No major seismic events have been noted during the real-time support of this instrument. The experiment's sensors are presently in the 100 gamma range for lunar day
 since activation. The experiment"s y-axis sensor head remains fixed at a 180 degree position, not responding to flip cal commands. The x-axis and z-axis sensors are returned to the 180 degree position following each flip cal sequence to maintain sensor heau synchronization, The experiment "s y-axis sensor has indicated off-scale LOW: (static) since 20 September 1972. The flip calibration sequences were suspended on 18 December 1972 as the ISM internal temperature is above $60^{\circ} \mathrm{C}$.
Presently in standby pending fuxther analysis per SMEAR 平t5. The instrument has not been commanded to operate select since 17 August 1972 . The instrument is presently operating in the $0-39$ frame stepping sequence with the Chaneltron high roltages commanded on aimultaneously with the Apollo 12 and 14 ALSEP SIDE instruments. This places the instruments in synchronization with each other and eliminates cal sequences. At six hour intervais, the master reset and reset at 39 sequence is repeated with sufficient delay to get two cal sequences. This mode of operation optimizes science return at a time when command capability is available during the 45 day suppont period for the Apollo 17 ALSEP. Central station Passive seismic experiment Iunar surface magnetometer experiment Solar wind
Solar wind
spectrometer
experiment
Suprathermal ion
detector/cola
cathode gauge
experiment

APOIIO 14 AISEP

(penutquoo) disTV tr otrody

Operational status from 15 December 1972 , $1200 \mathrm{G} . \mathrm{m} . \mathrm{t}$. , to 22 December 1972 , $1200 \mathrm{G} . \mathrm{m} . \mathrm{b}$.

Scientific and engineering data have been static since 4 June 1972. The instmument's digital filtem remains commanded IN,

This experiment continues to perform its design function well beyond its planed

 operational period, returning more thar three years of scientific data on solar wind plasma, magnetosphere plasma and magnetopause crossings, by sensing the direction and energies of both electrons and positive ions.

Passive seismic
experiment Lunar surface magnetometer experiment

Solar wind

spectrometer
experiment
Suprathermal ion
detectox

APOLLO 16 ALSEP

APOLLO 15 ALSEP

TM POINT

Total Days of Operation Total Days of Operation
Total Commands to Date
Sun Angle Input Power APM Status (AB-13) Power Dump Status (AB-14) Experiment Status Avg Thermal Plate Temp Avs Temp (AM-41) LEAM Temp (AJ-11) HFE Temp Ref 1 (DH-13) LSG Temp (DG-04) LSP Temp (AP-01)

23 December 1972
G.m.t.: 1300

Apollo 17 ATSEP
All experiments are operating as plamed, including the Iunar Surface Gravimeter in its limited mode. Power from the RTG remains constant. The dowlink received signal is steady at $-137.0 \pm 1.0 \mathrm{dbm}$. The central station's command decoder switch inhibit pulse occurred as anticipated, verified by a status change in telemetry point $A B-18$. The command to inhibit the next internally generated 61 -hour pulse was transmitted at 2000 G.m.t., 22 December. The central station's average thermal plate temperature continues to decrease at a rate of about $0.9 \mathrm{~F} /$ hour.

The Heat Flow Experiment continues to operate nominally. Thermocouple temperature measured at the Iunax surface is approximately $304 \pm 8^{\circ} \mathrm{K}$. The temperature at 230 cm depth is $256.6 \% \mathrm{~K}$ at probe $\# 1$, and $257.0^{\circ} \mathrm{K}$ at probe \#2.

There is no change in the Lunar Surface Gravimeter Expeciment status. The experiment will not be exercised until studies have been completed and an agreed course of action is approved. The experiment's sensor temperature is stabilized at $49.165^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Surface Profiling Experiment remains in standby select.
The Lunar Atmospheric Composition Experiment (LACE) was placed in standby select when its temperature (AM-41) decreased to $31.3^{\circ} \mathrm{F}$, at 2112 G.m.t., 22 December. It is planned that the experiment remain in standby select until a minimum of 50 hours after ephemeris sunset to avoid hazards from pressure bursts of the LM descent stage and other debris. IACE scientific data is expected to be collected beginning 27 December, with commanding of the instrument's high voltage power supply and ion source filaments ON. The instrument's temperature is currently increasing at an average rate of about $0.4^{\circ} \mathrm{F} /$ hour.

