GRAIL

 

DATA PRODUCT

SOFTWARE INTERFACE SPECIFICATION

 

JPL D-76383

 

 

 

 

 

Version 1.8

May 3, 2016

Daniel Kahan

 

 

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

Copyright 2013. All rights reserved.


 

TABLE OF CONTENTS

 

TABLES         5

DOCUMENT CHANGE LOG.......................................................................................................................................... 7

1        Purpose and Scope of Document......................................................................................................................... 8

2        Definitions of Data Processing Levels................................................................................................................ 9

3        Relationships with Other Interfaces.................................................................................................................... 9

4        Data Product Characteristics and Environment................................................................................................. 9

4.1         Instrument Overview....................................................................................................................... 9

4.2         Data Product Overview.................................................................................................................. 11

4.2.1               LGRS EDR (NASA Level 0 Products)........................................................ 11

4.2.2               LGRS CDR (NASA Level 1A and Level 1B Products)................................. 12

4.2.2.1      Timing [17]......................................................................................................................... 12

4.2.2.2      Position.............................................................................................................................. 13

4.2.2.3      Ka-band............................................................................................................................. 14

4.2.2.4      S-band................................................................................................................................ 14

4.2.2.5      Satellite Attitude.................................................................................................................. 14

4.2.2.6      Events................................................................................................................................ 15

4.2.2.7      Satellite Condition................................................................................................................ 15

4.2.2.8      DSN Tracking.................................................................................................................... 15

4.2.3               RSS EDR................................................................................................... 15

4.2.3.1      DSN Radio Data................................................................................................................. 15

4.2.3.2      Ancillary DSN Data............................................................................................................ 16

4.2.4               LGRS RDR (NASA Level 2 Products)........................................................ 17

4.2.5               Data Flow and Product Generation............................................................... 17

4.2.6               Labeling and Identification........................................................................... 18

4.2.6.1      LGRS EDR and LGRS CDR File Naming Convention........................................................... 18

4.2.6.2      RSS EDR File Naming Convention....................................................................................... 19

4.2.6.3      LGRS RDR File Naming Convention.................................................................................... 20

4.3         Standards Used in Generating Data Products................................................................................... 22

4.3.1               PDS Standards........................................................................................... 22

4.3.2               Time Standards........................................................................................... 22

4.3.2.1      LGRS clock........................................................................................................................ 23

4.3.2.2      Onboard spacecraft clocks.................................................................................................. 23

4.3.2.3      UTC clock used by DSN..................................................................................................... 23

4.3.3               Coordinate Systems..................................................................................... 24

4.4         Data Validation.............................................................................................................................. 27

5        Detailed Data Product Specifications................................................................................................................ 27

5.1         Data Product Structure and Organization......................................................................................... 27

5.2         Data Format Descriptions............................................................................................................... 31

5.2.1               LGRS EDR (Level 0) Products.................................................................... 31

5.2.2               LGRS CDR Products.................................................................................. 34

5.2.2.1      Level 1A............................................................................................................................ 34

5.2.2.2      Level 1B............................................................................................................................ 48

5.2.3               RSS EDR Products..................................................................................... 56

5.3         Header Descriptions....................................................................................................................... 57

5.3.1               Headers for LGRS EDR............................................................................. 57

5.3.2               Headers for LGRS CDR............................................................................. 57

5.3.3               Headers for LGRS RDR............................................................................. 58

5.3.4               Headers for RSS EDR................................................................................ 58

6        Applicable Software............................................................................................................................................. 59

6.1         Utility Programs............................................................................................................................. 59

7        Appendices........................................................................................................................................................... 59

7.1         Glossary........................................................................................................................................ 59

7.2         Acronyms...................................................................................................................................... 60

7.3         Example PDS Labels..................................................................................................................... 62

7.3.1               LGRS EDR................................................................................................ 62

7.3.2               LGRS CDR................................................................................................ 62

7.3.3               RSS EDR................................................................................................... 63

7.3.3.1      BTM, EOP, ION, TDM, TNF, TRO, WEA, & XFR............................................................. 63

7.3.3.2      ODF, OLF, and BOF.......................................................................................................... 64

7.3.3.3      RSR................................................................................................................................... 92

7.3.4               LGRS RDR.............................................................................................. 113

7.3.4.1      Radio Science Digital Map Products (RSDMAP)................................................................ 113

7.3.4.2      Spherical Harmonics ASCII Data Record (SHADR)........................................................... 114

7.3.4.3      Spherical Harmonics Binary Data Record (SHBDR)........................................................... 119

7.3.4.4      SPICE ephemeris files (SPK)............................................................................................ 124

8        Applicable Documents...................................................................................................................................... 124

 


FIGURES

 

Figure 1: View of GRAIL satellites. 10

Figure 2: Payload Block Diagram [26] 11

Figure 3. GRAIL Science Downlink Data Flow Diagram.. 18

Figure 4. GRAIL clocks, models, and measurements used for timing [17] 23

Figure 5: The GRAIL Mechanical Frame (MF) [23] 24

Figure 6: GRAIL thruster locations (XYZ is the same as XMYMZM in text) 25

Figure 7: GRAIL thruster locations (XYZ is the same as XMYMZM in text) 25

Figure 8: GRAIL primary science spacecraft configuration (XYZ is the same as XMYMZM in text) 26

Figure 9: GRAIL extended science spacecraft configuration (XYZ is the same as XMYMZM in text) 27


TABLES

 

Table 1.          Processing Levels. 9

Table 2.          Summary of Data Products. 28

Table 3.          DTC00 Record Format 31

Table 4.          EHK00 Record Format 31

Table 5.          LTB00 Record Format 32

Table 6.          MAS00 Record Format 32

Table 7.          SAE00 Record Format 32

Table 8.          SCA00 Record Format 32

Table 9.          TDE00 Record Format 33

Table 10.        THR00 Record Format 33

Table 11.        WRS00 Record Format 33

Table 12.        CLK1A Record Format 34

Table 13.        DEL1A Record Format 35

Table 14.        EHK1A Record Format 35

Table 15.        IHK1A Record Format 36

Table 16.        IHS1A Record Format 36

Table 17.        ILG1A Record Format 36

Table 18.        KBR1A Record Format 37

Table 19.        LTM1A Record Format 38

Table 20.        MAS1A Record Format 38

Table 21.        PCI1A Record Format 39

Table 22.        PLT1A Record Format 39

Table 23.        PPS1A Record Format 39

Table 24.        REL1A Record Format 39

Table 25.        SAE1A Record Format 40

Table 26.        SBR1A Record Format 40

Table 27.        SCA1A Record Format 41

Table 28.        SNV1A Record Format 42

Table 29.        TC11A Record Format 42

Table 30.        TC21A Record Format 43

Table 31.        TC31A Record Format 43

Table 32.        TC41A Record Format 44

Table 33.        TC51A Record Format 44

Table 34.        TC61A Record Format 45

Table 35.        THR1A Record Format 45

Table 36.        USO1A Record Format 46

Table 37.        VCM1A Record Format 46

Table 38.        WRS1A Record Format 46

Table 39.        CLK1B Record Format 48

Table 40.        EHK1B Record Format 48

Table 41.        GNI1B Record Format 49

Table 42.        GNV1B Record Format 49

Table 43.        KBR1C Record Format 50

Table 44.        MAS1B Record Format 50

Table 45.        SAE1B Record Format 51

Table 46.        SBR1B Record Format 51

Table 47.        SCA1B Record Format 52

Table 48.        THR1B Record Format 52

Table 49.        USO1B Record Format 53

Table 50.        VCM1B Record Format 53

Table 51.        VGS1B Record Format 55

Table 52.        VGX1B Record Format 55

Table 53.        VKB1B Record Format 55

Table 54.        WRS1B Record Format 56

Table 55.        BTM Record Format 56

Table 56.        TDM Record Format 56

Table 57.        XFR Record Format 57


 DOCUMENT CHANGE LOG

Change

Date (mm/dd/yy)

Affected Portions

Version 1.0 submitted for peer review.

09/21/12

All

Version 1.1 submitted for PDS release.

12/13/12

All

Version 1.2 initial team RDR review.

03/11/13

All

Version 1.3 release 2 updates.

06/11/13

All

Version 1.4 adjusted SHBDR file name. Submitted for RDR review.

06/18/13

4.2.6.3

Version 1.5 RDR peer review updates.

08/23/13

4.2.4, 7.3.4.1-7.3.4.4

Version 1.6 updated for Version 04 data.

04/01/14

All

Version 1.7 PDS release 5 updates.

06/18/14

4.2.6.3, 7.3.4.1

Version 1.8 PDS release 7 updates.

05/03/16

4.33, 8


1           Purpose and Scope of Document

 

This document provides a detailed description of data products at all levels for the Gravity Recovery and Interior Laboratory (GRAIL) Mission. The data products specified in this document are obtained from the science instruments and subsystems on board the twin GRAIL spacecraft; some include the results of ground data processing carried out by the GRAIL Science Data System (SDS).  Also included are data products from the NASA Deep Space Network (DSN) and products that resulted from processing by GRAIL Science Team members at their home institutions.

 

The GRAIL Science Data System (SDS) is defined as the infrastructure at NASA’s Jet Propulsion Laboratory (JPL) for the collection of all science and ancillary data relevant to the GRAIL mission. It includes hardware, software tools, procedures, and trained personnel. The SDS receives data from three sources (as described below) and carries out calibration, editing, and processing to produce NASA Level 1A and 1B GRAIL science data as described below.

 

The GRAIL archive comprises the following four separate volumes (also known as data sets):

 

GRAIL-L-LGRS-2-EDR-V1.0 – Raw science data, originating from spacecraft telemetry, in time order with duplicates and transmission errors removed. Also known as NASA Level 0 science data (NASA processing levels are described in section 2) and stored in this archive for historical purposes only. All Level 0 products have been processed to Level 1A by the GRAIL SDS.

 

GRAIL-L-LGRS-3-CDR-V1.0 – Calibrated and resampled engineering (e.g., star tracker data and timing) and science data acquired from the Lunar Gravity and Ranging System (LGRS). NASA Level 1A and 1B.

 

GRAIL-L-RSS-2-EDR-V1.0 – Raw Radio Science data acquired at the Deep Space Network.

 

GRAIL-L-LGRS-5-RDR-V1.0 – Lunar gravitational field, NASA Level 2 data. Includes SPICE geometry and navigation kernels created by the GRAIL SDS.  SPICE is the ephemeris, orientation, and event information system developed by the Navigation and Ancillary Information Facility (NAIF) at NASA’s JPL (see section 7.2).

                                                       

 

The above data set identifiers (IDs) may be abbreviated as LGRS EDR, LGRS CDR, RSS EDR, and LGRS RDR in the sections that follow. The first digit in each data set ID refers to the CODMAC processing level (see section 2).


2           Definitions of Data Processing Levels

 

The GRAIL Science Data System (SDS) uses NASA processing levels, which are defined in Table 1.  Data set IDs use the processing levels defined by the Committee on Data Management, Archiving, and Computation (CODMAC), which are also given in Table 1.

Table 1.               Processing Levels

NASA

CODMAC

Description

Packet data

Raw - Level 1

Telemetry with data embedded.

Level 0

Edited - Level 2

Corrected for telemetry errors and split or decommutated according to instrument. Sometimes called Experimental Data Record (EDR). Data are also tagged with time and location of acquisition.

Level 1A

Calibrated - Level 3

Edited data that are still in units produced by instrument, but that have been corrected so that values are expressed in or are proportional to some physical unit such as radiance. No resampling, so original values can be recovered.

Level 1B

Resampled - Level 4

Data that have been resampled in the time or space domains in such a way that the original edited data cannot be reconstructed. Could be calibrated in addition to being resampled.

Level 2

Derived - Level 5

Derived results, as maps, reports, graphics, etc.

 

Ancillary - Level 6

Non-science data needed to generate calibrated or resampled data sets. Consists of instrument gains and/or offsets, pointing information for scan platforms, etc.

 

 

3           Relationships with Other Interfaces

 

The descriptions of data products in this document are consistent with the corresponding descriptions in “dataset” catalog files in the CATALOG directory of each GRAIL volume. File/directory names are consistent with the conventions used in the GRAIL Archive Volume Software Interface Specification (SIS) [16].

 

 

4           Data Product Characteristics and Environment

 

4.1            Instrument Overview

 

Lockheed Martin built GRAIL-A and GRAIL-B as near-twins (Figure 1). Each satellite contains the following components:

 

1)       Rectangular bus

2)       Fixed solar panels

3)       Titanium diaphragm fuel tank

4)       Ultra stable oscillator (USO), which drives onboard LGRS clock and provides frequency reference for S-, X-, and Ka-Band radio systems

5)       Attitude control system (ACS) [23], consisting of:

a.        Four reaction wheels to change attitude

b.       Inertial Measurement Unit (IMU) to measure the rate components of angular rotation

c.        Star Tracker to measure the absolute attitude

d.       Sun Sensor

e.        Eight thrusters, coupled to allow applications of torque

f.         Main engine

6)       Ka-band carrier phase tracking inter-satellite receiver/transmitter

7)       S-band inter-satellite Time Transfer System (TTS)

8)       Two low-gain antennas (LGA) for S-band communication with the DSN

9)       Two Radio Science Beacons (RSB), which transmit X-band carriers to the DSN

 

For the mechanical and optical properties of the spacecraft, see GRAILCOMPONENTS.TXT in the CALIB directory [11].

 

Figure 1: View of GRAIL satellites

There are two payload elements on each GRAIL orbiter: the Lunar Gravity Ranging System (LGRS) which is the science instrument, and the MoonKAM lunar imager which is used for education and public outreach. The LGRS is based on the instrument used for the Gravity Recovery and Climate Experiment (GRACE) mission [32], which has been mapping Earth's gravity since 2002. The LGRS is responsible for sending and receiving the signals needed to accurately and precisely measure the changes in range between the two orbiters. The LGRS consists of an Ultra-Stable Oscillator (USO), Microwave Assembly (MWA), a Time-Transfer Assembly (TTA), and the Gravity Recovery Processor Assembly (GPA). See Figure 2.

Figure 2: Payload Block Diagram [26]

The USO provides a steady reference signal that is used by all of the instrument subsystems. Within the LGRS, the USO provides the reference frequency for the MWA and the TTA. The MWA converts the USO reference signal to the Ka-band frequency, which is transmitted to the other orbiter.

The function of the TTA is to provide a two-way time-transfer link between the spacecraft to both synchronize and measure the clock offset between the two LGRS clocks. The TTA generates an S-band signal from the USO reference frequency and sends a GPS-like ranging code to the other spacecraft. The GPA combines all the inputs received from the MWA and TTA to produce the radiometric data that are downlinked to the Deep Space Network. In addition to acquiring the inter-spacecraft measurements, the LGRS also provides a one-way signal to the DSN based on the USO, which is transmitted via the X-band Radio Science Beacon (RSB). The steady-state drift of the USO is measured via the one-way Doppler data provided by the RSB.

 

4.2            Data Product Overview

 

The scientific goals of the GRAIL project are achieved by measuring the lunar gravitational attraction on the two spacecraft; GRAIL’s instrumentation is specifically designed to sense this through relative motion between the two spacecraft and with DSN stations on Earth. The GRAIL payload on each spacecraft consists of a single science instrument called the Lunar Gravity Ranging System (LGRS), a Ka-band ranging system that determines the precise instantaneous relative range-rate of the two spacecraft. Also, as part of the LGRS, the GRAIL investigation requires a radio link from each spacecraft’s Radio Science Beacon to the stations of the NASA Deep Space Network (DSN).

 

The rest of this section gives an overview of the data products and the measurements GRAIL provides. Product name suffixes indicate NASA processing level. For example, the Level 1A S-band product is named SBR1A, and the Level 1B S-band product is SBR1B.

 

The Algorithm Theoretical Basis Document (ATBD) [15] in the DOCUMENT directory contains a detailed description of the processing flow from EDR to CDR as implemented by the GRAIL SDS.

 

 

                                                            

4.2.1            LGRS EDR (NASA Level 0 Products)

 

The GRAIL SDS receives science packets and engineering data from the JPL Ground Data System (GDS) (Figure 3).  The LGRS EDR data set contains the raw data in time order with duplicates and transmission errors removed.  These data are archived mainly for completeness, as they are immediately processed to Level 1A and/or 1B (the LGRS CDR data set) by the SDS.  There are twelve product types in the LGRS EDR data set:

 

DTC00 - Time Correlation Data Record File (DRF) (ASCII) – Clock correlation among RTC, BTC, and the 1-per-second pulse associated with LGRS time. See section 4.2.2.1.

EHK00 - Spacecraft Engineering Housekeeping data, including temperature sensor data for locations near the LGRS instrumentation (ASCII)

LTB00 - LGRS Time Bias of the Lunar Gravity Ranging System in BTC time (ASCII). Accumulated list of biases over the complete mission. Biases apply to the LGRS time tag of both spacecraft

MAS00 - Satellite Mass Data (ASCII). Accumulated list of center of mass and spacecraft mass over the complete mission.

S7200 - Engineering SFDU ID #72 (binary)

S7300 - Science SFDU ID #73 (binary)

SAE00 - Solar Array Eclipse data, including solar array short circuit currents and open circuit voltages, to identify eclipse events for spacecraft ephemeris models (ASCII)

SCA00 - Star Tracker Data. Including attitudes from an on-board Kalman filter that processes Star Tracker attitude data and Inertial Measurement Unit (IMU) angular rotation data (ASCII)

STC00 - Time Correlation SFDU (binary)

TDE00 - measured time correlation between LGRS time and UTC, using Time Transfer System (TTS) S-Band ranging collected at DSS-24 (ASCII)

THR00 - Thruster Activation Data, including time tags, counts of cumulative work cycles for each thruster, recent thruster ‘on’ time, and cumulative thruster ‘on’ time (ASCII)

WRS00 – Wheel Rotational Speed data, including time tags, measures rotational wheel speed of each of four reaction wheels as determined by a digital tachometer (ASCII)

 

The SFDU products — S7200, S7300, and STC00 — are binary and contain (besides the appropriate headers) the unscaled, binary encoded instrument communication packets. For information on extracting the SFDU data contents. see the following in the DOCUMENT directory:

 

0161_telecomm_L5_8.txt [8]

0171_telecomm_NJPL_L5.txt [20]

090_RevC_1.txt [1], and

0172_Telecomm_CHDO_RevE_L5.TXT [35]

 

Each telemetry packet generated by the LGRS flight software is wrapped inside a packet called a BlackJack Protocol Frame, which ensures the integrity of the data; Blackjack was inherited from the predecessor Gravity Recovery and Climate Experiment (GRACE) terrestrial gravity mission.  The documents GPA_TD_D_71987_REVE.TXT [14] and BlackJackDLP.txt [12] in the DOCUMENT directory describe the format of the Blackjack binary data for processing to Level 1A.

 

The remaining nine LGRS EDR product types are in ASCII format.

 

 

4.2.2            LGRS CDR (NASA Level 1A and Level 1B Products)

 

The LGRS CDR data set contains (calibrated and resampled) Level 1A and 1B science data from the Lunar Gravity Ranging System. All forty-three LGRS CDR file types are in ASCII format. Most of the file types apply to both spacecraft separately. A few apply to both spacecraft together, as they are indicative of a relationship between the two.

 

4.2.2.1        Timing [17]

 

GRAIL timing (discussed further in section 4.3.2) requires coordination of three clocks on each satellite, and two time standards:

1.        LGRS: Lunar Gravity Ranging System clock. Very stable clock for on-board Ka-band ranging (KBR), X-band (RSB), and S-band (TTS) instruments. Driven by an Ultra-Stable Oscillator (USO). Set to 0 when booted. Produces a pulse per second (pps) signal. LGRS time starts at 0 seconds when powered on. The SDS adds a bias to LGRS time to create an approximate UTC time tag. This time will be referred to as LGRS + bias.

2.        BTC: Base Time Clock. On-board satellite clock, comparable in stability to a wristwatch. Roughly synced to UTC at launch time.

3.        RTC: Real Time Clock. Flight software clock. Set to 0 when booted. Relatively unstable clock.

4.        UTC: Coordinated Universal Time.

5.        TDB: Barycentric Dynamical Time.

 

Seven Level 1A products establish the relationships among the clocks:

TC11A: LGRS to BTC, approximated by flight software.

TC21A: LGRS to BTC. more accurate mapping than TC11A, from BTC clock cycle counts.

TC31A: BTC to RTC.

TC41A: LGRS to RTC.

TC51A: RTC to UTC.

TC61A: UTC to TDB. One product applies to both spacecraft.

CLK1A: TDB toLGRS.

 

An approximation of the relativistic time correction from TDB to on-board satellite proper time is calculated in the REL1A product, treating the moon as a point mass, based on [17]:

where  t = proper time, t = coordinate time, U = gravitational potential, v = velocity, and L is a constant offset (1.550520e-8).

 

Measurements from the S-band time transfer system (TTS) are processed to produce DEL1A, which lists inter-satellite LGRS clock offset between spacecraft by TDB time.

 

Radio Science Receivers (RSR), located at DSN sites and discussed in section 4.2.3, record X-band Radio Science Beacon (RSB) signals. Since the LGRS clock drives the RSB, LGRS frequency at TDB can be estimated for USO1A.

 

A PPS1A product is also created, listing the LGRS time of PPS signals.

A least squares fit to DEL1A, CLK1A, and USO1A produces CLK1B and USO1B, best estimates of LGRS to TDB and LGRS frequency at TDB.

 

The TTS Direct-to-Earth (DTE) experiment was devised to independently measure the absolute clock offset between the GRAIL Moon orbiters and Earth. This experiment prompted the development of software for acquiring weak signals and extracting observables (i.e., phase, range, range rate). Data collected during TTS DTE tracks enabled SDS team to compute more accurately the delay in the spacecraft which led to a more accurate gravity field solutions. The TTS DTE activities were done about once per week due to limitations in geometry and equipment availability at the DSN. Specifically, only DSS-24 had the necessary equipment allocated to collect the data.

The TDE00 product is the result of the TTS DTE experiment. TDE00 data provide the only direct measurement of the absolute LGRS time tag. This measurement is used to calibrate the CLK1A product as part of the generation of the CLK1B product.

 

4.2.2.2        Position

 

As an improved estimate for the Moon’s gravity field is built, GRAIL-A and GRAIL-B orbital solutions are improved. Best estimates of the ephemerides are saved in two frames (further detailed in section 4.3.3):

 

GNI1B: EME 2000 Lunar-Centered Solar System Barycentric Frame

 

GNV1B: DE 421 Lunar Body-Fixed Frame

 

From the best ephemeris solution, spacecraft to DSN relative position and light time are computed in EME 2000 (LTM1A), and spacecraft to spacecraft relative position and light time are computed in DE 421 (PLT1A).

 

4.2.2.3        Ka-band

 

GRAIL science depends on estimating the relative movements of GRAIL-A and GRAIL-B. The estimate depends primarily on an inter-satellite Ka-band system: GRAIL-A carrier-phase-tracks a Ka-band signal from GRAIL-B, and GRAIL-B carrier-phase-tracks a Ka-band signal from GRAIL-A. In each continuous phase arc, carrier-phase gives a one-way range, biased by an unknown constant.

 

KBR1A records raw carrier-phase measurements, flagged for phase breaks. Gaps of up to 2 seconds are filled in by quadratic interpolation; longer gaps are classified as “missing data.”

 

KBR1C contains biased dual one-way range between GRAIL-A and GRAIL-B [17], digitally filtered, but not corrected for time of flight or antenna offset. After the dual one-way range combination has been formed, gaps of up to 20 seconds are filled in by quadratic interpolation. KBR1C also contains corrections for time of flight and antenna offset from center of mass.

 

In addition, KBR1C also contains the first and second derivatives of the biased dual one-way range between GRAIL-A and –B and associated time of flight and antenna offset corrections.

 

In general, the instantaneous range, range rate, and range acceleration is used for scientific analysis. The instantaneous range, range rate, and range acceleration are computed by adding the time of flight correction and antenna offset correction to the dual one-way range, range rate, or range acceleration measurement.

 

This (level 1B) product is designated as ‘1C’ to distinguish it from earlier versions of KBR1B which did not contain an additional four columns of information on the temperature range corrections. The raw temperature range correction, filtered temperature range correction, filtered temperature range rate correction, and filtered temperature range acceleration correction are the final four columns of the KBR1C product.

               

 

4.2.2.4        S-band

 

The S-band inter-satellite Time Transfer System (TTS) produces files in parallel to the Ka-band system mentioned above. Carrier phase and a modulating range code are tracked in products SBR1A and SBR1B, which are analogous to KBR1A and KBR1C. In SBR1B, a more accurate range is produced by carrier smoothing over each arc.

 

The SNV1A S-band navigation product contains ancillary information for TTS, which primarily serves to tell the ground whether GRAIL-A and GRAIL-B are communicating correctly with each other.

                                                                                                                                          

4.2.2.5        Satellite Attitude

 

Because GRAIL-A and GRAIL-B antennas are offset from the spacecraft center of mass, distance between GRAIL-A and GRAIL-B Ka-band antennas depends on spacecraft attitude. An on-board Kalman filter processes Star Tracker attitude data and Inertial Measurement Unit (IMU) angular rotation data. Filtered attitudes are saved in SCA1A, tagged by BTC time.

 

SCA1B contains the same results, tagged by TDB.

 

PCI1A lists Ka-band antenna range corrections, range rate corrections, and range acceleration corrections.

 

WRS1A lists rotational wheel speed data for each of the spacecraft’s four reaction wheels, as determined by digital tachometer. WRS1B lists the same information in TDB.

                                                                                                                                             

4.2.2.6        Events

 

GRAIL-A and GRAIL-B events are noted in a variety of files. ILG1A contains log messages from the LGRS.  SAE1A lists solar array short circuit currents and voltages, to identify eclipse events for spacecraft ephemeris models.  THR1A contains thruster activation data, including time tags, cumulative work cycles by thruster, current thruster on time, and cumulative thruster on time.

                                                                                

SAE1B and THR1B contain the same information as in SAE1A and THR1A, but time-tagged by TDB rather than UTC SCET.

 

4.2.2.7        Satellite Condition

 

On-board sensors and a priori information describe spacecraft condition. EHK1A contains temperature sensor data for locations near LGRS instruments. Housekeeping data for the LGRS in IHK1A includes voltage, temperature, and current measurements; IHS1A includes other LGRS status data. MAS1A lists spacecraft mass as a function of UTC time, while VCM1A describes center of mass displacement from the spacecraft mechanical frame origin.

 

EHK1B, MAS1B, and VCM1B list results relative to TDB rather than UTC SCET.

 

The VKB1B file is the Ka boresight vector, as a result of Ka-Band boresight calibration analysis and is stored in VKB1B format in TDB format. Therefore, no VKB1A file exists.

 

4.2.2.8        DSN Tracking

 

GRAIL transmits information to the Deep Space Network using S-band. S-band communication from each GRAIL spacecraft to the DSN depends on a pair of low-gain antennas (LGAs), located on opposite sides of the spacecraft. At a given TDB, only one antenna can communicate with the DSN. The VGS1B product contains a time history of the active S-Band antenna phase center location, in TDB time. The vector is described in the Mechanical Frame (MF).

 

Each GRAIL spacecraft also transmits an unmodulated X-band carrier to the DSN through one of a pair of Radio Science Beacons (RSB). The VGX1B product contains a time history of the active X-Band antenna phase center location, in TDB time, The vector is described in the Mechanical Frame (MF).

 

 

4.2.3            RSS EDR

 

The RSS EDR data set contains raw radio science data, which include DSN Doppler tracking data, open-loop data, media calibrations, and others.

 

4.2.3.1        DSN Radio Data

 

X-Band Open-Loop data, used in the creation of USO1A (LGRS CDR data set), are recorded at the DSN on the Radio Science Receiver (RSR). The RSR is a computer-controlled open loop receiver that digitally records a spacecraft signal using an analog-to-digital converter (ADC) and up to four digital filter sub-channels. The digital samples from each sub-channel are stored to disk in one-second records in real time. In near real time the one-second records are partitioned and formatted into a sequence of RSR Standard Format Data Units (SFDUs) which are transmitted to the Advanced Multi-Mission Operations System (AMMOS) at the Jet Propulsion Laboratory (JPL). Included in each RSR SFDU are the ancillary data necessary to reconstruct the signal represented by the recorded data samples. See 0159_science_l5.txt [9] in the document directory for more information on this data type.

 

S-Band closed-loop data are recorded at the DSN and stored as Orbit Data Files (ODFs). ODFs are produced by the NASA/JPL Multi-Mission Navigation Radio Metric Data Conditioning Team for use in determining spacecraft trajectories, gravity fields affecting them, and radio propagation conditions.  Each ODF consists of many 36-byte logical records, which fall into 7 primary groups plus an End-of-File Group.  An ODF usually contains most groups, but may not have all.  The first record in each of the 7 primary groups is a header record; depending on the group, there may be from zero to many data records following each header. See nav023_odf_2_18_rev3.htm [18] in the document directory for more information.

 

The SDS also archives the Tracking and Navigation File (TNF). The TNF data type captures radiometric tracking data for delivery to navigation and radio science users from the Telecommunications Services at JPL. The product replaces data types formerly known as Archival Tracking Data Files and others. See tnfsis.txt [6] in the document directory for information. Although the TNF is not used for processing by the SDS, it is saved in parallel with the ODF for this archive.

 

RSR data are processed by the SDS to determine the X-Band sky frequency (XFR, an ASCII file) at the DSN versus UTC-Earth Received Time. XFR data are converted into Tracking Data Messages (TDM, also ASCII [34]). From the TDM, the (binary) Open Loop File (OLF) is created. The OLF contains the sky frequency information derived from RSR data, but in the format of the ODF. Along with the closed-loop S-Band ODF, the X-Band OLF is used for orbit determination, which is recorded in the GNI, GNV, LTM, and PLT products in the LGRS CDR data set.

 

The "biased TDM" product (BTM, ASCII [34]) is in exactly the same format as the TDM. It is generated by subtracting off a one-way Doppler frequency bias at X-band from the TDM file containing the raw one-way Doppler measurement provided by the radio science team. The one-way Doppler frequency bias was estimated every orbit (approximately 2 hours) as part of the gravity field determination process and the estimates are reported in the USO1A data product. The one-way Doppler bias is computed by linearly interpolating the one-way Doppler bias time series in the USO1A product to the time tag of the one-way Doppler measurement. The computed one-way Doppler bias is then subtracted from the original raw TDM value and the result in stored in the "biased TDM" product. The "biased TDM" product is intended to remove non-linear drifts in the one-way Doppler bias induced by solar activity during the GRAIL mission.

The (binary) Biased Open Loop File (BOF) is the same format as the OLF and is converted from the BTM.

 

 

4.2.3.2        Ancillary DSN Data

 

To calibrate the radio data recorded at the DSN, several data types are also collected as listed below:

 

The DSN and flight projects use Earth Orientation Parameters (EOP), which include Universal Time and Polar Motion data, in the process of performing orbit determination and generating prediction data. See trk_2_21_950831.txt [21] in the document directory.

 

Ionospheric Media Calibrations (ION) are created by the Radio Metric Modeling and Calibration (RMC) Subsystem and delivered to a central repository on the flight operations network by the DSN Operations and Maintenance Contract (OMC) Media Analyst. Ionosphere calibration files are specific to one spacecraft or other user and provide one calibration per tracking pass or other time period of interest at each Deep Space Communications Complex (DSCC) or Deep Space Station (DSS). See dsn006_medialcal_rev2.htm [27] in the document directory.

 

Tropospheric Media Calibrations (TRO) are created by the Radio Metric Modeling and Calibration (RMC) Subsystem and delivered to a central repository on the flight operations network by the DSN Operations and Maintenance Contract (OMC) Media Analyst. Troposphere calibration files are spacecraft-independent; their calibrations collectively cover all 24 hours of each day at each Deep Space Communications Complex (DSCC) in contiguous “passes” of approximately six hours each. Two troposphere calibrations are provided for each such pass: a “dry” tropospheric delay calibration and a “wet” tropospheric delay calibration. See dsn006_medialcal_rev2.htm [27] in the document directory.

 

Weather data (WEA) provided by the Deep Space Network (DSN) are used by radio science teams and other investigators to estimate meteorological corrections to radio tracking and propagation data. Measurements are recorded at one-minute intervals, thinned to a sampling rate that is determined by the user accuracy requirements, and delivered post-real time at intervals that are determined by the timeliness requirement of the primary users and by negotiations with the various DSN users. There will be one file per weather station at each complex for each delivery interval. See t2_24_l5.htm [10] in the document directory.

 

 

4.2.4            LGRS RDR (NASA Level 2 Products)

 

The LGRS RDR data set contains Level 2 products resulting from analysis of the GRAIL science data.  The products include:

 

The Spherical Harmonics ASCII Data Record (SHADR), which contains ASCII coefficients and/or an ASCII covariance matrix for a spherical harmonic expansion of the lunar gravity field. See shadr.htm [29] in the document directory.

 

The Spherical Harmonics Binary Data Record (SHBDR), which contains binary coefficients and/or a binary covariance matrix for a spherical harmonic expansion of the lunar gravity fields. See shbdr.htm [30] in the document directory.

 

Radio Science Digital Map Products (RSDMAP), which are geoid, isostatic anomaly, Bouguer anomaly, or other digital maps derived primarily from GRAIL science results including the spherical harmonics models above. See rsdmap.htm [19] in the document directory.

 
SPICE Spacecraft and Planet Ephemeris Kernels (SPK), which are the physical realization of two logical elements of the SPICE system––the S-kernel (spacecraft ephemeris) and the ephemeris portion of the P-kernel (planet, satellite, asteroid and comet ephemerides). When read using an appropriate subroutine from the SPICE Toolkit, an SPK file will yield state vectors––Cartesian position and velocity––of one user-specified ephemeris object relative to another, at a specified epoch and in a specified reference frame. See SPK_MM_SIS.HTM [5] in the document directory.
 
The SPK products in this data set differ from those archived by GRAIL navigation; they are created by the GRAIL SDS and make use of the LGRS to provide a more refined solution than those produced by GRAIL Navigation.
 

4.2.5            Data Flow and Product Generation

 

As shown in the downlink data flow diagram (Figure 3), telemetry packets from the Deep Space Network (DSN) are placed on the Telemetry Delivery System (TDS).  Science data and engineering data packets are transferred from the TDS to the GRAIL SDS computers on a regular basis. The SDS also receives Level 1 Doppler (tracking) data from the Radio Science Group (X-band) and the Tracking Data System (S-band). Finally, the SDS receives high-rate telemetry data from the Multi-Mission Distributed Object Manager (MMDOM) servers, placed there by the Lockheed Mission Operations Center (MOC).

 

Figure 3. GRAIL Science Downlink Data Flow Diagram

 

 

4.2.6            Labeling and Identification

 

4.2.6.1        LGRS EDR and LGRS CDR File Naming Convention

 

For all LGRS data, the product identifier, in conjunction with either a date or a range of dates in a specified format, determines the filename containing the data product.

 

The file naming convention for most Level 0/1A/1B LGRS products is:

 

PRDID_YYYY_MM_DD_S_VV.EXT

 

where

 

                PRDID                    product identification label, e.g. CLK1B

                YYYY                     year

                MM                        month

                DD                          day of month

                S                              GRAIL satellite identifier:

                                                                A             GRAIL-A

                                                                B             GRAIL-B

                                                                X             combined product of GRAIL-A and GRAIL-B

                VV                           data product version number (starting from 00)

                EXT                        file extension indicating binary (DAT) or ASCII (ASC) files

 

The Product ID (PRDID) is of the form XXXLL, where:

                XXX                       is a three-character mnemonic, and

                LL                           specifies the data product Level (00, 1A, 1B).