The Lunar Ejecta and Meteorite Experiment (IFAM) currently is OFF. The IFAM was commanded to operate ON at 1631 G.m.t., 22 December, when the instrument's engineering measurement, AJ-11, indicated that the appropriate internal temperature decrease had been attained (AJ-11 $=124.6^{\circ} \mathrm{F}$). It was planned that experiment operation be maximized with the three sensors covered throughout ephemeris sunset, collecting noise background data for statistical evidence (sensor dust cover removal planned for 28 December). The IFAM was commanded OFF at, 0737 G.m.t., 23 December, after the instrument's internal temperature (AJ-11) increased to 150.1 F . It is presently planned that the experiment remain powered dow until its temperature decreases to $125^{\circ} \mathrm{F}$, at which time the IFAM would be placed in operate select to maximize collecting noise backgound data prior to the lunar sunset (25 December). The instrument's temperature is currently decreasing at an average rate of approximately $2.6^{\circ} \mathrm{F} /$ hour .

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 15 ALSEP

5
0
0
AI1 OFF
ASE Stby
116.9 F
$110.9{ }^{\circ} \mathrm{F}$

TM POINT

TM POINT

24 December 1972
G.m.t.: 1300

Apollo 17 ALSEP
The central station's operation remains essentially unchanged from the preceding 24 hours, with the exception of the data subaystem componenta continuing to undergo a temperature decrease as a function of sun elea Vation at the ALSEP site. Signal strength of the transmitter is report. ed as $-137.0+1.5 \mathrm{dbm}$. The RTG output continues steady at 75.3 watts.

The Heat, Flow experiment probes continue to function nomally during the twelfth day of operation in the moon's near surface stmature. The approach of lunar night has resulted in a surface temperature decrease, as measured by the instrument's thermocouples, of $53 \pm 8^{\circ} \mathrm{K}$ during the lasto 24 hour period.

There has been no change in status of the Lunar Surface Gravimeter Experiment or Lunar Surface Profiling Experiment since the last report.

The Lunar Atmospheric Composition Experiment (LACB) currently is in standby select. It is planed that the experiment remain in standby select until a minimum of 50 hours aftex ephemeris sunset to avoid hazards from pressure bursts of the LM descent stage and other debris. After being commanded to standby select (2112 G.m.t., 22 December) the LACE's internal temperature (AM-41) increased to a maximum of $98.2^{\circ} \mathrm{F}$ (near 1330 G.m.t., 23 December). Following a thermal stabilization period of about one hour, the experiment's housekeeping measurement reflected a temperature reduction. The instmumen's temperature is currently decreasing at an average rate of about $0.5^{\circ} \mathrm{F} / \mathrm{hour}$.

The Lunar Ejecta and Meteorites Experiment (LFAM) is in the operating mode with a dust cover over all three sensors. The LEAM was commanded. to operate ON at 1503 G.m.t., 23 December, when the instrument's engineering measurement, AJwll, indicated that the appropriate internal temperature decrease had been attained ($\mathrm{AJ}-11=127.2$ F). It is planned that the experiment operate with the three sensors covered throughout ephemexis sunset, collecting noise background data for additional statistical evidence (sensor dust cover removal planned for 28 December). After being commanded to operate select the TEAM's internal temperature (AJ-11) increased to a maximum of $135.9^{\circ} \mathrm{F}$ (near $0000 \mathrm{G} . \mathrm{m} . \mathrm{t} ., 24$ December). Following a thermal stabilization period of about 6 hours, the experiment's housekeeping measurement reflected a temperature decrease. The instrument's temperature is currently decreasing at an average rate of about $0.4 \mathrm{~F} /$ hour. The experiment's pexiodic calibrate pulses (automatically internally genexated within the central station as a pair of commands 3.5 minutes apart, every 15.4 hours) oceurred as anticipated. This signal is used to calibrate the overall sensor electronics and data storage system of the LEAM experiment.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 16 ALSEP

Status as of 1200 G.m.t., 24 December 1972, was as follows:
APOLLO 14 ALSEP 688
7923
118
70.0 W
AII OFF
ASE Stby
$110.7 \mathrm{~F}^{\mathrm{F}}$
$135.0^{\circ} \mathrm{F}$
I35. ${ }^{\circ} \mathrm{F}$
Invalid
Invalia
$75.2^{\circ} \mathrm{C}$
APOLLO 12 ALSEP

TM POINT
Total Days of Operation Total Days of Operation
Total Commands to Date
Sun Angle
Input Power
APM Status (AB-13)
Power Dump Status (AB-14)
Experiment Status
Avg Thermal Plate Temp
LMS Temp (AM-41)
LEAM Temp (AJ-11)
HFE Temp Ref 1 (DH-13)
LSG Temp (DG-04)
LSP Temp (AP-01)