 

The only exception to this naming convention is TDE00. To accommodate multiple direct-to-earth measurements within the same day, the convention is the same as above with the addition of the start time in seconds past midnight (NNNNN):

PRDID_YYYY_MM_DD_S_NNNNN_VV.EXT

 

 

4.2.6.2        RSS EDR File Naming Convention

 

Orbit Data Files (ODFs) and Tracking and Navigation Files (TNFs) are named, respectively, as follows:

 

sssttaayyyy_ddd_hhmmwuudV#.odf,

sssttaayyyy_ddd_hhmmwuudV#.tnf,

 

where

sss                          3-character spacecraft identifier

                                                GRA       GRAIL-A

                                                GRB        GRAIL-B

                                                GRX        both

tt                             Target ID, e.g., LU = Moon

aa                            Activity/Experiment ID, e.g. GF = gravity field

yyyy                       year

ddd                         day of year

hhmm                     hours/minutes

w                             Ground Transmitter Band(s):

N             none

M            multiple

S              S-band

X             X-band

uu                           Uplinking Station(s) = the DSN station number, or

NN          none

MM        multiple

d                              way

                                                1              one-way

                                                2              two-way

M            multiple

V#                           version number

 

Radio Science Receiver (RSR) data, Tracking Data Messages (TDM), Biased Tracking Data Messages (BTM), Sky Frequency Files (XFR), Open Loop Files (OLF), and Biased Open Loop Files (BOF) are named, respectively, as follows:

 

sssttaayyyyddd_hhmmxuudrrpD.rcs,

sssttaayyyyddd_hhmmxuudrrpD.tdm,

sssttaayyyyddd_hhmmxuudrrpD.btm,

sssttaayyyyddd_hhmmxuudrrpD.xfr,

sssttaayyyyddd_hhmmxuudrrpD.olf

sssttaayyyyddd_hhmmxuudrrpD.bof

 

 

where:

sss                          3-character spacecraft identifier

GRA       GRAIL-A

GRB        GRAIL-B

tt                             Target ID, e.g., LU = Moon

aa                            Activity/Experiment ID, e.g. GF = gravity field

yyyy                       year

ddd                         day of year

hhmm                     hours/minutes

xuu                          Uplink Transmitter Band (e.g., S, X) and 2-digit Uplinking Station number, or

"NNN" = 1-way

drr                           Downlink Band (e.g., X) and 2-digit Receiving Station number

p                              Polarization

L = left hand;

R = right hand;

M = mixed

D                             Open-loop data type

D             RSR data

V             VSR data

W            WVSR data

rcs                           RSR number + channel + subchannel

tdm                         Tracking Data Message

btm                         Biased Tracking Data Message

xfr                            Sky Frequency File

olf                           Open Loop File

bof                          Biased Open Loop File

 

Ionospheric Media Calibration (ION) files, Tropospheric Media Calibration (TRO) files, Earth Orientation Parameter (EOP) files, and weather (WEA) files are named, respectively, as follows:

 

sssttaaYYYY_DDD_yyyy_ddd.ion,

sssttaaYYYY_DDD_yyyy_ddd.tro,

sssttaaYYYY_DDD_yyyy_ddd.eop,

sssttaaYYYYDDDyyyyddd_##.wea,

 

where:

sss                          3-character spacecraft identifier

                                                GRA       GRAIL-A

                                                GRB        GRAIL-B

                                                GRX        both

tt                             Target ID, e.g., LU = Moon

aa                            Activity/Experiment ID, e.g. GF = gravity field

YYYY                     start year

DDD                       start day of year

yyyy                       end year

ddd                         end day of year

 ##                         DSN station number

 

 

4.2.6.3        LGRS RDR File Naming Convention

 

Spherical Harmonics ASCII Data Records (SHADR) and Spherical Harmonics Binary Data Records (SHBDR) are named, respectively, as follows:

 

GTsss_nnnnvv_SHA.TAB,

GTsss_nnnnvv_SHB_Lccc.DAT,

 

where

G             denotes the generating institution

J              Jet Propulsion Laboratory

G             Goddard Space Flight Center

M            Massachusetts Institute of Technology

T             indicates the type of data represented

G             gravity field

sss          a 3-character modifier specified by the data producer. This modifier is used to indicate the source spacecraft or project, such as GRX (the pair of GRAIL spacecraft).

nnnnvv  a 4- to 6-character modifier specified by the data producer. Among other things, this modifier may be used to indicate the target body, whether the SHADR contains primary data values as specified by "T" or uncertainties/errors, and/or the version number. For GRAIL, this modifier indicates the degree and order of the solution for the gravity field.

"SHA" or “SHB” denotes that this is an ASCII or binary file, respectively.

“Lccc” is a 2- to 4-character modifier specified by the data producer to indicate the degree and order to which degree (L) the gravity covariance has been truncated, if applicable.

"TAB" or “DAT” denotes that this is an ASCII or binary file, respectively.

 

Bouguer gravity data products will have the name "Bouguer" following the degree and order identifier, i.e. GTsss_nnnnvv_BOUGUER_SHA.TAB

 

Radio Science Digital Map Products (RSDMAP) are named as follows:

 

GTsss_ffff_nnnn_cccc.IMG,

 

where

G             denotes the generating institution:

J              Jet Propulsion Laboratory

G             Goddard Space Flight Center

M            Massachusetts Institute of Technology

T             indicates the type of mission data represented:

G             gravity field

sss          a 3-character modifier specified by the data producer. This modifier is used to indicate the source spacecraft or project, such as GRX (the pair of GRAIL spacecraft).

ffff           a 4- to 6-character modifier specified by the data producer to indicate the degree and order of the solution for the gravity field.

nnnn       a 4- to 8-character modifier indicating the type of data represented:

ANOM                   free air gravity anomalies

ANOMERR           free air gravity anomaly errors (1)

GEOID                    geoid heights

GEOIDERR            geoid height errors (1)

BOUG                     Bouguer anomaly

ISOS                       isostatic anomaly

TOPO                     topography

MAGF                    magnetic field

DIST                    gravity disturbances

DEGSTR             degree strength

(1) Geoid and gravity anomaly errors are computed from a mapping of the error covariance matrix of the gravity field solution.

cccc        a 2- to 4-character modifier specified by the data producer to indicate the degree and order to which the potential solution (gravity, topography or magnetic field) has been evaluated. In the case of the error maps for the gravity anomalies or geoid, this field indicates to which maximum degree and order the error covariance was used to propagate the spatial errors.

.IMG       the data is stored as an image.

 

 

Spacecraft and Planet Ephemeris Kernels (SPK) are named as follows:

 

sssttaaYYYY_DDD_yyyy_ddd.spk,

 

where:

sss                          3-character spacecraft identifier

GRA       GRAIL-A

GRB        GRAIL-B

GRX        both

tt                             Target ID, e.g., LU = Moon

aa                            Activity/Experiment ID, e.g. GF = gravity field

YYYY                     start year

DDD                       start day of year

yyyy                       end year

ddd                         end day of year

 

 

4.3            Standards Used in Generating Data Products

4.3.1            PDS Standards

All data products comply with Planetary Data System standards [25] for file formats and labels.

4.3.2            Time Standards

 

The objective of the GRAIL mission is to determine with high accuracy the lunar gravity field for scientific research. The input data for the gravity field determination process are Ka-Band phase measurements between the two GRAIL spacecraft; the phase measurements are used to compute the dual one-way range (DOWR). The DOWR measurement is then converted to instantaneous range, range rate and range acceleration measurements, which serve as inputs to the gravity field estimation process. Very accurate timing of the GRAIL measurements is crucial to achieving the high accuracy measurements needed for a high quality gravity field.

 

Science data from the GRAIL spacecraft are time tagged by onboard clocks. However, most of the SDS scientific computer programs process data with Barycentric Dynamic Time (TDB).  Timing data from the Deep Space Network (DSN) and the onboard Time Transfer System (TTS) and frequency observations from the Radio Science Receiver (RSR) are combined to estimate the time tag conversion for the GRAIL science data.  Figure 4 provides an overview of the relationships among the three timing systems; the three subsections which follow have additional detail.

 

 

 

 Figure 4. GRAIL clocks, models, and measurements used for timing [17]

 

 

 

4.3.2.1        LGRS clock

 

Each spacecraft has an LGRS clock; its USO frequency reference makes it very stable. The LGRS clock is used for timing of the LGRS Ka-Band phase measurement and the ranging data from the TTS. The LGRS clock has no notion of absolute time; instead, the LGRS clock reading is with respect to its startup epoch.

 

4.3.2.2        Onboard spacecraft clocks

 

The Onboard Spacecraft Clocks (OSC) are run by crystal oscillators, which have inferior stability characteristics compared to the USO (and LGRS clock). The two OSC clocks are the Real Time Clock (RTC) and the Base Time Clock (BTC). The real time clock starts at 0 at boot-up of the onboard computer, whereas the Base Time Clock is set at launch and is never reset. The OSCs are used for time tagging all spacecraft data and the arrival of the LGRS data packets (which include the LGRS 1 Pulse per Second (PPS) packets) by the onboard computer. By time tagging the arrival of LGRS data packets and the arrival of the LGRS 1 PPS, a time correlation can be established between the LGRS clock and the OSCs.

 

The RTC is used to time stamp spacecraft time correlation packets, which are then transmitted to a DSN station where the arrival time is recorded in UTC, thus providing a time correlation between the RTC and UTC. By combining LGRS/BTC, BTC/RTC, and RTC/UTC time correlation products, a time correlation between the LGRS and UTC can be determined, and the OSC clocks drop out.  Hence, the stability characteristics of the OSCs do not affect the LGRS and UTC time correlation because the OSC errors over short intervals (< 1 second) are less than 1 microsecond.

 

4.3.2.3        UTC clock used by DSN

 

The DSN uses very stable clocks which are based on the DSN Frequency and Timing Subsystem (FTS) [33]. The DSN time stamps the arrival of telemetry and radio metric tracking data in UTC. Based on FTS reports, the real-time timing performance is at the microsecond level and post processing analysis improves the performance to the nanosecond level.

 

4.3.3            Coordinate Systems

 

Four coordinate systems are used to define the various GRAIL data products; see [23] for detail. The definitions are summarized below.

 

1)       Mechanical Frame (MF) (Figure 5): This is defined by the spacecraft manufacturer. It is the reference frame for such things as KBR horn location, center of mass, and thruster locations (Figures 6 and 7).

                                                                                                                                   

+XM = Parallel to, and in opposite direction from, the solar array normal vector

+ZM = Normal to star tracker bus plate

+YM = +ZM ´ +XM

 

An onboard attitude control system approximately orients the mechanical frame with -ZM along the line of flight and -/+ YM pointed towards the moon. For the orientation of the mechanical frame, during the primary and extended missions, see figures 8 and 9.

 

2)       Science Reference Frame (SRF): This is the Mechanical Frame as realized by the Star Tracker. If the Star Tracker were perfectly aligned, MF would equal SRF. SRF is the reference frame for GRAIL science measurements.

 

3)       EME 2000 Lunar-Centered Solar System Barycentric Frame: This is the Earth Mean Equator 2000 inertial reference frame [31], re-centered at the moon using the DE 421 planetary ephemeris. It is the reference frame for ephemeris products.

 

4)       DE 421 Lunar Body-Fixed Frame: This is the lunar body-fixed frame as defined in the DE 421 planetary ephemeris [13].  It is the reference frame for gravity products.  GRGM1200A products use the DE 430 ephemeris [37].

 

Figure 5: The GRAIL Mechanical Frame (MF) [23]

Figure 6: GRAIL thruster locations (XYZ is the same as XMYMZM in text)

 

Figure 7: GRAIL thruster locations (XYZ is the same as XMYMZM in text)

Figure 8: GRAIL primary science spacecraft configuration (XYZ is the same as XMYMZM in text)

 

Figure 9: GRAIL extended science spacecraft configuration (XYZ is the same as XMYMZM in text)

 

 

4.4            Data Validation

 

Data validation occurs in three steps: validation of the data themselves, validation of the correctness and completeness of the data set documentation, and validation of the compliance of the archive with PDS standards. The primary method by which Science Team members will validate the various archive products is by using them for their own science. Calibrated data files (CDRs) will be derived from the raw data files (EDRs) in the archive; then reduced data records (RDRs) will be created from the archival CDRs. Errors in the raw and calibrated data products are likely to be caught by the science team in this process. The formal validation of data content, adequacy of documentation, and adherence to PDS archiving standards is finalized with an external peer review.

 

 

5           Detailed Data Product Specifications

 

5.1            Data Product Structure and Organization

 

The following table lists product identifiers and pointers to the corresponding format descriptions. Format descriptions can be found in the listed documents or in this document in section 5.2, Tables 3 through 53.  Some products have headers, which are discussed in Section 5.3; all products have PDS labels, which are also discussed in Section 5.3.

 

A summary of all data products, including their product identifiers, follows.

 


Table 2.               Summary of Data Products

Data

Set

Product

Identifier

(XXXLL)

S/C*

Clock

Product

Format Description in DOCUMENT Directory…

… or Section 5.2 Table

LGRS

EDR

DTC00

A/B

UTC SCET

Time Correlation Data Record File (DRF)

 

3

EHK00

A/B

UTC SCET

Spacecraft Engineering Housekeeping Data

 

4

LTB00

X

BTC

LGRS Time Bias

 

5

MAS00

A/B

UTC SCET

Satellite Mass Data

 

6

S7200

A/B

UTC SCET

Engineering SFDU (ID #72)

0161_TELECOMM_L5_8.LBL

0171_TELECOMM_NJPL_L5.LBL

090_REVC_1.LBL

0172_TELECOMM_CHDO_REVE_L5.LBL

GPA_TD_D_71987_REVE.LBL

BLACKJACKDLP.LBL

 

S7300

A/B

UTC SCET

Science SFDU (ID #73)

0161_TELECOMM_L5_8.LBL

0171_TELECOMM_NJPL_L5.LBL

090_REVC_1.LBL

0172_TELECOMM_CHDO_REVE_L5.LBL

GPA_TD_D_71987_REVE.LBL

BLACKJACKDLP.LBL

 

SAE00

A/B

UTC SCET

Solar Array Eclipse Data

 

7

SCA00

A/B

UTC SCET

Star Tracker Data

                       

8

STC00

A/B

UTC SCET

Time Correlation SFDU

0161_TELECOMM_L5_8.LBL

0171_TELECOMM_NJPL_L5.LBL

090_REVC_1.LBL

0172_TELECOMM_CHDO_REVE_L5.LBL

 

TDE00

A/B

UTC ERT

Time Transfer System Direct to Earth

 

9

THR00

A/B

UTC SCET

Thruster Activation Data

 

10

WRS00

A/B

UTC SCET

Wheel Rotational Speed Data

 

11

LGRS

CDR

CLK1A

A/B

TDB

TDB to LGRS time correlation

 

12

DEL1A

X

LGRS + Bias

Inter-satellite LGRS clock offset

 

13

EHK1A

A/B

UTC SCET

Spacecraft temperature sensor data from Engineering Housekeeping data

 

14

IHK1A

A/B

LGRS +Bias

LGRS Housekeeping Data

 

15

IHS1A

A/B

LGRS + Bias

Level 1A LGRS Health Status data

 

16

ILG1A

A/B

LGRS + Bias

LGRS log messages

 

17

KBR1A

A/B

LGRS + Bias

Ka-Band Ranging Data

 

18

LTM1A

A/B

TDB

Position vector and light time between one S/C and DSN station

 

19

MAS1A

A/B

UTC SCET

Satellite Mass Data

 

20

PCI1A

A/B

TDB

Phase Center to Center of Mass Correction

 

21

PLT1A

X

TDB

Position vector and light time between two spacecraft

 

22

PPS1A

A/B

LGRS + Bias

LGRS Pulse Per Second (PPS) Time Record

 

23

REL1A

A/B

TDB

Relativistic time correction (TDB to onboard satellite proper time)

 

24

SAE1A

A/B

UTC SCET

Solar Array Eclipse Data

 

25

SBR1A

A/B

LGRS + Bias

S-Band Ranging Data

 

26

SCA1A

A/B

BTC

Star Tracker Data

 

27

SNV1A

A/B

LGRS + Bias

S-Band navigation product

 

28

TC11A

A/B

LGRS + Bias

LGRS to BTC time correlation

 

29

TC21A

A/B

LGRS + Bias

LGRS to BTC time correlation from BTC clock cycle counts

 

30

TC31A

A/B

BTC

BTC to RTC time correlation

 

31

TC41A

A/B

LGRS + Bias

LGRS to RTC time correlation

 

32

TC51A

A/B

RTC

RTC to UTC time correlation

 

33

TC61A

X

UTC

UTC to TDB time correlation

 

34

THR1A

A/B

UTC SCET

Thruster Activation Data

 

35

USO1A

A/B

TDB

Oscillator frequency data

 

36

VCM1A

A/B

UTC SCET

center of mass displacement from spacecraft mechanical frame origin

 

37

WRS1A

A/B

UTC SCET

Wheel Rotational Speed Data

 

38

CLK1B

A/B

LGRS + Bias

Time correlation between LGRS time +Bias and TDB

 

39

EHK1B

A/B

TDB

Spacecraft temperature sensor data from Engineering Housekeeping Data

 

40

GNI1B

A/B

TDB

satellite orbit solution in Moon centered Inertial frame

 

41

GNV1B

A/B

TDB

satellite orbit Solution in lunar body fixed frame

 

42

KBR1C

X

TDB

Dual-One-Way Ka-Band Ranging Data

 

43

MAS1B

A/B

TDB

Satellite Mass Data

 

44

SAE1B

A/B

TDB

Solar Array Eclipse Data

 

45

SBR1B

X

TDB

Dual one-way S-Band Ranging data

 

46

SCA1B

A/B

TDB

Star Tracker Data

 

47

THR1B

A/B

TDB

Thruster Activation Data

 

48

USO1B

A/B

TDB

USO Frequency Estimate

 

49

VCM1B

A/B

TDB

center of mass displacement from spacecraft mechanical frame origin

 

50

VGS1B

A/B

TDB

S-Band antenna offset vector and switch time (TDB time)

 

51

VGX1B

A/B

TDB

X-Band antenna offset vector and switch time (TDB time)

 

52

VKB1B

A/B

TDB

Ka-Band Boresight Vector

 

53

WRS1B

A/B

TDB

Wheel Rotational Speed Data

 

54

RSS

EDR

BOF

A/B

UTC

Biased Open Loop File

SEE LABEL FILE

 

BTM

A/B

UTC

Biased Tracking Data Message Standard

 

55

EOP

X

TDB

Earth Orientation Parameters

TRK_2_21_950831.LBL

 

ION

A/B

UTC

Ionospheric Media Calibration

DSN006_MEDIACAL_REV2.LBL

 

ODF

A/B

UTC

Tracking Data, Orbit Data File

SEE LABEL FILE

 

OLF

A/B

UTC

Open Loop File

SEE LABEL FILE

 

RSR

A/B

UTC

Radio Science Receiver 0159

SEE LABEL FILE

 

TDM

A/B

UTC

Tracking Data Message Standard

 

56

TNF

A/B

UTC

Tracking and Navigation File

TNFSIS.LBL

 

TRO

X

UTC

Tropospheric Media Calibration

DSN006_MEDIACAL_REV2.LBL

 

WEA

X

UTC

Weather Files

TRK_2_24.LBL

 

XFR

A/B

UTC

X-Band sky frequency

 

57

LGRS RDR

RSDMAP

X

N/A

Radio Science Digital Map Products

RSDMAP.LBL

 

SHADR

X

N/A

Spherical Harmonics ASCII Data Record

SHADR.LBL

 

SHBDR

X

N/A

Spherical Harmonics Binary Data Record

SHBDR.LBL

 

SPK

A/B

TDB

Spacecraft Ephemeris Kernel

SPK_MM_SIS.LBL

 

* Spacecraft: Value “A/B” means that there is one file for GRAIL-A and a second file for GRAIL-B; value “X” means that GRAIL-A and GRAIL-B data are combined into a single file

 

 

5.2            Data Format Descriptions

 

For all LGRS RDR data, see documentation in Table 2 for format descriptions.

 

5.2.1            LGRS EDR (Level 0) Products

 

For S7200, S7300, and STC00 in LGRS EDR, see documentation in Table 2 for format descriptions. All other LGRS EDR (Level 0) products are in ASCII format and are delimited by a variable number of white spaces as described in Tables 3 through 10.

 

Table 3.               DTC00 Record Format

Column #

DTC00

Time Correlation (DRF) Record

Data may be missing in fields 2 through 7

1

UTC SCET (YY/DDD-HH:MM:SS.sss)

2.

Clock BTC fractional second counter (1/65536 seconds)

3.

Clock BTC second counter

4.

Clock USO fractional seconds count (1/65536 seconds) since last 1 PPS arrival at on board computer

5.

Clock USO seconds counter since last 1 PPS arrival at on board computer

6.

BTC Bias (seconds)

7.

RTC Seconds

8.

Application Packet ID

 

Table 4.               EHK00 Record Format

Column #

EHK00

Level 0 Space temperature sensors for KBR data correction

1.

UTC SCET Time YY/DDD-HH:MM:SS.sss

2.

(Microwave Assembly T1 Temperature in C + 273.0718) / 0.1220652

3.

(Microwave Assembly T2 Temperature in C + 273.0718) / 0.1220652

4.

(Waveguide Transmit Module Ka-Band Assembly temperature in C + 273.0718) / 0.1220652

5.

(Waveguide Transmit Module Microwave Assembly temperature in C + 273.0718) / 0.1220652

6.

(Waveguide Receive Module Middle of Span temperature in C + 273.0718) / 0.1220652

7.

(Waveguide Transmit Module Middle of Span temperature in C + 273.0718) / 0.1220652

8.

(Aperture temperature in C + 273.0718) / 0.1220652

9.

(Radome temperature in C + 273.0718) / 0.1220652

10.

(Horn Base temperature in C + 273.0718) / 0.1220652

11.

(Midway on Horn temperature in C + 273.0718) / 0.1220652

12.

(Orthomode transducer (where transmit and receive modules are split off at base of horn) temperature + 273.0718) / 0.1220652 in C

13.

Ground Data System Application Packet Identification

 

Table 5.               LTB00 Record Format

Column #

LTB00

LGRS Time Bias

1

BTC time (seconds)

2.

LGRS Bias (seconds)

 

Table 6.               MAS00 Record Format

Column #

MAS00

Level 0 Spacecraft  Mass Data

1.

Spacecraft Event name

2.

UTC SCET Date MM/DD/YYYY

3.

UTC SCET Day of Year YY-DDD

4.

UTC SCET Maneuver End Time HH:MM:SS.sss

5.

Fuel Mass Remaining Book Keeping (kg)

6.

Fuel Mass Remaining Book Keeping Uncertainty (kg)

7.

Post Maneuver Spacecraft Mass

8.

Post Maneuver Center of Mass X coordinate (meters) in mechanical reference frame

9.

Post Maneuver Center of Mass Y coordinate (meters) in mechanical reference frame

10.

Post Maneuver Center of Mass Z coordinate (meters) in mechanical reference frame

11.

Post Maneuver Boresight Vector X coordinate

12.

Post Maneuver Boresight Vector Y coordinate

13.

Post Maneuver Boresight Vector Z coordinate

 

Table 7.               SAE00 Record Format

Column #

SAE00

Level 0 Solar array eclipse data

1.

UTC SCET Time YY/DDD-HH:MM:SS.sss

2.

Solar array short circuit current (Amperes / 2.442000E-04), as reported by the Solar Array Battery Control

3.

Solar array open circuit voltage (Volts / 9.760000E-04), as reported by the Solar Array Battery Control

4.

GDS Application Packet Identification

 

Table 8.               SCA00 Record Format

Column #

SCA00

Level 0 Star Tracker Data

1.

UTC SCET Time YY/DDD-HH:MM:SS.sss

2.

1st element of current spacecraft attitude quaternion based on the onboard filter, phased as inertial to body.

3.

2nd element of current spacecraft attitude quaternion based on the onboard filter, phased as inertial to body.

4.

ADS (quat_body(3)).  3rd element of current spacecraft attitude quaternion based on the onboard filter, phased as inertial to body.

5.

ADS (quat_body(4)).  Scalar component of current spacecraft attitude quaternion based on the onboard filter, phased as inertial to body.

6.

Star tracker time stamp (SCLK) of current spacecraft attitude quaternion based on the onboard filter

7.

GDS Application Packet Identification number

 

Table 9.               TDE00 Record Format

Column #

TDE00

Time Transfer System Direct to Earth Data

1.

DERT = UTC-ERT: Seconds past initial start time in header (Data Date), indicating the time at which measurements in columns 2-4 were made

2.

Range (seconds), integrated carrier phase measurement with N-cycle ambiguity unresolved

3.

Pseudo range (seconds). Equal to Column 1 minus Column 4 plus a constant to set the pseudo range equal to zero at the start of the first observation of the primary and extended mission

4.

Transmit Time of the TTS range code in LGRS time (seconds). Computed by decoding the GRAIL data message and adding fractional timing information from the Code Delay Lock Loop

 

Table 10.            THR00 Record Format

Column #

THR00

Level 0 Thruster Activation Data

1.

UTC SCET Time YY/DDD-HH:MM:SS.sss

2.

The cumulative on time for thruster Attitude Control System 1 (milliseconds).

3.

The cumulative on time for thruster Attitude Control System 2 (milliseconds).

4.

The cumulative on time for thruster Attitude Control System 3 (milliseconds).

5.

The cumulative on time for thruster Attitude Control System 4 (milliseconds).

6.

The cumulative on time for thruster Attitude Control System 5 (milliseconds).

7.

The cumulative on time for thruster Attitude Control System 6 (milliseconds).

8.

The cumulative on time for thruster Attitude Control System 7 (milliseconds).

9.

The cumulative on time for thruster Attitude Control System 8 (milliseconds).

10.

GDS Application Packet Identification

 

Table 11.            WRS00 Record Format

Column #

WRS00

Level 0 Wheel Rotational Speed Data

1.

UTC SCET Activation Time YY/DDD-HH:MM:SS.sss

2.

Reaction wheel 1 rotational speed as determined by digital tachometer (radians/sec)

3.

Reaction wheel 2 rotational speed as determined by digital tachometer (radians/sec)

4.

Reaction wheel 3 rotational speed as determined by digital tachometer (radians/sec)

5.

Reaction wheel 4 rotational speed as determined by digital tachometer (radians/sec)

 

 

 


5.2.2            LGRS CDR Products

 

All LGRS CDR (Level 1A & 1B) products are in ASCII format and are delimited by a variable number of white spaces as described in Tables 11 through 51.

 

Many of the following data types contain data product flags. Read right to left, the data product flags indicate, with a 1, the presence of a certain field (column) or, with a 0, the absence of that field in the remainder of the record. Fields indicated as being present will exist in the file in consecutive columns in the same order as shown in Tables 11 through 51, with no gaps or spaces for fields indicated as absent. As a result, the number of fields may vary from record to record and there will never be as many fields in the data record as columns specified in the governing table (unless all data product flag digits have been set to 1).

 

Some data types contain data quality flags, in which a 1 indicates that the corresponding description is true. The digits in the data quality flags are also read right to left.

 

For example, a KBR1A file might contain, in the data product flags, a 1 at digit 13 (fourteenth digit from the right), and the rest zeros. This would indicate that after the data quality flags in column seven, the eighth column would contain Ka-Band carrier phase data. There would be no additional columns for fields represented by zeros in the data product flag.

 

Some SBR1A files have records with data product flags 0000001000001000, meaning that received S-Band carrier phase and S-Band receiver channel follow the data quality flags.  Other records in the same file have data product flags 0000001001001001, meaning that S-Band pseudo-range, received S-Band carrier phase, S-Band SNR, and S-Band receiver channel follow the data quality flags in that order.  Thus, records with 9 fields are interleaved with records having 11 fields; no SBR1A record has all 23 columns defined.

 

5.2.2.1        Level 1A

 

Table 12.            CLK1A Record Format

Column #

CLK1A

Level 1A TDB to LGRS + Bias time correlation

1.

TDB time , in integer seconds

2.

TDB time , microseconds part

3.

Input Time scale where ‘T’ = TDB

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Not applicable

6.

eps_time (seconds), where LGRS + bias Time = TDB  time + eps_time

7.

Formal error on eps_time (s) (not used by GRAIL, set to 0)

8.

clock drift (s/s); if not calculated, then set to 0

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 13.            DEL1A Record Format

Column #

DEL1A

Inter-satellite LGRS clock offset between spacecraft

1.

TDB time, in integer seconds

2.

TDB time, microseconds part

3.

Input Time scale where ‘T’ = TDB

4.

GRAIL satellite ID ‘X’ to indicate a single product for two spacecraft

5.

Not applicable

6.

eps_time (in LGRS seconds), where   eps_time = LGRS-A clock – LGRS-B clock

7.

Formal error on eps_time (s); if not calculated, then set to 0

8.

Clock offset corrected for LGRS resets. Identical to column 6 if no reset.

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 14.            EHK1A Record Format

Column #

EHK1A

Level 1A Spacecraft temperature sensor data from Engineering Housekeeping data for KBR data correction

1.

UTC SCET, integer seconds past 12:00:00 noon 01-Jan-2000

2.

UTC SCET, microseconds part

3.

Time reference where 'U' = UTC SCET

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Microwave Assembly T1 temperature in C

6.

Microwave Assembly T2 temperature in C

7.

Waveguide transmit Ka-Band Assembly temperature in C

8.

Waveguide transmit Microwave Assembly temperature in C

9.

Waveguide Rx Mid temperature in C

10.

Waveguide Tx Mid temperature in C

11.

Aperture temperature in C

12.

Radome temperature in C

13.

HornBase temperature in C

14.

Midway on Horn temperature in C

15.

Orthomode Transducer (where transmit and receive modules are split off at base of horn) temperature in C

16.

data quality flags  (digit 0 is on the right, digit 7 is on the left)

LSB    = digit 0

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 15.            IHK1A Record Format

Column #

IHK1A

Level 1A LGRS Housekeeping Data

1.

LGRS time +Bias, integer seconds past 12:00:00 noon 01-Jan-2000

2.

LGRS time +Bias, microseconds part

3.

Time reference where 'R' = LGRS time +Bias

4.

GRAIL satellite ID

5.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = No On-Board Data Handler->Receiver time mapping

digit 7 = No Clock correction available

6.

Observation type

V = Voltage in Volts

T = Temperature in Degrees C

I = Current in Amperes

? = Observation type not applicable

7.

Value of observation

8.

Sensor name

 

Table 16.            IHS1A Record Format

Column #

IHS1A

LGRS Health Status Data

1.

LGRS time +Bias, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Clock offset reported in latest time transfer packet (seconds)

4.

Seconds expired since last reboot

5.

time reported in latest PPS Time packet (seconds) in LGRS time

6.

count of times since reboot that integrity monitor has restarted trackers

7.

SNR reported in latest Ka band quadratic fit packet (0.1 dB-Hz)

8.

SNR reported in latest S-band quadratic fit packet (V/V)

9.

Data quality flags (digit 0 is on the right and digit 7 is on the left)

LSB    = digit 0

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 17.            ILG1A Record Format

Column #

ILG1A

LGRS Log Messages

1.

LGRS+Bias time, seconds past 12:00:00 noon 01-Jan-2000

2.

counts packets with that rcv_time (1,2,3,...)

3.

GRAIL satellite ID ‘A’ or ‘B’

4.

carriage-return terminated  log message string

 

Table 18.            KBR1A Record Format

Column #

KBR1A

Level 1A Ka-Band Ranging Data

1

LGRS time +Bias, integer seconds past 12:00:00 noon 01-Jan-2000 (s)

2.

LGRS time +Bias, microseconds part

3.

GRAIL satellite ID ‘A’ or ‘B’

4.

GRAIL transmission channel number

50 for Ka-Band for both spacecraft

5.

KBR antenna ID on GRAIL spacecraft

ant_id = 11 for KBR antenna

6.

data product flags. Set digits indicate quantities stored after column 7 as follows (digit 0 is on the right and digit 15 is on the left):

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

digit 8 = Not Defined

digit 9 = Not Defined

digit 10 = Not Defined

digit 11 = Not Defined

digit 12 = Correction of Ka phase

digit 13 = Received Ka-band carrier phase minus transmitted Ka-band carrier phase (cycles)

digit 14 = Not Defined

digit 15 = Ka-Band SNR  0.1 dB-Hz

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = phase break occurred in Ka-Band at LGRS time + Bias

digit 2 = Not Defined

digit 3 = cycle slip detected in Ka-Band

digit 4 = corrupted Ka-Band phase reconstruction polynomial detected

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Ka SNR < 450

8.

Not Defined

9. 

Not Defined

10.

Not Defined

11.

Not Defined

12.

Not Defined

13.

Not Defined

14.

Not Defined

15.

Not Defined

16.

Not Defined

17.

Not Defined

18.

Not Defined

19.

Not Defined

20.

Not Defined

21.

Ka-band carrier phase (cycles)

22.

Not Defined

23.

Ka-Band SNR (0.1 dB-Hz)

 

Table 19.            LTM1A Record Format

Column #

LTM1A

Position vector and light time in EME 2000 (Earth-centered) of transmitting spacecraft at time of signal reception at DSN station

1.

Receive time (TDB), seconds past 12:00:00 noon 01-Jan-2000

2.

Receiver ID

number = DSN ID

3.

Transmitter ID

'A' = GRAIL-A

'B' = GRAIL-B

4.

Light time between transmitter and receiver (sec) (transmit time = receive time + light time)

5.

Position of transmitting spacecraft at receive time, x value (Earth-centered) (km)

6.

Position of transmitting spacecraft at receive time, y value (Earth-centered) (km)

7.

Position, of transmitting spacecraft at receive time z value (Earth-centered) (km)

 

Table 20.            MAS1A Record Format

Column #

MAS1A

Level 1A Spacecraft Mass Data

1.

UTC SCET, integer seconds past 12:00:00 noon 01-Jan-2000

2.

UTC SCET, microseconds part

3.

Time reference where 'U' = UTC SCET

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined                                                                           

6.

data product flags. Set digits indicate quantities stored in following columns as follows (digit 0 is on the right and digit 7 is on the left):

Set digits (value = 1) have the following meanings:

digit 0 = spacecraft mass based on propellant consumption

digit 1 = undefined

digit 2 = undefined

digit 3 = undefined

digit 4 = undefined

digit 5 = undefined

digit 6 = undefined

digit 7 = undefined

7

Spacecraft Mass based on propellant consumption  in kg..

 

Table 21.            PCI1A Record Format

Column #

PCI1A

Phase Center to Center of Mass Correction

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Antenna phase center range correction (m)

4.

Antenna phase center range rate correction (m/sec)

5.

Antenna phase center range acceleration correction (m/sec^2)

6.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = bit  1 = From raw data for ka boresight calibration period or prediction change period

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 22.            PLT1A Record Format

Column #

PLT1A

Position vector and light time in EME 2000 (moon centered) of transmitting spacecraft at time of signal reception at receiving spacecraft

1.

Receive time (TDB), seconds past 12:00:00 noon 01-Jan-2000

2.

Receiver ID

'A' = GRAIL-A

'B' = GRAIL-B

3.