APOTIO IUNAR SURFACE EXPERTMENTS PACKAGE STAIUS REPORT
25 December 1972
G.m.t. : 1000

Apol10 17 ALSEP
The central station is operating noxmally. The station's data subsystem components had continued to measure a constant temperature decrease until the average thermal plate temperature reached $55.0^{\circ} \mathrm{F}$ (neax 1200 G.m.t., 24 December). Then between 1200 G.m.t. and 1300 G.m.t., the station's automatic power management (APM) circuit initially turned-off. The APM thermostat inside the power conditioning unit, which is in the APM 2 circuit, disabled APM 2 dumping all the experiment, package rem serve power internally into the central station. The station's average themmal plate temperature immediately increased. Since the initial turn-of of APM 2 the central station's average themal plate temperam ture has been cyclic (minmum temperature $=55.0^{\circ} \mathrm{F}$; maximum temperature $=83.9^{\circ} \mathrm{F}$). Currenty the station's average thermal plate temperature is decreasing. Power from the RTG remains constant. The downlink received signal is steady at $-137.0 \pm 1.0 \mathrm{dbm}$. The central stabion's command dew coder switch inhibit pulse occurred as anticipated, verified by a status change in telemetry point $A B-18$. The command to inhibit the next internally genexated 6I-hour pulse was transmitted at 0746 G.m.t. 25 Decemm ber.

The Heat Flow Experiment contimes to operate nominally Thermocouple temperature measured at the Iunar surface is about $140+80 \mathrm{~K}$. The temperature at 230 cm depth is $256.4^{\circ} \mathrm{K}$ at probe $\# 1$, and $256.9^{\circ} \mathrm{K}$ at probe \#2.

There is no change in the Lunar Surface Gravimeber Experiment status. The experiment's sensor temperature is stabilized at $49.165^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Surface Profiling Fxperiment remains in standby select.
The Lunar Atmospheric Composition Experiment remains in standby select. The instrument's temperature is currently decreasing at an average rate of about 2.0 F/hour.

The Lunar Ejecta and Meteorites Experiment is in the operating mode with a dust cover over all theee sensors. The experiment's periodic calibrate pulses occurped as anticipated. The instrument's temperature is currentm Iy decreasing at an average rate of about $2.4 \mathrm{~F} / \mathrm{hour}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

Status as of 0900 G.m.t., 25 December 1972, was as follows:

40
No
N
TM Potin

TM POINT

APOLIO LUNAR SURFACE EXPERIMENTS PACKAGP STATTIS REPORT

26 December 1972
G.m.t.: 1300

Apollo 17 ALSEP

The experimenta package is functioning normaliy, some 31 hours into its first lunar night. It is estimated that sunset occurred near 0600 G.m.t., 25 December (sun angle of 177.4°). The sunset time is primarily based on the decisive temperature decrease recorded from the Heat Flow Experiment thermocouples (TC-12 and TC-22), and the central stam tion's upper sunshield temperature transducer, ATmol.

The central station is operating satisfactorily at the loweat temperatures it has experienced thus far since Iunar activation, with the stam tion's automatic power management (APM) functioning as anticjpated. Currently the average thermal plate temperature is decceasing at an aterage rate of about $0.7^{\circ} \mathrm{F} /$ hour. Downink signal strength is adequate at -138.0 dbm , plus or minus one dbm. The RTG output power to the ex. periments package continues to be stable.

The Heat Flow Experiment temperature sensors and thermocouples in the cable are continuing to track the temperatures on and below the Iunar suxface. The experiment electronics continue to operate normally, with periodic ring bridge survey's being accomplished. The experiment's thermocouples, above the surface, are reading $122+8^{\circ} \mathrm{K}$, and the temperature at the lowermost sensors is about $257^{\circ} \mathrm{K}$.

There is no change in the Iunar Surface Gravimeter Experiment status. The experiment's sensor temperature is stabilized at $49.165^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Surface Profiling Fxperiment remains in standby select.
The Lunar Atmospheric Composition Experiment remains in standby select. The instrument's temperature is currently decreasing at an average rate of aboutl. $1 .{ }^{\circ} \mathrm{F} /$ hour.