Transmitter ID

'A' = GRAIL-A

'B' = GRAIL-B

4.

Light time between transmitter and receiver (sec) (transmit time = receive time + light time)

5.

Position of transmitting spacecraft at receive time, x value (moon centered) (km)

6.

Position of transmitting spacecraft at receive time, y value (moon centered) (km)

7.

Position of transmitting spacecraft at receive time z value (moon centered) (km)

 

Table 23.            PPS1A Record Format

Column #

PPS1A

LGRS Pulse Per Second (PPS) Time Record

1.

LGRS time +Bias, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

LGRS time

 

Table 24.            REL1A Record Format

Column #

REL1A

Relativistic time correction (TDB to onboard satellite proper time)

1.

TDB, in integer seconds

2.

TDB, microseconds part

3.

Time scale where  ‘T’ = TDB

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Not applicable

6.

eps_time (seconds), where onboard satellite proper time = TDB + eps_time

Correction to TDB to calculate proper spacecraft time

7.

Formal error on eps_time (s) (not used by GRAIL, set to 0)

8.

clock drift (s/s); if not calculated, then set to 0

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

Table 25.            SAE1A Record Format

Column #

SAE1A

Level 1A Solar array eclipse data

1.

UTC SCET, integer seconds past 12:00:00 noon 01-Jan-2000

2.

UTC SCET, microseconds part

3.

Time reference frame where 'U' = UTC SCET  

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Solar array short circuit current (Amperes / 2.442000E-04), as reported by the Solar Array Battery Control

6.

Solar array open circuit voltage (Volts / 9.760000E-04), as reported by the Solar Array Battery Control

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

LSB    = digit 0

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 26.            SBR1A Record Format

Column #

SBR1A

Level 1A S-Band Ranging Data

1

LGRS time +Bias, integer seconds past 12:00:00 noon 01-Jan-2000 (s)

2.

LGRS time +Bias, microseconds part

3.

GRAIL satellite ID ‘A’ or ‘B’

4.

GRAIL transmission channel number

2 for GRAIL-A

1 for GRAIL-B

5.

SBR antenna ID on GRAIL spacecraft

Antenna ID = 3 for SBR antenna

6.

data product flags. Set digits indicate quantities stored after column 7 as follows (digit 0 is on the right and digit 15 is on the left):

Set digits (value = 1) have the following meanings:

digit 0 = S-band pseudo range (m) (includes transmitter and receiver clock errors)

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Received S-band carrier phase minus spacecraft-specific reference S-band carrier phase (cycles)

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = S-Band SNR  (V/V)

digit 7 = Not Defined

digit 8 = Not Defined

digit 9 = S-band receiver channel

digit 10 = Not Defined

digit 11 = Not Defined

digit 12 = Not Defined

digit 13 = Not Defined

digit 14 = Not Defined

digit 15 = Not Defined

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

8.

S-band pseudo Range (m)

Pseudo range contains actual range + clock offset effect

9. 

Not Defined

10.

Not Defined

11.

S-band carrier Phase (cycles)

12.

Not Defined

13.

Not Defined

14.

S-band SNR (V/V)

15.

Not Defined

16.

Not Defined

17.

S-band receiver channel number

18.

Not Defined

19.

Not Defined

20.

Not Defined

21.

Not Defined

22.

Not Defined

23.

Not Defined

Table 27.            SCA1A Record Format

Column #

SCA1A

Level 1A Star Tracker Data

1.

BTC time, in seconds

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Application Packet Identification

4.

cos mu/2 element of quaternion

5.

I element of quaternion rotation axis

6.

J element of quaternion rotation axis

7.

K element of quaternion rotation axis

8.

rss of formal error of quaternions; if not calculated, then set to 0

9.

data quality flags (digit 0 is at the right and digit 7 is at the left).

LSB    = digit 0

digit  0 = Not Defined

digit  1 = Ka boresight calibration period or prediction change period

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 28.            SNV1A Record Format

Column #

SNV1A

S-Band Navigation Product

1.

LGRS time + Bias, seconds past 12:00:00 noon 01-Jan-2000

2

LGRS time + Bias, microseconds part

3.

GRAIL satellite ID ‘A’ or ‘B’

4.

Measured  range =(local measured pseudorange range + remote measured pseudorange)/2 (seconds). Pseudorange contains actual range + clock offset effect.

5.

Measured clock offset =(local measuredpseudorange– remote measured pseudorange)/2 (seconds). Pseudorange contains actual range + clock offset effect.

6.

Local spacecraft S-Band SNR (V/V)

7.

Remote spacecraft S-Band SNR (V/V); if not calculated, then set to 0

8.

Local spacecraft Ka-Band SNR (0.1 dB-Hz)

9.

Remote spacecraft Ka-Band SNR  (0.1 dB-Hz); if not calculated, then set to 0

10.

data quality flags (digit 0 is on the right and digit 7 is on the left

LSB    = digit 0

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 29.            TC11A Record Format

Column #

TC11A

LGRS to BTC time correlation

1.

Input time, in integer seconds

2.

Input time, microseconds part

3.

Time scale where ‘L’ = LGRS time + Bias  

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Not applicable

6.

eps_time (seconds), where Output time scale = Input time scale + eps_time

7.

Formal error on eps_time (s); if not calculated then set to 0

8.

Blackjack packet arrival time in RTC time

9.

Formal error on clock drift (s/s); if not calculated then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 30.            TC21A Record Format

Column #

TC21A

LGRS to BTC time correlation from BTC clock cycle counts

1.

LGRS time + Bias, in integer seconds

2.

LGRS time + Bias, microseconds part

3.

Time scale where ‘L’ = LGRS time + Bias

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Not applicable

6.

eps_time (seconds), where   BTC time = LGRS time + Bias + eps_time

7.

Formal error on eps_time (s); if not calculated, then set to 0

8.

Not applicable and set to 0

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 31.            TC31A Record Format

Column #

TC31A

BTC to RTC time correlation

1.

BTC, in integer seconds

2.

BTC, microseconds part

3.

Time scale where  ‘B’ = BTC time

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Not applicable

6.

eps_time (seconds), where    RTC = BTC + eps_time

7.

Formal error on eps_time (s); if not calculated, then set to 0

8.

Not applicable and set to 0

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 32.            TC41A Record Format

Column #

TC41A

LGRS to RTC time correlation

1.

LGRS time + Bias, in integer seconds

2.

LGRS time + Bias, microseconds part

3.

Time scale where ‘L’ = LGRS time + Bias

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Not applicable

6.

eps_time (seconds), where RTC = LGRS time + Bias + eps_time

7.

Formal error on eps_time (s); if not calculated, then set to 0

8.

Not applicable and set to 0

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 33.            TC51A Record Format

Column #

TC51A

RTC to UTC time correlation

1.

RTC, in integer seconds

2.

RTC, microseconds part

3.

Time scale where  ‘R’ = RTC time

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

DSN station ID

6.

eps_time (seconds), where UTC at DSN station  = RTC + eps_time   and UTC is in seconds since 12:00:00 noon on 1 January 2000

7.

Formal error on eps_time (s); if not calculated, then set to 0

8.

Not applicable and set to 0

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 34.            TC61A Record Format

Column #

TC61A

UTC to TDB time correlation

1.

UTC, in integer seconds

2.

UTC, microseconds part

3.

Time scale where  ‘U’ = UTC

4.

GRAIL satellite ID ‘X’ to indicate a single product for two spacecraft

5.

Not applicable

6.

eps_time (seconds), where TDB = UTC + eps_time

7.

Formal error on eps_time (s); if not calculated, then set to 0

8.

Clock drift (s/s) deps_time/dt

9.

Formal error on clock drift (s/s); if not calculated, then set to 0

10.

bitrate of SFDU packet ; if not calculated, then set to 0

11.

delay by bitrate of SFDU packet; if not calculated, then set to 0

12.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER input time

digit  1 = 1 -> linear extrapolation not valid BEFORE input time

digit  2 = 1 -> filled data using KBR1C

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 35.            THR1A Record Format

Column #

THR1A

Level 1A Thruster Activation Data

1.

UTC SCET, integer seconds past 12:00:00 noon 01-Jan-2000

2.

UTC SCET, microseconds part

3.

Time reference frame where 'U' = UTC SCET  

4.

GRAIL satellite ID ‘A’ or ‘B’

5-12.

Count of number of work cycles that each thruster has been activated

Set to 0 for GRAIL.

13-20.

Thruster on-time for this activation time (milliseconds)

21-28.

Accumulated thruster firing duration time (milliseconds)

integer will wrap after 4294967295

29.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = 1 On time not calculated

digit 1 = 1 Multiple unaccounted thrusts prior to current record

digit 2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 36.            USO1A Record Format

Column #

USO1A

Level 1A Ultra Stable Oscillator Stability Data

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

USO identification number set to 0

4.

Not applicable, set to 0

5.

X-Band RSB frequency (Hz)

6.

Not applicable, set to 0

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 37.            VCM1A Record Format

Column #

VCM1A

Level 1A Center of mass displacement from spacecraft mechanical frame origin

1.

UTC SCET, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Magnitude of center of mass vector in mechanical frame (m)

4.

Direction cosine of vector with Mechanical Reference Frame x-axis

5.

Direction cosine of vector with Mechanical Reference Frame y-axis

6.

Direction cosine of vector with Mechanical Reference Frame z-axis

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 38.            WRS1A Record Format

Column #

WRS1A

Level 1A Wheel rotational speed data

1.

UTC SCET Activation time, integer seconds past 12:00:00 noon 01-01-2000

2.

Activation time, microseconds part

3.

Time reference frame where 'U' = UTC time

4.

GRAIL satellite id ‘A’ or ‘B’

5.

Reaction wheel 1 rotational speed as determined by digital tachometer (radians/sec)

6.

Reaction wheel 2 rotational speed as determined by digital tachometer (radians/sec)

7.

Reaction wheel 3 rotational speed as determined by digital tachometer (radians/sec)

8.

Reaction wheel 4 rotational speed as determined by digital tachometer (radians/sec)

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 


5.2.2.2        Level 1B

 

Table 39.            CLK1B Record Format

Column #

CLK1B

Level 1B LGRS + bias to TDB Time correlation

1

LGRS time +Bias , seconds past 12:00:00 noon 01-Jan-2000 (s)

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Clock ID (set to 1)

4.

eps_time (seconds), where TDB = LGRS time + Bias + eps_time

5.

Formal error on eps_time (s) (not used by GRAIL, set to 0)

6.

Clock drift (s/s) deps_time/dt

7.

Formal error on clock drift (s/s); if not calculated, then set to 0

8.

data quality flags (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = 1 -> linear extrapolation not valid AFTER LGRS time + bias

digit  1 = 1 -> linear extrapolation not valid BEFORE LGRS time + bias

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined                                       

digit  7 = Not Defined

 

Table 40.            EHK1B Record Format

Column #

EHK1B

Level 1B Spacecraft temperature sensor data from Engineering Housekeeping data for KBR data correction

1.

TDB, integer seconds past 12:00:00 noon 01-Jan-2000

2.

TDB, microseconds part

3.

Time reference frame where 'T' = TDB

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Microwave Assembly T1 temperature in C

6.

Microwave Assembly T2 temperature in C

7.

Waveguide transmit Ka-Band Assembly temperature in C

8.

Waveguide transmit Microwave Assembly temperature in C

9.

Waveguide Rx Mid temperature in C

10.

Waveguide Tx Mid temperature in C

11.

Aperture temperature in C

12.

Radome temperature in C

13.

HornBase temperature in C

14.

Midway on Horn temperature in C

15.

Orthomode Transducer (where transmit and receive modules are split off at base of horn) temperature in C

16.

data quality flags  (digit 0 is on the right, digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 41.            GNI1B Record Format

Column #

GNI1B

Navigation Level 1B satellite orbit solution in Moon-centered Inertial frame

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID, ‘1’ for GRAIL-A, ‘2’ for GRAIL-B

3.

Coordinate reference frame where

'I' = Inertial centered on Moon in EME 2000 Solar System Barycentric Frame

4.

Position, x value (m)

5.

Position, y value (m)

6.

Position, z value (m)

7.

Formal error on x position (m); if not calculated, then set to 0

8.

Formal error on y position (m); if not calculated, then set to 0

9.

Formal error on z position (m); if not calculated,  then set to 0

10.

Velocity along x-axis (m/s)

11.

Velocity along y-axis (m/s)

12.

Velocity along z-axis (m/s)

13.

Formal error in velocity along x-axis (m/s); if not calculated, then set to 0

14.

Formal error in velocity along y-axis (m/s); if not calculated, then set to 0

15.

Formal error in velocity along z-axis (m/s); if not calculated, then set to 0

16.

Data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 42.            GNV1B Record Format

Column #

GNV1B

Navigation Level 1B Satellite orbit solution in lunar body fixed frame

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID, ‘1’ for GRAIL-A, ‘2’ for GRAIL-B

3.

Coordinate reference frame where 'M' = Moon-centered-body-fixed

4.

Position, x value (m)

5.

Position, y value (m)

6.

Position, z value (m)

7.

Formal error on x position (m); if not calculated, then set to 0

8.

Formal error on y position (m); if not calculated, then set to 0

9.

Formal error on z position (m); if not calculated, then set to 0

10.

Velocity along x-axis (m/s)

11.

Velocity along y-axis (m/s)

12.

Velocity along z-axis (m/s)

13.

Formal error in velocity along x-axis (m/s); if not calculated, then set to 0

14.

Formal error in velocity along y-axis (m/s); if not calculated, then set to 0

15.

Formal error in velocity along z-axis (m/s); if not calculated, then set to 0

16.

Data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 43.            KBR1C Record Format

Column #

KBR1C

Level 1B Dual-One-Way Ka-Band Ranging Data

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

Biased dual one-way range between GRAIL-A and GRAIL-B (m)

3.

Range rate between GRAIL-A and GRAIL-B (m/s)

4.

Range acceleration between GRAIL-A and GRAIL-B (m/s**2)

5.

Biased ionospheric range correction between GRAIL-A and GRAIL-B for Ka-Band frequency (m). If not calculated, then set to 0

6.

Time of flight range correction between GRAIL-A and GRAIL-B (m). Includes relativistic effects.

7.

Time of flight range rate correction between GRAIL-A and GRAIL-B (m/sec). Includes relativistic effects.

8.

Time of flight range acceleration correction between GRAIL-A and GRAIL-B (m/sec^2). Includes relativistic effects.

9.

Ka-band antenna offset range correction (m)

10.

Ka-band antenna range rate correction (m/s)

11.

Ka-band antenna range acceleration correction (m/sec^2)

12.

Undefined (set to 0)

13.

SNR Ka band for GRAIL-A  0.1 db-Hz

14.

Undefined (set to 0)

15.

SNR Ka band for GRAIL-B  0.1 db-Hz

16.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = Not Defined

digit  1 = From raw data for Ka boresight calibration slew for antenna correction data

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

17.

Raw temperature range correction (m)

18.

Filtered temperature range correction (m)

19.

Filtered temperature range rate correction (m/s)

20.

Filtered temperature range acceleration correction (m/s/s)

 

Table 44.            MAS1B Record Format

Column #

MAS1B

Level 1B Spacecraft Mass Data

1.

TDB, integer seconds past 12:00:00 noon 01-Jan-2000

2.

TDB, microseconds part

3.

Time reference frame where 'T' = TDB

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined                                                                           

6.

data product flags. Set digits indicate quantities stored in following columns as follows (digit 0 is on the right and digit 7 is on the left):

Set digits (value = 1) have the following meanings:

digit 0 = spacecraft mass based on propellant consumption

digit 1 = undefined

digit 2 = undefined

digit 3 = undefined

digit 4 = undefined

digit 5 = undefined

digit 6 = undefined

digit 7 = undefined

7

Spacecraft Mass based on propellant consumption in kg..

Table 45.            SAE1B Record Format

Column #

SAE1B

Level 1B Solar array eclipse data

1.

TDB, integer seconds past 12:00:00 noon 01-Jan-2000

2.

TDB, microseconds part

3.

Time reference frame where  'T' = TDB

4.

GRAIL satellite ID ‘A’ or ‘B’

5.

Solar array short circuit current (Amperes / 2.442000E-04), as reported by the Solar Array Battery Control

6.

Solar array open circuit voltage (Volts / 9.760000E-04), as reported by the Solar Array Battery Control

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit  0 = Not Defined

digit  1 = Not Defined

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 46.            SBR1B Record Format

Column #

SBR1B

Level 1B Biased dual one-way S-Band Ranging data

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

Biased dual one-way range between GRAIL-A and B (m)

3.

Range rate between GRAIL-A and -B (m/s)

4.

Range acceleration between GRAIL-A & -B (m/s**2)

5.

Not Defined. Set to 0 for GRAIL

6.

Not defined. Set to 0 for GRAIL

7.

Not defined. Set to 0 for GRAIL

8.

Not defined. Set to 0 for GRAIL

9.

Not defined. Set to 0 for GRAIL

10.

Not defined. Set to 0 for GRAIL

11.

Not defined. Set to 0 for GRAIL

12.

Not defined. Set to 0 for GRAIL

13.

Not defined. Set to 0 for GRAIL

14.

Not defined. Set to 0 for GRAIL

15.

Not defined. Set to 0 for GRAIL

16.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = From raw data for Ka boresight calibration slew for antenna correction data

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 47.            SCA1B Record Format

Column #

SCA1B

Level 1B Star Tracker Data

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

SCA identification number set to 1

4.

Cos mu/2 element of quaternion

5.

I element of quaternion rotation axis

6.

J element of quaternion rotation axis

7.

K element of quaternion rotation axis

8.

rss of formal error of quaternions; if not calculated, then set to 0

9.

data quality flags (digit 0 is at the right and digit 7 is at the left)

Set digits (value = 1) have the following meanings:

digit  0 = Data filled by interpolation

digit  1 = Ka boresight calibration periodor prediction change period

digit  2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 48.            THR1B Record Format

Column #

THR1B

Level 1B Thruster Activation Data

1.

TDB, integer seconds past 12:00:00 noon 01-Jan-2000

2.

TDB, microseconds part

3.

Time reference frame where  'T' = TDB

4.

GRAIL satellite ID ‘A’ or ‘B’

5-12.

Count of number of work cycles that each thruster has been activated

Set to 0 for GRAIL.

13-20.

Thruster on-time for this activation time (milliseconds)

21-28.

Accumulated thruster firing duration time (milliseconds)

integer will wrap after 4294967295

29.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = 1 On time not calculated

digit 1 = 1 Multiple unaccounted thrusts prior to current record

digit 2 = Not Defined

digit  3 = Not Defined

digit  4 = Not Defined

digit  5 = Not Defined

digit  6 = Not Defined

digit  7 = Not Defined

 

Table 49.            USO1B Record Format

Column #

USO1B

Level 1B Ultra Stable Oscillator Stability Data

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

USO identification number set to 0

4.

Frequency of USO (Hz)

5.

X-Band RSB frequency (Hz)

6.

Ka band frequency of KBR (Hz) for USO1B

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 50.            VCM1B Record Format

Column #

VCM1B

Level 1B Center of mass displacement from spacecraft mechanical frame origin

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Magnitude of center of mass vector in mechanical frame (m)

4.

Direction cosine of vector with Mechanical Reference Frame x-axis

5.

Direction cosine of vector with Mechanical Reference Frame y-axis

6.

Direction cosine of vector with Mechanical Reference Frame z-axis

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined            

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 


Table 51.            VGS1B Record Format

Column #

VGS1B

S-Band antenna offset vector and switch time (TDB)

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Magnitude of vector (m) for active antenna in mechanical reference frame

4.

Direction cosine of vector with Mechanical Reference Frame x-axis

5.

Direction cosine of vector with Mechanical Reference Frame y-axis

6.

Direction cosine of vector with Mechanical Reference Frame z-axis

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 52.            VGX1B Record Format

Column #

VGX1B

X-Band antenna offset vector and switch time (TDB)

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000 in TDB

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Magnitude of vector (m) for active antenna in mechanical reference frame

4.

Direction cosine of vector with Mechanical Reference Frame x-axis

5.

Direction cosine of vector with Mechanical Reference Frame y-axis

6.

Direction cosine of vector with Mechanical Reference Frame z-axis

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 53.            VKB1B Record Format

Column #

VKB1B

Ka-Band Boresight Vector

1.

TDB, seconds past 12:00:00 noon 01-Jan-2000

2.

GRAIL satellite ID ‘A’ or ‘B’

3.

Magnitude of vector (m) for active antenna in science reference frame for VKB1B

4.

Direction cosine of vector with Science Reference Frame x-axis

5.

Direction cosine of vector with Science Reference Frame y-axis

6.

Direction cosine of vector with Science Reference Frame z-axis

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

Table 54.            WRS1B Record Format

Column #

WRS1B

Level 1B Wheel rotational speed data

1.

TDB Activation time, integer seconds past 12:00:00 noon 01-01-2000

2.

Activation time, microseconds part

3.

Time reference frame where 'T' = TDB time

4.

GRAIL satellite id ‘A’ or ‘B’

5.

Reaction wheel 1 rotational speed as determined by digital tachometer (radians/sec)

6.

Reaction wheel 2 rotational speed as determined by digital tachometer (radians/sec)

7.

Reaction wheel 3 rotational speed as determined by digital tachometer (radians/sec)

8.

Reaction wheel 4 rotational speed as determined by digital tachometer (radians/sec)

7.

data quality flags (digit 0 is on the right and digit 7 is on the left)

Set digits (value = 1) have the following meanings:

digit 0 = Not Defined

digit 1 = Not Defined

digit 2 = Not Defined

digit 3 = Not Defined

digit 4 = Not Defined

digit 5 = Not Defined

digit 6 = Not Defined

digit 7 = Not Defined

 

5.2.3            RSS EDR Products

 

For all products all except XFR, TDM and BTM, see documentation in Table 2 for format descriptions.

 

TDMs and BTMs are in ASCII format and are delimited by a single white space as described in Tables 55 and 56.

 

Table 55.            BTM Record Format

Column #

BTM

Biased Tracking Data Message – Biased X-Band Sky Frequency relative to frequency offset, from RSR data recorded at the DSN

1.

Data Field: set to RECEIVE_FREQ_2 for GRAIL 1-way downlink

2.

= sign

3.

UTC Earth Received Time in YYYY-MM-DDThh:mm:ss.###

4.

Frequency (Hz), defined as sky frequency minus FREQ_OFFSET as provided  in metadata section

 

Table 56.            TDM Record Format

Column #

TDM

Tracking Data Message - X-Band Sky Frequency relative to frequency offset, from RSR data recorded at the DSN

1.

Data Field: set to RECEIVE_FREQ_2 for GRAIL 1-way downlink

2.

= sign

3.

UTC Earth Received Time in YYYY-MM-DDThh:mm:ss.###

4.

Frequency (Hz), defined as sky frequency minus FREQ_OFFSET as provided  in metadata section

 

XFR data are in ASCII format and are delimited by a variable number of white spaces as described in Table 53.

 

Table 57.            XFR Record Format

Column #

XFR

X-Band Sky Frequency from RSR data recorded at the DSN

1.

Year (UTC Earth Received Time)

2.

Day of Year (UTC Earth Received Time)

3.

Seconds Past Midnight (UTC Earth Received Time)

4.

Sky Frequency (Hz)

5.

Internal processing parameter generated in the course of creating the XFR but not relevant to GRAIL

6.

Internal processing parameter generated in the course of creating the XFR but not relevant to GRAIL

 

 

5.3            Header Descriptions

 

5.3.1            Headers for LGRS EDR

 

Header information for S7200, S7300, and STC00 in LGRS EDR is found in the respective documentation in the DOCUMENT directory.

                                         

DTC00, EHK00, SAE00, SCA00, THR00, and WRS00 data files have four-row headers which contain standard description abbreviations from the GDS system. One of the rows contains, as a guideline only, format descriptions of the minimum number of digits in the data field.

 

LTB00 data files contain no header.

 

MAS00 data files have a four-row header. The column headers describe the data which follow.

 

TDE00 data files have a two-row header which includes a reference start time.

 

5.3.2            Headers for LGRS CDR

 

Each Level 1A or 1B ASCII data file contains a header with records of (at most) 80 bytes. The last ASCII header record is labeled "END OF HEADER" and is not counted in the number of header records. After the last header record, one or more data records follow.

 

The ASCII header for each format contains information similar to the following, with a variable number of lines being possible (a CLK1B header for GRAIL-B is used as an example):

 

PRODUCER AGENCY               : NASA

PRODUCER INSTITUTION          : JPL

FILE TYPE ipCLK1BF            : 17

FILE FORMAT 0=BINARY 1=ASCII  : 1

NUMBER OF HEADER RECORDS      : 23

SOFTWARE VERSION              : $Id: CombineLevel1.c 422 08-14/12 20:25:58 mp $

SOFTWARE LINK TIME            : @(#) 2012-08-20 18:03:05 mpaik  nearside.fltops

REFERENCE DOCUMENTATION       : GRAIL Level 1 Software Handbook

SATELLITE NAME                : GRAIL A

SENSOR NAME                   : N/A

TIME EPOCH                    : 2000-01-01 12:00:00

TIME FIRST OBS(SEC PAST EPOCH): 384177600.000000 (2012-03-05 00:00:00.00)

TIME LAST OBS(SEC PAST EPOCH) : 384263990.000000 (2012-03-05 23:59:50.00)

NUMBER OF DATA RECORDS        : 8640

PRODUCT CREATE START TIME(UTC): 2012-08-21 01:32:22 by mpaik

PRODUCT CREATE END TIME(UTC)  : 2012-08-21 01:32:23 by mpaik

FILESIZE (BYTES)              : 572688

FILENAME                      : CLK1B_2012-03-05_A_02.asc

PROCESS LEVEL (1A OR 1B)      : 1B

INPUT FILE NAME               : CLK1B<-CLK1B_2012-03-01_A_00.dat_2012-07_04

INPUT FILE TIME TAG (UTC)     : CLK1B<-2011-01-31 20:56:03 by mpaik

INPUT FILE SOFTWARE VERSION   : CLK1B<-CombineLevel1.c 1.39 04/21/10 13:08:57 g

INPUT FILE LINKTIME TAG       : CLK1B<-2009-12-22 10:14:18 mpaik  itzhak

END OF HEADER

 

5.3.3            Headers for LGRS RDR

 

 

Header  information for all LGRS RDR data types is found in the respective documentation in the DOCUMENT directory.

 

5.3.4            Headers for RSS EDR

 

 

Header information for all RSS EDR data types except TDM, BTM, and XFR is found in the respective documentation in the DOCUMENT directory.

 

XFR data files contain no header.

 

Each TDM or BTM contains a header similar to the following:

 

CCSDS_TDM_VERS = 1.0

COMMENT CREATED BY RADIO SCIENCE SYSTEMS GROUP 332K JPL

CREATION_DATE  = 2012-03-02T04:37:03

ORIGINATOR     = NASA/JPL/DSN

 

The header is followed by a metadata description similar to the following:

 

META_START

COMMENT SKY FREQUENCY COMPUTED FROM OPEN-LOOP DATA

TIME_SYSTEM            = UTC

START_TIME             = 2012-03-01T12:32:18.500

STOP_TIME              = 2012-03-02T00:53:30.500

PARTICIPANT_1          = GRAIL-A

PARTICIPANT_2          = DSS-65

MODE                   = SEQUENTIAL

PATH                   = 1,2

RECEIVE_BAND           = X

TURNAROUND_NUMERATOR   = 880

TURNAROUND_DENOMINATOR = 240

TIMETAG_REF            = RECEIVE

INTEGRATION_INTERVAL   = 1.000

INTEGRATION_REF        = MIDDLE

FREQ_OFFSET            = 8451600000

META_STOP

 

The data records are preceded by the string DATA_START and followed by the string DATA_STOP.

 

 

6           Applicable Software

 

All products have already been processed with the appropriate software by the GRAIL SDS. Software in this archive is provided as an example only. The SOFTWARE directory contents are listed in table 2.9 of the Archive Volume SIS [16].

 

6.1            Utility Programs

 

The SOFTWARE directory on the GRAIL_0001 volume (GRAIL-L-LGRS-2-EDR-V1.0) contains utilities or application programs to aid the user in viewing or extracting data from the Level 0 data product files. The codes are provided as illustrations of how to extract the Blackjack packets from Blackjack binary data. See section 4.2.1 for a description of Blackjack.

 

 

7           Appendices

 

7.1            Glossary

 

Barycenter - center of mass; the unique point where the weighted relative position of a distributed mass sums to zero.

 

Barycentric Dynamical Time - the independent argument of ephemerides and dynamical theories that are referred to the solar system barycenter. See http://tycho.usno.navy.mil/systime.html for more information.

 

Base Time Clock (BTC) - On-board satellite clock, comparable in stability to a wristwatch. Roughly synced to UTC at launch time.

 

Coordinated Universal Time (UTC) - differs from International Atomic Time by an integral number of seconds. See http://tycho.usno.navy.mil/systime.html for more information.

 

Blackjack - a data format utilized by the science instruments on board the GRACE and GRAIL projects to encode telemetry.

 

Dual One Way Range (DOWR) - instantaneous measurement of distance, including a bias, between two spacecraft, which is formed by the combination of a range signal from spacecraft A to spacecraft B and from spacecraft B to spacecraft A.

 

Ephemeris - a table of values that gives the positions of astronomical objects at given times.

 

Gravity Recovery Processor Assembly (GPA) - the equipment that combines all the inputs received from the microwave assembly and the time transfer assembly to produce the radiometric data that are downlinked to the ground.

 

International Atomic Time (TAI) - the International Atomic Time scale, a statistical timescale based on a large number of atomic clocks. See http://tycho.usno.navy.mil/systime.html for more information.

 

Inertial Measurement Unit - an electronic device that measures and reports on a spacecraft's rotational velocities and accelerations experienced by the instrument.

 

Ka-Band - part of the microwave electromagnetic spectrum between 26.5 and 40 GHz.

 

Kalman filter - an algorithm which uses a series of measurements observed over time, containing noise (random variations) and other inaccuracies, and produces estimates of unknown variables that tend to be more precise than those that would be based on a single measurement alone.

 

Lunar Gravity Ranging System - The equipment responsible for sending and receiving the signals needed to accurately and precisely measure the changes in range between the two orbiters. Consists of an Ultra-Stable Oscillator (USO), Microwave Assembly (MWA), a Time-Transfer Assembly (TTA), and the Gravity Recovery Processor Assembly (GPA).

 

Microwave Assembly (MWA) - the equipment that converts the USO reference signal to Ka-band frequency, which is transmitted to the other orbiter.

 

Open Loop - does not use feedback to determine if the output has achieved the desired goal of the input.

 

Quaternion - A vector with four components that describes the attitude of a spacecraft.  [36].

 

Radio Science - Utilization of the telecommunication links between spacecraft and Earth for scientific application involving examination of (sometimes very small) changes in the phase/frequency, amplitude, and/or polarization of radio signals.

 

Radio Science Receiver - a computer-controlled open loop receiver that digitally down-converts and records a spacecraft signal spectrum using an analog-to-digital converter (ADC) and up to four digital filter sub-channels.

 

Real Time Clock (RTC) - Flight software clock. Set to 0 when booted. Relatively unstable clock.

 

S-Band  - part of the microwave electromagnetic spectrum between 2 and 4 GHz.

 

Science Data System (SDS) - the infrastructure at NASA’s Jet Propulsion Laboratory (JPL) for the collection of all science and ancillary data relevant to the GRAIL mission. Includes hardware, software tools, procedures, and trained personnel. The SDS receives science packets and engineering data and carries out calibration, editing, and processing to produce NASA Level 1A and 1B GRAIL science data.

 

Time Transfer Assembly (TTA) - the equipment that generates an S-band signal from the USO reference frequency and sends a GPS-like ranging code to the other spacecraft. The function of the TTA is to provide a two-way time-transfer link between the spacecraft to both synchronize and measure the clock offset between the two LGRS clocks.

 

Ultra Stable Oscillator - electronic assembly that provides a highly stable timing and frequency reference signal onboard a spacecraft that is used by all of the instrument subsystems, typically based on ovenized quartz crystal or Rubidium atomic standard.

 

X-Band - part of the microwave radio region of the electromagnetic spectrum between 7 and 12 GHz.

 

 

7.2            Acronyms

ACS

Attitude control system

ADC

Analog-Digital Converter

AMMOS

Advanced Multi-Mission Operations System

ASCII

American Standard Code for Information Interchange

BTC

Base Time Clock

CCK

Spacecraft Orientation Kernel

CDR

Calibrated Data Record

CODMAC

Committee on Data Management, Archiving, and Computation

DOWR

Dual One Way Range

DSCC

Deep Space Communications Complex

DRF

Data Record File

DSN

Deep Space Network

DTE

Direct to Earth

EDR

Experimental Data Record

EPS

Epsilon

FTS

Frequency and Timing Subsystem

GDS

Ground Data System

GHz

gigahertz

GRACE

Gravity Recovery and Climate Experiment

GRAIL

Gravity Recovery and Interior Laboratory

GRLSCI

GRAIL Science

ICRF

International Celestial Reference Frame

IMU

Inertial Measurement Unit

JPL

Jet Propulsion Laboratory

KBR

Ka-Band Ranging System

LGA

Low Gain Antenna

LGRS

Lunar Gravity Ranging System

LSK

Leap Second Kernel

MF

Mechanical Frame

MMDOM

Multi-Mission Distributed Object Manager

MOC

Mission Operations Center

MOS

Mission Operations System

NAIF

Navigation and Ancillary Information Facility

NASA

National Aeronautics and Space Administration

ODF

Orbit Data File

OMC

Operations and Maintenance Contract

OSC

Onboard Spacecraft Clock

PDS

Planetary Data System

PPS

Pulse per Second

RDR

Reduced Data Record

RODAN

Radio Occultation Data Analysis Network

RSB

Radio Science Beacon

RSDMAP

Radio Science Digital Map

RSR

Radio Science Receiver

RSS

Radio Science Systems

RTC

Real-Time Clock

SABC

Solar Array Battery Control

SBR

S-Band Ranging System

SCA

Star Tracker Assembly

SCLK

Spacecraft Clock Kernel

SDS

Science Data System

SF

Satellite Frame

SFDU

Standard Formatted Data Unit

SIS

Software Interface Specification

SHADR

Spherical Harmonic ASCII Data Record

SHBDR

Spherical Harmonic Binary Data Record

SOE

Sequence of Events file

SPICE

S- Spacecraft ephemeris, given as a function of time.

P- Planet, satellite, comet, or asteroid ephemerides, or more generally, location of any target body, given as a function of time.

The P kernel also logically includes certain physical, dynamical and cartographic constants for target bodies, such as size and shape specifications, and orientation of the spin axis and prime meridian.

I-  Instrument description kernel, containing descriptive data peculiar to a particular scientific instrument, such as field-of-view size, shape and orientation parameters.

C- Pointing kernel, containing a transformation, traditionally called the C-matrix, which provides time-tagged pointing (orientation) angles for a spacecraft structure upon which science instruments are mounted. May also include angular rate data.

E- Events kernel, summarizing mission activities - both planned and unanticipated. Events data are contained in the SPICE EK file set, which consists of three components: Science Plans, Sequences, and Notes.