The Iunar Ejecta and Meteorites Experiment (IEAM) is in the opexating mode with a dust cover over all three sensors. The experiment's periodic calibrate pulses occurred as anticipated. The IEAM's thermal control heater is controlling experiment temperature automatically. Since the heater's thermostat became active, the instrument's internal temperature (AJ-11) has been cyclic (minimum temperature $=-1.3^{\circ} \mathrm{F}$, heater ON; maximum temperature $=6.4^{\circ} \mathrm{F}$, heater OFF). The instrument's temperature is currently increasing.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 16 ALSEP

ALI SEBy
N / A
N / A In Invalia
空 follow
APOLLO 12 ALSEP
1133
1579°
136°
68.6 W
AII OFF
SIDE OFF
87.1 F
Offscale HIGH
Invaidid
60.9 C
OFF
OFF
N/A
N / A
N / A

Status

TM POINT

TM POINT

APOLIO LUNAR SURFACE EXPFRTMEMTS PACKAGE STATUS REPORT

27 December 1972
G.m.t.: 0900

Apol1o 17 ALSEP

The central station continues operating normally. Downlink RF signal strength is reported at -137.0 ± 1.0 dbm. Power from the RTG remains constant. Fngineering measurements of the central station's electronics and structural components are continuing to indicate an average temperature decrease of about $0.4^{\circ} \mathrm{F} /$ hour (APM 2 functioning nomally).

The Heat Flow Experiment's housekeeping data indicates that the instrument'g electronics package thermal plate temperature is stabilized at 291.0 K . The experiment's themocouples, above the surface, are reading a surface temperature of $117 \pm 8^{\circ} \mathrm{K}$.

There has been no change in status of the Iunar Surface Gravimeter mxperiment or Lunax Surface Profiling Experiment since the last report.

The Iunar Atmospheric Composition Fxperiment (IACR) is in operate ON, with ion high voltage turn-on planned for today. It was plamed that the experiment remain in standby select until a minimum of 50 hours after ephemeris sunset, however, due to a continuous negative temperature excursion the LACE was commanded to operate select at $1458 \mathrm{G} . \mathrm{m} . t .$, 26 December $\left(A M-41=-14.0^{\circ} \mathrm{F}\right)$. Following the operate select command the instrument's data reflected a continuing temperature decrease ($A M-41=$ -18.1 F), and at 1516 ($\mathrm{m} . \mathrm{t}$. the back-up heater on command was executed. Subsequent commanding configured the expeximent to the following; high voltage power supply off, ion source filaments off, multipliers low, low voltage power supply on, and back-up heater on. The instrument's electronics temperature stabilized for a period of about two hours $\left(A M-4=-16.0^{\circ} F\right)$, and the LACE's engineening data then reflected a temperature increase. The LACE's temperature continues increasing at an average rate of about $1.0^{\circ} \mathrm{F} /$ hour.

The Lunar Ejecta and Meteorites Experiment (TFAM) is in operate select. The experiment's periodic calibrate pulses are occurring as anticipated. This signal is used to calibrate the overall sensor electronics and data storage system of the LEAM experiment. Since the LEAM's automatic thermal control became active (near 0320 G.m.t., 26 December), the instrument's internal temperature (AJ-II) has been cyclic (minimum temperature $=-1.3^{\circ} \mathrm{F}$, heater ON; and, maximum temperature $=6.4 \mathrm{~F}$, heater OrF). The instrument's temperature is currently increasing.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Require. ments Branch, TN3, telephone 483-5067.

Status as of 0900 G.m.t., 27 December 1972, was as follows:

APOLLO 17 ALSEP

TM POINT

TM POINT

APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STATUS REPORT

28 December 1972
G.m.t.: 1300

APOI10 17 ALSEP

The central station's data subsystem components had contimuously measured a negative thermal excursion until the station's average thermal plate temperature decreased to $35.6^{\circ} \mathrm{F}$ (near $0900 \mathrm{G} . \mathrm{m} . t ., 27$ December). Within one hour engineering measurements of the central station's compoents were reflecting a positive temperature excursion. Currently the average thermal plate temperature continues to decrease, with APM 2 controlling the station's internal electronics temperatures (CS$37=30.8^{\prime}$ F). The central station's extemal structural temperatures are stabilized (upper sunshield temperature, $\mathrm{AT}-01=-275.9^{\circ} \mathrm{F}$; and, the bottom structure temperature, AI-10 $=-162.8 \mathrm{~F}$). Power for the AISEP generated by the RTG is stable. Downlink signal strength remains adequate. The central station's command decoder switch inhibit pulse ocm curred as anticipated, verified by a status change in telemetry point $A B-18$. The command to inhibit the next internally generated 61 -hour pulse was transmitted at 2153 G.m.t., 27 December.

The Heat Hlow Experiment (HFP) electronics continue to opecate normally, with periodic ring bridge survey's being accomplished. Both probes of the HFE are currently sensing a temperature of about $257^{\circ} \mathrm{K}$ at a depth of 230 cm . The instrument's thermocouples above the suxface ($T C-12$ and $\mathrm{TC}-22$), indicate a Iunar surface temperature of $114 \pm 8^{\circ} \mathrm{K}$.