SPK

Spacecraft and Planetary Ephemeris Kernel

SRF

Science Reference Frame

TAI

International Atomic Time

TBD

To Be Done

TDB

Barycentric Dynamical Time

TDS

Telemetry Delivery System

TTS

Time Transfer System

USO

Ultra-Stable Oscillator

UTC

Coordinated Universal Time

V/V

Volts per Volt

 

 

7.3            Example PDS Labels

 

7.3.1            LGRS EDR

 

Products in the LGRS EDR data set (GRAIL-L-LGRS-2-EDR-V1.0) all have labels similar to the following:

 

PDS_VERSION_ID        = PDS3

RECORD_TYPE           = UNDEFINED

INSTRUMENT_NAME       = "LUNAR GRAVITY RANGING SYSTEM A"

TARGET_NAME           = "MOON"

DATA_SET_ID           = "GRAIL-L-LGRS-2-EDR-V1.0"

MISSION_NAME          = "GRAVITY RECOVERY AND INTERIOR LABORATORY"

INSTRUMENT_HOST_NAME  = "GRAVITY RECOVERY AND INTERIOR LABORATORY A"

PRODUCT_ID            = "STC00_2012_03_01_A_02.DAT"

FILE_NAME             = "STC00_2012_03_01_A_02.DAT"

ORIGINAL_PRODUCT_ID   = "TIME_CORR_A.SFDU"

START_TIME            = 2012-061T00:00:00

STOP_TIME             = 2012-061T23:59:59

PRODUCT_CREATION_TIME = 2012-061T23:59:59

OBSERVATION_TYPE      = SCIENCE

PRODUCER_ID           = "SDS"

NOTE                  = "Time Correlation SFDU"

^DESCRIPTION          = {"0161_TELECOMM_L5_8.TXT",

                         "0171_TELECOMM_NJPL_L5.TXT",

                         "090_REVC_1.TXT",

                         "0172_TELECOMM_CHDO_REVE_L5.TXT"}

END

 

 

7.3.2            LGRS CDR

 

Products in the LGRS CDR data set (GRAIL-L-LGRS-3-CDR-V1.0) all have labels similar to the following:

 

PDS_VERSION_ID        = PDS3

RECORD_TYPE           = STREAM

INSTRUMENT_NAME       = "LUNAR GRAVITY RANGING SYSTEM A"

TARGET_NAME           = "MOON"

DATA_SET_ID           = "GRAIL-L-LGRS-3-CDR-V1.0"

MISSION_NAME          = "GRAVITY RECOVERY AND INTERIOR LABORATORY"

INSTRUMENT_HOST_NAME  = "GRAVITY RECOVERY AND INTERIOR LABORATORY A"

PRODUCT_ID            = "CLK1A_2012_03_01_A_02.ASC"

FILE_NAME             = "CLK1A_2012_03_01_A_02.ASC"

ORIGINAL_PRODUCT_ID   = "CLK1A_2012-03-01_A_02.ASC"

START_TIME            = 2012-061T12:43:45

STOP_TIME             = 2012-061T22:53:47

PRODUCT_CREATION_TIME = 2012-234T01:05:25

OBSERVATION_TYPE      = SCIENCE

PRODUCER_ID           = "SDS"

NOTE                  = "Level 1A TDB to LGRS time correlation.

                         See Table 11 in DPSIS.PDF for format."

^DESCRIPTION          = "DPSIS.PDF"

END

 

7.3.3            RSS EDR

Labels in the RSS EDR data set (GRAIL-L-RSS-2-EDR-V1.0) may be minimal or full.

7.3.3.1        BTM, EOP, ION, TDM, TNF, TRO, WEA, & XFR

 

Data products BTM, EOP, ION, TDM, TNF [22], TRO, WEA, and XFR have labels similar to the following:

PDS_VERSION_ID        = PDS3

RECORD_TYPE           = UNDEFINED

INSTRUMENT_NAME       = "LUNAR GRAVITY RANGING SYSTEM A"

TARGET_NAME           = "MOON"

DATA_SET_ID           = "GRAIL-L-RSS-2-EDR-V1.0"

MISSION_NAME          = "GRAVITY RECOVERY AND INTERIOR LABORATORY"

INSTRUMENT_HOST_NAME  = "GRAVITY RECOVERY AND INTERIOR LABORATORY A"

PRODUCT_ID            = "GRALUGF2012_148_0520SMMMV1.TNF"

FILE_NAME             = "GRALUGF2012_148_0520SMMMV1.TNF"

START_TIME            = 2012-148T05:20:00

STOP_TIME             = 2012-149T06:52:53

PRODUCT_CREATION_TIME = 2012-209T22:28:18

OBSERVATION_TYPE      = SCIENCE

PRODUCER_ID           = "DSN"

DESCRIPTION           = "

    The TNF data type captures radiometric tracking data for delivery

    to navigation and radio science users from the Telecommunications

    Services at JPL.  The product replaces data types formerly known

    as Orbit Data Files, Archival Tracking Data Files, and others.

    Format and content of the TNF data product is documented in:

 

                              820-013

                   Deep Space Mission System (DSMS)

                   External Interface Specification

                            JPL D-16765

                             TRK-2-34

               DSMS Tracking System Data Archival Format

                      Jet Propulsion Laboratory

                        4800 Oak Grove Drive

                      Pasadena, CA  91109-8099

 

    Background information on the radiometric system may be found in:

 

             Formulation for Observed and Computed Values

           of Deep Space Network Data Types  for Navigation

                         by Theodore D. Moyer

                  JPL Publication 00-7, October 2000

     Monograph 2, Deep Space Communications and Navigation Series

                      Jet Propulsion Laboratory

                        4800 Oak Grove Drive

                      Pasadena, CA  91109-8099        "

END

 

7.3.3.2        ODF, OLF, and BOF

 

The ODF products have labels as follows. The OLF or BOF label is similar, with minor differences.

 

PDS_VERSION_ID               = PDS3

RECORD_TYPE                  = FIXED_LENGTH

RECORD_BYTES                 = 36

FILE_RECORDS                 = 64288

DATA_SET_ID                  = "GRAIL-L-RSS-2-EDR-V1.0"

TARGET_NAME                  = "MOON"

INSTRUMENT_HOST_NAME         = "GRAVITY RECOVERY AND INTERIOR 

                                LABORATORY A"

INSTRUMENT_NAME              = "LUNAR GRAVITY RANGING SYSTEM A"

INSTRUMENT_ID                = "LGRS-A"

PRODUCER_ID                  = "DSN"

MISSION_NAME                 = "GRAVITY RECOVERY AND INTERIOR   

                                LABORATORY"

OBSERVATION_TYPE             = "SCIENCE"

DSN_STATION_NUMBER           = {45,24}

PRODUCT_CREATION_TIME        = 2012-151T17:12:37

PRODUCT_ID                   = "GRALUGF2012_148_0605SMMMV1.ODF"

ORIGINAL_PRODUCT_ID          = "GRALUGF2012_148_0605SMMMV1.ODF"

START_TIME                   = 2012-148T06:05:08

STOP_TIME                    = 2012-149T06:45:16

HARDWARE_MODEL_ID            = "TDDS"

SOFTWARE_NAME                = "AMMOS"

DESCRIPTION                  = "Orbit Data Files (ODFs) are

    produced by the NASA/JPL Multi-Mission Navigation Radio

    Metric Data Conditioning Team for use in determining

    spacecraft trajectories, gravity fields affecting them,

    and radio propagation conditions.  Each ODF consists of

    many 36-byte logical records, which fall into 7 primary

    groups plus an End-of-File Group.  An ODF usually

    contains most groups, but may not have all.  The first

    record in each of the 7 primary groups is a header

    record; depending on the group, there may be from zero

    to many data records following each header.  The ODF is

    described in  JPL/DSN Document 820-13, TRK-2-18

    (various versions, with significant changes in April

    1997).  The latest version is included in this archive

    as NAV023_ODF_2_18_Rev3.htm in the DOCUMENT directory."

^ODF1A_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",1)

^ODF1B_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",2)

^ODF2A_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",3)

^ODF2B_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",4)

^ODF3A_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",5)

^ODF3C_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",6)

^ODF4A26_TABLE               = ("MROMAGR2010_363_1716XMMMV1.ODF",58113)

^ODF4B26_TABLE               = ("MROMAGR2010_363_1716XMMMV1.ODF",58114)

^ODF4A43_TABLE               = ("MROMAGR2010_363_1716XMMMV1.ODF",58350)

^ODF4B43_TABLE               = ("MROMAGR2010_363_1716XMMMV1.ODF",58351)

^ODF4A55_TABLE               = ("MROMAGR2010_363_1716XMMMV1.ODF",58512)

^ODF4B55_TABLE               = ("MROMAGR2010_363_1716XMMMV1.ODF",58513)

^ODF8A_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",58652)

^ODF8B_TABLE                 = ("MROMAGR2010_363_1716XMMMV1.ODF",58653)

 

OBJECT                       = ODF1A_TABLE

  NAME                         = "FILE LABEL GROUP HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "The File Label Group

     is usually the first of several groups of records in

     an Orbit Data File (ODF). It identifies the spacecraft,

     the file creation time, the hardware, and the software

     associated with the ODF.  The File Label Group Header

     is the first record in the File Label Group.  It is one

     36-byte record and is followed by one 36-byte data

     record.  Occasionally, the File Label Group is omitted

     from an ODF.  The row suffix bytes in the File Label

     Group Header are set to 0."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the type

       of data records to follow.  In the File Label Group Header

       this field is set to 101."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2:  The Secondary Key is not used in

       the ODF.  It is set to 0."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length gives the

       number of 36-byte physical records making up each logical

       record in a File Label Group data record.  For the File Label

       Group it is set to 1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the File

       Label Group Header.  Set to 0, since the File Label Group

       Header, when it appears, is always first."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF1A_TABLE

 

OBJECT                       = ODF1B_TABLE

  NAME                         = "FILE LABEL GROUP DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 7

  ROW_BYTES                    = 36

  DESCRIPTION                  = "The File Label Group

     is usually the first of several groups of records in

     an Orbit Data File (ODF). It identifies the spacecraft,

     the file creation time, the hardware, and the software

     associated with the ODF.  The File Label Group data

     record is the second record in the File Label Group. It

     is one 36-byte record and is preceded by one 36-byte

     File Label Group header record.  Occasionally, the File

     Label Group is omitted from an ODF."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "SYSTEM ID"

    DATA_TYPE        = CHARACTER

    START_BYTE       = 1

    BYTES            = 8

    DESCRIPTION = "Items 1-8:  A character string identifying

       the hardware on which the ODF was created."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "PROGRAM ID"

    DATA_TYPE        = CHARACTER

    START_BYTE       = 9

    BYTES            = 8

    DESCRIPTION = "Items 9-16:  A character string identifying

       the program under which the ODF was created."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "SPACECRAFT ID"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 17

    BYTES            = 4

    DESCRIPTION = "Item 17:  ID number for the spacecraft.  These

         are specified in DSN document OPS-6-8.  Representative

         values include

                          Magellan              18

                          Voyager 1             31

                          Voyager 2             32

                          Clementine            64

                          Galileo Orbiter       77

                          Mars Global Surveyor  94"

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "FILE CREATION DATE"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 21

    BYTES            = 4

    DESCRIPTION = "Item 18:  The date on which the ODF was

       created, given as a single number of the form YYMMDD.

       where

                YY   is the two least significant digits of the year

                MM   is the month (01 through 12)

                DD   is the day of month (01 through 31)"

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 5

    NAME             = "FILE CREATION TIME"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 25

    BYTES            = 4

    DESCRIPTION = "Item 19:  The time at which the ODF was

       created, given as a single number of the form HHMMSS.

       where

                HH   is the two-digit hour (00 through 23)

                MM   is the two-digit minute (00 through 59)

                SS   is the two-digit second (00 through 59)"

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 6

    NAME             = "FILE REFERENCE DATE"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 29

    BYTES            = 4

    DESCRIPTION = "Item 20:  The reference date for ODF

                     time tags -- for example, 19500101

                     for EME50.  Older files which have

                     reference dates of zero will be

                     assumed to be EME50."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 7

    NAME             = "FILE REFERENCE TIME"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 33

    BYTES            = 4

    DESCRIPTION = "Item 21:  The reference time for ODF

                     time tags.  Set to 000000."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF1B_TABLE

 

OBJECT                       = ODF2A_TABLE

  NAME                         = "IDENTIFIER GROUP HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "The Identifier Group

     is usually the second of several groups of records in

     an Orbit Data File (ODF).  It is sometimes used to

     identify contents of data records that follow.  The

     Identifier Group Header is the first record in the

     Identifier Group.  It is one 36-byte record and is

     followed by one 36-byte Identifier Group data record.

     Occasionally the Identifier Group is omitted from an

     ODF.  The row suffix bytes in the Identifier Group

     Header are set to 0."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the type

       of data records to follow.  In the Identifier Group Header

       this field is set to 107."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2:  The Secondary Key is not used in

       the ODF.  It is set to 0."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length gives the

       number of 36-byte physical records making up each logical

       record in an Identifier Group data record.  For the

       Identifier Group it is set to 1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the

       Identifier Group Header.  Usually set to 2, since the

       Identifier Group usually follows the Label Group

       immediately in the ODF."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF2A_TABLE

 

OBJECT                       = ODF2B_TABLE

  NAME                         = "IDENTIFIER GROUP DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 3

  ROW_BYTES                    = 36

  DESCRIPTION                  = "The Identifier Group

     is usually the second of several groups of records in

     an Orbit Data File (ODF).  It is sometimes used to

     identify contents of data records that follow.  The

     Identifier Group data record is the second record in

     the Identifier Group.  It is one 36-byte record and is

     preceded by one 36-byte Identifier Group header record.

     Occasionally the Identifier Group is omitted from an

     ODF."

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 1

    NAME          = "ITEM 1"

    DATA_TYPE     = CHARACTER

    START_BYTE    = 1

    BYTES         = 8

    DESCRIPTION = "Item 1:  A character string sometimes used to

       identify contents of data records to follow.  Often the

       ASCII characters 'TIMETAG' followed by one ASCII 'blank'."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 2

    NAME          = "ITEM 2"

    DATA_TYPE     = CHARACTER

    START_BYTE    = 9

    BYTES         = 8

    DESCRIPTION = "Item 2:  A character string sometimes used to

       identify contents of data records to follow.  Often the

       ASCII characters 'OBSRVBL' followed by one ASCII 'blank'."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 3

    NAME          = "ITEM 3"

    DATA_TYPE     = CHARACTER

    START_BYTE    = 17

    BYTES         = 20

    DESCRIPTION = "Item 3:  A character string sometimes used to

       identify contents of data records to follow.  For example,

       ASCII characters 'OD-SAMPL-ID FRQ RSD '."

  END_OBJECT    = COLUMN

END_OBJECT                   = ODF2B_TABLE

 

OBJECT                       = ODF3A_TABLE

  NAME                         = "ORBIT DATA GROUP HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "The Orbit Data Group

     is usually the third of several groups of records in an

     Orbit Data File (ODF).  It contains the majority of the

     data included in the file.  The Orbit Data Group Header

     is the first record in the Orbit Data Group; it is

     usually followed by many Orbit Data Group data records,

     ordered by time.  All records in the Orbit Data Group

     have 36 bytes.  The row suffix bytes in the Orbit Data

     Group Header are set to 0.  This Orbit Data Group

     follows TRK-2-18, version of 1 August 1996."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the

       type of data records to follow.  In the Orbit Data

       Group Header this field is set to 109."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2:  The Secondary Key is not used in

       the ODF.  It is set to 0."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length gives the

       number of 36-byte physical records making up each logical

       record in an Orbit Data Group data record.  For the Orbit

       Data Group it is set to 1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the

       Orbit Data Group Header.  Since the Orbit Data Group

       usually follows immediately after the File Label Group

       and the Identifier Group, it is usually set to 4."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF3A_TABLE

 

OBJECT                       = ODF3C_TABLE

  NAME                         = "ORBIT DATA GROUP DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 58107

  COLUMNS                      = 6

  ROW_BYTES                    = 36

  DESCRIPTION                  = "The Orbit Data Group

     is usually the third of several groups of records in an

     Orbit Data File (ODF).  It contains the majority of the

     data included in the file.  The Orbit Data Group Header

     is the first record in the Orbit Data Group; it is

     usually followed by many Orbit Data Group data records,

     ordered by time.  All records in the Orbit Data Group

     have 36 bytes.  Their format and content follows the

     specification in TRK-2-18, version of 1 August 1996."

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 1

    NAME          = "TIME TAG - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 1

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 1:  The integer part of the record

       time tag, measured from 0 hours UTC on 1 January 1950.

       The fractional part of the time tag is in Item 2."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 2

    NAME          = "ITEMS 2-3"

    DATA_TYPE     = MSB_BIT_STRING

    START_BYTE    = 5

    BYTES         = 4

    DESCRIPTION = "Items 2-3 of the ODF."

 

    OBJECT        = BIT_COLUMN

      NAME          = "TIME TAG - FRACTIONAL PART"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 1

      BITS          = 10

      UNIT          = MILLISECOND

      DESCRIPTION = "Item 2:  The fractional part of the record

         time tag (see Column 1)."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "PRIMARY RECEIVING STATION DOWNLINK DELAY"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 11

      BITS          = 22

      UNIT          = NANOSECOND

      DESCRIPTION = "Item 3:  Downlink delay for the primary

         receiving station."

    END_OBJECT    = BIT_COLUMN

 

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 3

    NAME          = "OBSERVABLE - INTEGER PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 9

    BYTES         = 4

    DESCRIPTION = "Item 4:  The integer part of the observable.

       The fractional part is in Column 4 (Item 5).  See Item

       10 for the data type stored in these fields.

 

       The Doppler observable (in Hertz) is computed according

       to the following equation.  The time tag  tr  is the

       mid-point of the compression interval  ti  to  tj.