There is no change in the Lunar Surface Gravimeter Experiment status. The experiment's sensor temperature is stabilized at $49.165^{\circ} \mathrm{C}$ (slave heater ON).

The Lunar Surface Profiling Experiment remains in standby select.
The Iunar Atmospheric Composition Experiment (IACE) is configured to obtain data on the composition of the lunar atmosphere. Following a one hour bake-out sequence (initiated at 1628 G.m.t., 27 December) the experiment electronics were checked-out. The LACE's initial sweep and multiplier high voltage ON command was executed at 1807 G.m.t., 27 December. Subsequent commanding configured the experiment to the following: automatic sweep, high voltage power supply on, ion source filaments ON, multipliers IOW, low voltage power supply on, and back-up heater ON. The LACE's electronics temperature is currently increasing at an average rate of about $0.6^{\circ} \mathrm{F} /$ hour .

The Iunar Ejecta and Meteorites Experiment (IEAM) is in operate select, with sensor dust cover removal planned for today. Since the LEAM's automatic thermal control became active (near $0320 \mathrm{G} . \mathrm{m} . \mathrm{b}_{\mathrm{o}}, 26$ December), the oinstrument's internal temperature ($A J-11$) has been cyclic, between $6.4^{\circ} \mathrm{F}$ and $-1.3^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions conceming this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 16 ALSEP

APOLLO 15 ALSEP

APOLLO 14 ALSEP

AII OFF
$68.7^{\circ} \mathrm{F}$
N
N/A
Invalid

APOLLO 17 ALSEP

TM POINT
Total Days of Operation Total Commands to Date Sun Angle

Input Power APM Status (AB-13) Power Dump Status (AB-14) Experiment Status Avg Thermal Plate Temp Avg Temp (AM-41) LEAM Temp (AJ-11) HFE Temp Ref l LSG Temp (DG-04) LSP Temp (AP-01)

29 December 1972
G.m.t.: 1300

ADO110 17 ALSEP

The central station continues opexating normally. Downink RF signal strength is reported at $-144.0 \pm 2.0 \mathrm{dbm}$. Power from the RTG remains constant. Engineering measurements of the central station's electronics and structural components are, equilibrating, with APM 2 controlling the station's internal electronics temperatures ($\mathrm{CS}-37=30 \cdot 3^{\circ} \mathrm{F}$).

The Heat Flow Experiment's housekeeping data indicates that the instrum ment's electronics package thermal plate temperature is stabilized at 291.0 K . The experiment's thermocouples, above the surface, are reading a surface temperature of $114 \pm 80 \mathrm{~K}$.

There has been no change in status of the Iunar Surface Cravimeter Experiment since the last report.

The Iunar Surface Profiling Experiment remains in standby select, with a 30 minute passive listening mode planned for 30 December.

The Lunar Atmospheric Composition Experiment (LACE) continues to collect data on the composition of the lunar atmosphere. Subsequent commanding of the IACE throughout 28 December completed verification of the experiment's subsystem components. It was determined that two of the experiment's mass range data channels (DM-04, intermediate mass range; and, DM-03, low mass range) are displaying electrical background noise during part of the analyser sweep. The noise appears to be sweep voltage dependent. The presence of this background noise will require additional steps in the data reduction process to attain corrected science data. This background noise occurrence continues under investigation. The instrument is currently configured to the following: automatic sweep, high voltage and low voltage power supply's ON, ion source filaments ON, multipliers IOW, and back-up heater ON. The LACE's electronics temperature (AM-41) is currently cyclic, between $6.7^{\circ} \mathrm{F}$ and $21.3^{\circ} \mathrm{F}$.

The Lunar Ejecta and Meteorites Experiment (IEAM) is configured to measure impact flux rates on the Iunar surface. At $1957 \mathrm{G} . \mathrm{m} . t ., 28$ December, the LEAM's sensor dust cover was removed successfully, and each of the experiment's three sensor systems (east, west and up sensor system) were enabled to perform a specific function in the overall measurement procedure. Since the LFAM's automatic thermal control became active, the instrument's internal temperature (AJ-II) has been aycic, between 6.4 F and $-1.3^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.
Operational

$A D O 1.1 O$ ATSEP
 The experiment's sensors are presently in the 50 gamma range (gamma range change executed 27 December) for Iunar night operation. Currentiy the instrument has executed 73 flip calibration sequences since activation. The experiment's cal commands. The x-axis and z-axis sensors are position, not responding to flip position following each flip cal sequence position following each flip cal sequence to maintain sensor head synchronization. The experiment's y-axis sensor has indicated off-scale LOW (static) since
20 September 1972 . The flip calibration sequences were suspended on 18 De 20 September 1972. The flip calibration sequences were suspended on 18 December
1972 as the ISM internal temperature was above $62^{\circ} \mathrm{C}$. Flip calibration sequences were resumed 26 December when the instruments internal temperature decreased below $62^{\circ} \mathrm{C}$.

[^21](penutquos) dissIb ST OTTOAG

APOIIO 14 ALSEP

Central station	Sunset of the 24th Iunar day at the Apollo 14 landing site will occur today, 29 December. Power output of the radioisotope source is unvarying; and. transmitter "A" signal strength was reported at $-140.0 \pm 2.0 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) was commanded on for lunar night operations at 1200 G.m.t., 29 December; average thermal plate temperature was $33.8^{\circ} \mathrm{F}$.
Passive seismic experiment	This instrument is configured; thermal control auto on, 0 dis gain on all sensors, and filter OUT. The instrument's long period z-axis has not displayed valid data nor responded to commands since 17 November 1972. No major seismic events have been noted during real-time support.
Active seismic experiment	Currently in standby select with a 30 -minute passive listening mode planned for 30 Dec . On 22 December 1972 the experiment was commanded to operate select at 1049 G.m.t. and to high bit rate ON at 1110 G.m.t. Geophone 3 indicated offscale HIGH, and no significant signals were noted in real-time. No geophone calibration pulses were sent to the instrument during the listening mode. High bit rate operation was terminated at 1140 G.m.t. and the instrument commanded to standby at 1143 G.m.t.
Suprathermal ion detector/cold cathode gauge	The instrument is presently operating in the $0-39$ stepping sequence simultaneously with the Apollo 12 and 15 ALSEP STDE instrument. This places the instruments in synchronization with each other. At six hour intervals, the master reset and reset at 39 sequence is repeated with sufficient delay to get two cal sequences. This mode of operation optimizes science return at a time when command capability is available during the 45 day support period for the Apollo I7 ALSEP. Inter. mittent positive engineering data interruptions (anonaly occurced 9 May 1971) in one section of the analog-to-digital filter are having no adverse effect on the scientific outputs of the experiments.
Charge particle Iunar environmental	Under a revised operations procedure (reference SMEAR \#T9) the experiment was configured to automatic thermal control mode indefinitely. The instrumen is presently operating in the full auto mode after being commanded ON at $1050 \mathrm{G} . \mathrm{m} . \mathrm{t}$, , 22 December. Analyzer A voltage appears normal and analyzer B voltage is below operating limits.

Apollo 12 ALSEP

Sunset of the packages $39 t h$ Iunar day occurs today 29 December; RTG power output is constant; and transmitter "B" signal strength was reported at
$-142.0 \pm 2.0 \mathrm{dbm}$. The central station's DSS-1 heater (10 watts) will be The jnstrument's thermal control mode is auto ON, the sensor gains at O db, and the feedback loop filter commanded OUT. No seismic signals have been noted in real-time during this reporting period. The instrument's z-axis drive motor will be commanded. ON December 29 for lunar night operation.
Scientific and engineexing data have been static since 4 June 1972 . The instrum ment's digital filter remains commanded IN. This experiment continues to return scientific data on solan wind plasma, magnetosphere plasma and magnetopause crossings, by sensing the direction and energies of both electrons and positive ions.
 NOT4875 TBuquen Passive seismic Lunar surface
magnetometer
experiment
Solar wind
spectrometer
experiment
Suprathermal ion
detector

APOLLO 15 ALSEP

TM POINT

APOLLO LUNAR SURFACE EXPERTMENTS PACKAGE STAIUS REPORT
30 December 1972
G.m.t.: 1300

Apollo 17 ALSEP
The central station's data subsystem component temperatures continue to alternate about their point of thexmal equilibrium, while the station's external structural temperabures axe stabilized.

$$
\begin{aligned}
\text { AT-OI, Upper sunshield } & =-278.5 \mathrm{O} \\
\text { AT-10, Bottom structure } & =-170.1 \mathrm{~F}_{\mathrm{F}} \\
\mathrm{CS}-37, \text { Thermal plate } & =29.0^{\circ} \mathrm{F}
\end{aligned}
$$

Power for the ATSEP generated by the RTG is stable. Downink gignal strength is reported at $-142.0 \pm 2.0 \mathrm{dbm}$. The station's command decoder switch inhibit pulse occurred as anticipated, verified by a status change in telemetry point $A B-18$. The command to inhibit the next internally generated 6l-hour pulse was txanemitted at 1218 G.m.t., 30 December.

The Heat Flow Experiment continues to opexate normally. Thermocouple tem perature measured at the Iunar surface is $110 \pm 8^{\circ} \mathrm{K}$. The temperature at 230 cm depth is $256.6^{\circ} \mathrm{K}$ at probe \#1, and $256.9^{\circ} \mathrm{K}$ at probe \#2. Both heat probes indicate an increase of temperature with depth for depths greater than 65 cm reflecting heat flow from the interior of the moon.

There is no change in the Lunar Surface Gravimeter Experiment status. The experiment will not be exercised until studies have been completed and an agreed course of action is approved. The experiment's sensor temperature is stabilized at $49.169^{\circ} \mathrm{C}$ (slave heater on).

The Iunar Surface Profiling Experiment was commanded on at 0553 G.m.t., 30 December, and to LSPE data format processing (high bit rate) at 0600 G.m.t., for a thirty minute passive listening period. Two geophone calibration pulses were sent to the experiment during the Iistening mode. Data output of all geophones appeared normal, with LM noise apparently being recorded by the ISPE. ISPE processing was terminated at $0630 \mathrm{G} . \mathrm{m} . t$. , and the instrument commanded to standby select at 0632 G.m.t.

The Lunar Atmospheric Composition Experiment continues to collect data on the composition of the lunar atmosphere. The two mass range data channels (DM-04, intermediate mass range; and, DM-03, low mass range) continue to display electrical background noise during part of the analyser sweep. There has been no change in configuration of the IACE's subsystem components since the last report, The IACE 's electronics temperature, AM-4., stabilized at $13.4^{\circ} \mathrm{F}$, near $1500 \mathrm{G} . \mathrm{m} . \mathrm{t}$., 29 December (sun angle $=230^{\circ}$).

The Lunar Ejecta and Meteorites Experiment is configured to measure impact flux rates on the lunar suxface. Since the IFAM's automatic thermal control becane active, the instrument's internal temperature (AJ-11) has been cyclic, between $6.4^{\circ} \mathrm{F}$ and $-1.3^{\circ} \mathrm{F}$.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 15 ALSEP

APOLLO 12 ALSEP APOLLO 14 ALSEP

70.8 w

DSS -1 ON $(10 \mathrm{w})$ ASE Stby
35.2 F
124.3
/A
Invalid
Invailid
$-20.0^{\circ} \mathrm{C}$
V/A
follows:
mber 1972 , was an
APOLLO 12 ALSEP

\& 《

TM POINT

Total Days of Operation Total Commands to Date
Sun Angle

Input Power APM Status (AB-13) Power Dump Status Experiment status Avg Thermal Plate LMS Temp (AM-41)
LEAM Temp (AJ-11) HFE Temp Ref 1 (DH-13)
LSG Temp (DG-O4) LSP Temp (AP-O1)

APOLLO LUNAR SURFACE EXPERTMENTS PACKAGFE STATUS REPPORT
31 December 1972
G.m.t.: 1300

Apolilo 17 ALSEP
Mission control real-time support of the ALSEP 17 station and all other ALSEP stations will be terminated for a 24 hour period beginning at 2200 G.m.t., 31. December, through 2200 G.m. $\hat{\text { G. . I I I January }}$ 1973. During this period of no real-time support the tracking networi will shift to Phase III operations in support of all five ALSEP's. Phase III operations require that all ALSEP scientific and engineering data be recorded continuously at the receiving stations for subsequent analysis.

ALSEP 17 telemetry data indicates virtually no change in the central station's electronics and structural component temperatures. the thermoelectric power source output, or transmitter A signal strength.

The experiments scientific sensors continue to operate steadily in the Iunar night environment. The Heat Flow Experiment probe temperature sensors are all returning data, while the instrument's thermom couple temperature measured at the lunar surface is $110 \pm 8^{\circ} \mathrm{K}$. There has been no change in status of the Lunar Surface Gravimeter Experiment or the Lunar Suxface Profiling Experiment. The Iunar Ejecta and Meteorites Experiment continues to collect statistical data of impact flux rates on the lunar surface, and the instrument's internal temperature (AJ-II) continues to cycle between $6.4^{\circ} \mathrm{F}$ and $-1.3^{\circ} \mathrm{F}$. Subsequent commanding of the Lunar Atmospheric Composition Experiment on 30 December re-configured the experiment to the following; high voltage power supply OFF, ion source filaments OFF, multipliers HIGH, low voltage power supply on, and back-up heater ON. It is planned to operate the LACE in this mode until January 2. The IACE"selectronics temperature ($A M-41$) is decreasing at a rate of about 0.8 F/hour.

It is requested that any organization having comments, questions, or suggestions concerning this report contact R. Miley, Science Requirements Branch, TN3, telephone 483-5067.

APOLLO 14 ALSEP
 ASE Stby

APOLLO 12 ALSEP

APOLLO 17 ALSEP

TM POINI
Total Days of Operation Total Commands to Date
Sun Angle

Input Power APM Status (AB-13) Power Dump Status Experiment status Avg Thermal Plate Temp LMS Temp (AM-41) HEAM Temp (AJ-11) LSG Temp (DG-04)
LSP Temp (AP-O1)

[^0]: Uninterrupted operations in the extended range mode since 12 January 1972.

[^1]: Presently operating in the full automatic stepping sequence (0-127 frames) with the Channeltron high voltages commanded ON. Intexmittent positive engineering data intercuptions (anomaly occurred 9 May 1971) in one section of the analog-to-
 experiments.

[^2]: Uninterrupted operations in the automatic sequence (electronics heater on) since $1140 \mathrm{G} . \mathrm{m} . \mathrm{t} .2$ June, collecting science data in the six voltage ranges of analyzer A. The experiment's analyzer A high voltage (AC-O3) remained substantially constant at the 2600 vac level. Analyzer B high voltage remains below nominal levels. The current plan is to operate the instrument in the automatic sequence, with the electronics heater ON, through the station's
 is presently being formulated.

[^3]: Charged particle
 Iunar
 environmental
 experiment
 Charged particle
 Iunar
 environmental
 experiment
 Charged particle
 Iunar
 environmental
 experiment
 Charged particle
 Iunar
 environmental
 experiment

[^4]: Lunar surface magnetometex

[^5]: Uninterrupted operations in the manual mode (electronics heater OFF) since 0859 G.m.t., 21 June, collecting science data in the -35 voltage range of Analyzer A. Following the station's ephemeris sunrise the experiment's electronics heater was commanded OFF and the instrument continued uninterm mupted operations in the automatic sequence until June 21 . It is planed that the experiment will continue to operate under the revised lunar day operations procedure. Charged particle Iunar environmental. experiment

[^6]: Cyclic commanding of instrument in the full automatic stepping sequence with lunar day on 23 June, in an effort to preclude instrument mode changes at

[^7]: Solar wind
 spectrometer
 experiment
 experiment

[^8]: Iunar surface

[^9]: on for the duration of lunar night operations per the planed operational procedure.

 The temperature of probe 1 at the bottom of the lowest probe section is 253.1_{K} $\left(-3.9^{\circ} \mathrm{F}\right)$ with probe 2 indicating a temperature of $250.6^{\circ} \mathrm{K}\left(-8.3^{\circ} \mathrm{F}\right)$ at its lowermost point. The instrument's cable thermocouples on the lunar surface indi-
 has been intermittent offscale HIGH since August 1971. Presently TREF 2 is outputting erroneous data. A duplicate measurement TREF 1 , is operating normally so that no data are lost.

[^10]: experiment

[^11]: Presently operating in the full automatic stepping sequence with the Channeltron e Ascension
 cpurvimos rq

[^12]: -

[^13]: of
 continual 45 day support of Apollo 17 ALSEP.

[^14]: environmental

[^15]: Passive seismic
 experiment experiment

[^16]: detector/cold cathode gauge experiment

 Heat flow experiment

[^17]: ## The instrument has been in standby since 17 August 1972.

[^18]: station
 Central

[^19]: Presently operating in the full automatic stepping sequence with the Chaneltron
 high voltages commanded on.

[^20]: The experiment continues to measure time-dependent solar and induced magnetic fields with increased activity as the moon approaches the earth's transition region. The instrument's 240th flip calibration sequence wes executed correcty by command fiter commanded IN, the flip cal inhibit logic commanded IN and the sensors in tilter commanded IN,
 the 200 gamma range.

 30 -minute passive listening period
 scheduled for today. On 8 December 1972 the experiment was commanded to operate
 select at og4o G.m.t. and to high bit rate on at 1020 G. G . for a passive listen-
 ing period. Two geophone calibration pulses were sent to the instrument during
 the listening mode. Data output of all geophones appeared normal and no signifi-
 cant signals were noted in real-time. High bit rate operations were terminated
 at $1050 \mathrm{Gm} . \mathrm{m}$. and the experiment commanded to standoy orf at Ios3 G.m.t.

[^21]:
 presently in standby select.