 

          Observable = [B/|B|]*[(Nj-Ni)/(tj-ti) - |Fb*K + B|]

 

       where:

          B  = bias placed on receiver

          Ni = Doppler count at time  ti

          Nj = Doppler count at time  tj

          ti = start time of interval

          tj = end time of interval

 

          K = spacecraft transponder turnaround ratio, which varies

               with band used (see Item 11); set to

                    1       for S-band receivers

                    11/3    for X-band receivers

                    176/27  for Ku-band receivers

                    209/15  for Ka-band receivers

                       (Note: future spacecraft transponders may

                        require different values of K)

 

          Fb = (X1/X2)*(X3*Fr + X4)

                  -Fsc + R3                     for one-way Doppler

             = (X1/X2)*(X3*Fr + X4)

                  -(T1/T2)*(T3*Ft + T4)         for all other Doppler

             where:

                Fr  = receiver (VCO) frequency at time  tr

                Fsc = spacecraft (beacon) frequency

                Ft  = transmitter frequency at time  tr-RTLT

                R3  = 0             for S-band receivers

                    = 0             for X-band receivers

                    = 0             for Ku-band receivers

                    = 0             for Ka-band receivers

                T1  = 240  for S-band transmitters (see Item 12)

                    = 240  for X-band transmitters

                    = 142  for Ku-band transmitters

                    = 14   for Ka-band transmitters

                T2  = 221  for S-band transmitters

                    = 749  for X-band transmitters

                    = 153  for Ku-band transmitters

                    = 15   for Ka-band transmitters

                T3  =  96  for S-band transmitters

                    =  32  for X-band transmitters

                    = 1000 for Ku-band transmitters

                    = 1000 for Ka-band transmitters

                T4  =    0        for S-band transmitters

                    =  6.5 10^9   for X-band transmitters

                    = -7.0 10^9   for Ku-band transmitters

                    =  1.0 10^10  for Ka-band transmitters

                X1 to X4 have the same values as T1 to T4 but

                     are dependent on the exciter band (Item 13)

                RTLT is the round-trip light time

 

       For Doppler data the residual (sometimes called the

       pseudo-residual) is the observed Doppler minus the predicted

       Doppler

 

       The range observable is computed as follows:

 

          Observable = R - C + Z - S

 

       where:

          R = range measurement

          C = station delay calibration

          Z = Z correction, which is the delay resulting from DSN

              station optics that is not included in routine closed

              loop calibrations (C)

          S = spacecraft delay"

 

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 4

    NAME          = "OBSERVABLE - FRACTIONAL PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 13

    BYTES         = 4

    DESCRIPTION = "Item 5:  The fractional part of the

       observable, scaled by 10^9.  See DESCRIPTION under

       Column 3 for details on definition."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 5

    NAME          = "ITEMS 6-19"

    DATA_TYPE     = MSB_BIT_STRING

    START_BYTE    = 17

    BYTES         = 12

    DESCRIPTION = "Items 6-19 of the ODF."

 

    OBJECT        = BIT_COLUMN

      NAME          = "FORMAT ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 1

      BITS          = 3

      DESCRIPTION = "Item 6:  The Format ID.  Set to 2.  If this

         value is 1, the ODF was created on or before 1997-04-14

         and will not be accurately described by this set of

         object definitions.  If FORMAT ID = 1, see:

                   JPL/DSN Document 820-13; Rev A

                      DSN System Requirements

                      Detail Interface Design

                             TRK-2-18

                   DSN Tracking System Interfaces

                     Orbit Data File Interface

                             Mark IVA

                    Effective Date: May 15, 1984"

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "PRIMARY RECEIVING STATION ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 4

      BITS          = 7

      DESCRIPTION = "Item 7:  The ID Number of the primary

         Receiving Station."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "TRANSMITTING STATION ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 11

      BITS          = 7

      DESCRIPTION = "Item 8:  Transmitting Station ID Number.

         Set to zero if quasar VLBI, one-way (Doppler, phase,

          or range), or angles data."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "NETWORK ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 18

      BITS          = 2

      DESCRIPTION = "Item 9:  Network ID Number for primary

         Receiving  Station:  Set to:

                      0   for DSN, Block V exciter

                      1   for other

                      2   for OTS (OVLBI Tracking Subnet, where

                            OVLBI is Orbiting VLBI)"

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "DATA TYPE ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 20

      BITS          = 6

      DESCRIPTION = "Item 10:  Data Type ID Number.

         Allowed data type values include:

            01 = Narrowband spacecraft VLBI, Doppler mode; cycles

            02 = Narrowband spacecraft VLBI, phase mode; cycles

            03 = Narrowband quasar VLBI, Doppler mode; cycles

            04 = Narrowband quasar VLBI, phase mode; cycles

            05 = Wideband spacecraft VLBI; nanoseconds

            06 = Wideband quasar VLBI; nanoseconds

            11 = One-way Doppler; Hertz

            12 = Two-way Doppler; Hertz

            13 = Three-way Doppler; Hertz

            21 = One-way total-count phase; cycles

            22 = Two-way total-count phase; cycles

            23 = Three-way total-count phase; cycles

            36 = PRA Planetary operational discrete spectrum range;

                   range units

            37 = SRA Planetary operational discrete spectrum range;

                   range units

            41 = RE [GSTDN] Range; nanoseconds

            51 = Azimuth angle; degrees

            52 = Elevation angle; degrees

            53 = Hour angle; degrees

            54 = Declination angle; degrees

            55 = X angle (where +X is east); degrees

            56 = Y angle (where +X is east); degrees

            57 = X angle (where +X is south); degrees

            58 = Y angle (where +X is south); degrees

 

         Notes:  Some of the descriptions below refer to 'generic'

                 data types.  These are defined as follows:

 

                 Data Types     Generic Term

                 ----------     ------------

                    01-06       VLBI

                    01-04       Narrowband VLBI

                    05-06       Wideband VLBI

                 03, 04, 06     Quasar

                    11-58       Tracking or TRK

                    01-58       Radiometric"

 

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "DOWNLINK BAND ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 26

      BITS          = 2

      DESCRIPTION = "Item 11:  Downlink Band ID.  Allowed

         values include:

            0 = Not applicable if angle data,

                Ku-band otherwise

            1 = S-band

            2 = X-band

            3 = Ka-band"

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "UPLINK BAND ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 28

      BITS          = 2

      DESCRIPTION = "Item 12:  Uplink Band ID.  Allowed

         values include:

            0 = Not applicable if angle data or 1-way data,

                Ku-band otherwise

            1 = S-band

            2 = X-band

            3 = Ka-band"

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "EXCITER BAND ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 30

      BITS          = 2

      DESCRIPTION = "Item 13: Exciter Band ID.  Allowed

         values include:

            0 = Not applicable if angle data,

                Ku-band otherwise

            1 = S-band

            2 = X-band

            3 = Ka-band"

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "DATA VALIDITY INDICATOR"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 32

      BITS          = 1

      DESCRIPTION = "Item 14:  The data validity flag.  Values are:

         0 = good

         1 = bad"

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 15"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 33

      BITS          = 7

      DESCRIPTION = "Item 15:

                      Second receiving station ID number, if VLBI data;

                      Lowest (last) component, if PRA/SRA range data;

                      Integer seconds of observable, if RE range data;

                      Set to  0,  otherwise."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 16"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 40

      BITS          = 10

      DESCRIPTION = "Item 16:

                      Quasar ID, if VLBI quasar data;

                      Spacecraft ID,  otherwise."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 17"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 50

      BITS          = 1

      DESCRIPTION = "Item 17:

                      Modulus indicator, if wideband VLBI data;

                      Phase Point indicator, if narrowband

                        VLBI data;

                      Receiver/exciter independent flag, if Doppler,

                        phase, or range data (0=no, 1=yes);

                      Set to  0,  otherwise."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 18"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 51

      BITS          = 22

      DESCRIPTION = "Item 18:

                      Reference frequency, high part, milliHertz:

                        Transponder frequency, if one-way Doppler

                          or phase;

                        Receiver frequency, if ramped and not

                          one-way;

                        Transmitter frequency otherwise;

                      Set to  0,  if angles data."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 19"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 73

      BITS          = 24

      DESCRIPTION = "Item 19:  Reference frequency, low part,

         milliHertz.  See DESCRIPTION under Item 18 for details."

    END_OBJECT    = BIT_COLUMN

 

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 6

    NAME          = "ITEMS 20-22"

    DATA_TYPE     = MSB_BIT_STRING

    START_BYTE    = 29

    BYTES         = 8

    DESCRIPTION = "Items 20-22 of the ODF."

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 20"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 1

      BITS          = 20

      DESCRIPTION = "Item 20:

         If narrowband VLBI data:

           (Phase Calibration Flag minus 1) times 100000, plus

             Channel ID Number times 10000.

         If wideband VLBI data:

           (Channel Sampling Flag minus 1) times 100000, plus

             Mode ID number times 10000, plus Modulus high-part

             in 10^-1 nanoseconds.

         If OTS Doppler data:

           Train Axis Angle in millidegrees.

         If PRA/SRA range data:

           Uplink Ranging Transmitter In-Phase Time Offset from

             Sample Timetag in seconds

         Otherwise, set to 0."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 21"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 21

      BITS          = 22

      DESCRIPTION = "Item 21:

         If wideband VLBI data:

           Modulus low-part (units are nanoseconds after the value

             is multiplied by 10^-7).

         If Doppler, phase, or narrowband VLBI data:

           Compression time in hundredths of a second.

         If PRA/SRA range data:

           Highest (first) Component times 100000, plus

             Downlink Ranging Transmitter Coder In-Phase

             Time Offset from Sample Timetag in seconds.

         Otherwise, set to 0."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "ITEM 22"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 43

      BITS          = 22

      DESCRIPTION = "Item 22:

         If VLBI data:

           Second Receiving Station Downlink Delay in nanoseconds.

         If Doppler, phase, or range data:

           Transmitting Station Uplink Delay in nanoseconds.

         Otherwise, set to 0."

    END_OBJECT    = BIT_COLUMN

 

  END_OBJECT    = COLUMN

END_OBJECT                   = ODF3C_TABLE

 

OBJECT                       = ODF4A26_TABLE

  NAME                         = "RAMP GROUP 26 HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "Ramp Groups are

     usually the fourth of several groups of records in an

     Orbit Data File (ODF).  They contain information on

     tuning of receivers or transmitters.  There is usually

     one Ramp Group for each DSN station.  The Ramp Group

     Header is the first record in each Ramp Group.  It is

     one 36-byte record and is followed by one or more 36-

     byte Ramp Group data records.  Data records are time

     ordered within each Ramp Group.  The Ramp Group may be

     omitted from an ODF.  The row suffix bytes in the Ramp

     Group Header are set to 0."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the type

       of data records to follow.  In the Ramp Group Header

       this field is set to 2030."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2: Set to the Station ID Number."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length gives the

       number of 36-byte physical records making up each logical

       record in a Ramp Group data record.  For the Ramp Group

       it is set to 1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the

       Ramp Group Header; packet numbering starts with 0

       for the File Label Group Header."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF4A26_TABLE

 

OBJECT                       = ODF4B26_TABLE

  NAME                         = "RAMP GROUP 26 DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 236

  COLUMNS                      = 9

  ROW_BYTES                    = 36

  DESCRIPTION                  = "Ramp Groups are

     usually the fourth of several groups of records in an

     Orbit Data File (ODF).  They contain information on

     tuning of receivers or transmitters.  There is usually

     one Ramp Group for each DSN station.  The Ramp Group

     Header is the first record in each Ramp Group.  It is

     one 36-byte record and is followed by one or more 36-

     byte Ramp Group data records.  Data records are time

     ordered within each Ramp Group.  The Ramp Group may be

     omitted from an ODF."

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 1

    NAME          = "RAMP START TIME - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 1

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 1:  The integer part of the ramp

       start time, measured from 0 hours UTC on 1 January 1950."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 2

    NAME          = "RAMP START TIME - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 5

    BYTES         = 4

    UNIT          = NANOSECOND

    DESCRIPTION = "Item 2:  The fractional part of the ramp

       start time - see Column 1 (Item 1)."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 3

    NAME          = "RAMP RATE - INTEGER PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 9

    BYTES         = 4

    DESCRIPTION = "Item 3:  The integer part of the ramp

       rate."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 4

    NAME          = "RAMP RATE - FRACTIONAL PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 13

    BYTES         = 4

    DESCRIPTION = "Item 4:  The fractional part of the ramp

       rate, in units of 10^-9 of Column 3."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 5

    NAME          = "ITEMS 5-6"

    DATA_TYPE     = MSB_BIT_STRING

    START_BYTE    = 17

    BYTES         = 4

    DESCRIPTION = "Items 5-6 of the ODF."

 

    OBJECT        = BIT_COLUMN

      NAME          = "RAMP START FREQUENCY - GHZ"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 1

      BITS          = 22

      UNIT          = GIGAHERTZ

      DESCRIPTION   = "Item 5: Ramp Start Frequency, integer GHz.

         If this value is non-zero, Ramp Start Frequency and Ramp

         Rate are at sky level."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "STATION ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 23

      BITS          = 10

      DESCRIPTION   = "Item 6: Receiving/Transmitting Station

         ID Number."

    END_OBJECT    = BIT_COLUMN

 

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 6

    NAME          = "RAMP START FREQUENCY - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 21

    BYTES         = 4

    UNIT          = HERTZ

    DESCRIPTION = "Item 7:  The integer part of the

       Ramp Start Frequency, modulo 10^9."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 7

    NAME          = "RAMP START FREQUENCY - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 25

    BYTES         = 4

    DESCRIPTION = "Item 8:  The fractional part of the

       Ramp Start Frequency, in units of 10^-9 of

       Column 6."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 8

    NAME          = "RAMP END TIME - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 29

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 9:  The integer part of the ramp

       end time, measured from 0 hours UTC on 1 January 1950."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 9

    NAME          = "RAMP END TIME - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 33

    BYTES         = 4

    UNIT          = NANOSECOND

    DESCRIPTION = "Item 10:  The fractional part of the ramp

       end time (see Column 8)."

  END_OBJECT    = COLUMN

END_OBJECT                   = ODF4B26_TABLE

 

OBJECT                       = ODF4A43_TABLE

  NAME                         = "RAMP GROUP 43 HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "Ramp Groups are

     usually the fourth of several groups of records in an

     Orbit Data File (ODF).  They contain information on

     tuning of receivers or transmitters.  There is usually

     one Ramp Group for each DSN station.  The Ramp Group

     Header is the first record in each Ramp Group.  It is

     one 36-byte record and is followed by one or more 36-

     byte Ramp Group data records.  Data records are time

     ordered within each Ramp Group.  The Ramp Group may be

     omitted from an ODF.  The row suffix bytes in the Ramp

     Group Header are set to 0."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the type

       of data records to follow.  In the Ramp Group Header

       this field is set to 2030."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2: Set to the Station ID Number."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length gives the

       number of 36-byte physical records making up each logical

       record in a Ramp Group data record.  For the Ramp Group

       it is set to 1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the

       Ramp Group Header; packet numbering starts with 0

       for the File Label Group Header."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF4A43_TABLE

 

OBJECT                       = ODF4B43_TABLE

  NAME                         = "RAMP GROUP 43 DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 161

  COLUMNS                      = 9

  ROW_BYTES                    = 36

  DESCRIPTION                  = "Ramp Groups are

     usually the fourth of several groups of records in an

     Orbit Data File (ODF).  They contain information on

     tuning of receivers or transmitters.  There is usually

     one Ramp Group for each DSN station.  The Ramp Group

     Header is the first record in each Ramp Group.  It is

     one 36-byte record and is followed by one or more 36-

     byte Ramp Group data records.  Data records are time

     ordered within each Ramp Group.  The Ramp Group may be

     omitted from an ODF."

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 1

    NAME          = "RAMP START TIME - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 1

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 1:  The integer part of the ramp

       start time, measured from 0 hours UTC on 1 January 1950."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 2

    NAME          = "RAMP START TIME - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 5

    BYTES         = 4

    UNIT          = NANOSECOND

    DESCRIPTION = "Item 2:  The fractional part of the ramp

       start time - see Column 1 (Item 1)."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 3

    NAME          = "RAMP RATE - INTEGER PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 9

    BYTES         = 4

    DESCRIPTION = "Item 3:  The integer part of the ramp

       rate."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 4

    NAME          = "RAMP RATE - FRACTIONAL PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 13

    BYTES         = 4

    DESCRIPTION = "Item 4:  The fractional part of the ramp

       rate, in units of 10^-9 of Column 3."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 5

    NAME          = "ITEMS 5-6"

    DATA_TYPE     = MSB_BIT_STRING

    START_BYTE    = 17

    BYTES         = 4

    DESCRIPTION = "Items 5-6 of the ODF."

 

    OBJECT        = BIT_COLUMN

      NAME          = "RAMP START FREQUENCY - GHZ"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 1

      BITS          = 22

      UNIT          = GIGAHERTZ

      DESCRIPTION   = "Item 5: Ramp Start Frequency, integer GHz.

         If this value is non-zero, Ramp Start Frequency and Ramp

         Rate are at sky level."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "STATION ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 23

      BITS          = 10

      DESCRIPTION   = "Item 6: Receiving/Transmitting Station

         ID Number."

    END_OBJECT    = BIT_COLUMN

 

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 6

    NAME          = "RAMP START FREQUENCY - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 21

    BYTES         = 4

    UNIT          = HERTZ

    DESCRIPTION = "Item 7:  The integer part of the

       Ramp Start Frequency, modulo 10^9."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 7

    NAME          = "RAMP START FREQUENCY - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 25

    BYTES         = 4

    DESCRIPTION = "Item 8:  The fractional part of the

       Ramp Start Frequency, in units of 10^-9 of

       Column 6."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 8

    NAME          = "RAMP END TIME - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 29

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 9:  The integer part of the ramp

       end time, measured from 0 hours UTC on 1 January 1950."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 9

    NAME          = "RAMP END TIME - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 33

    BYTES         = 4

    UNIT          = NANOSECOND

    DESCRIPTION = "Item 10:  The fractional part of the ramp

       end time (see Column 8)."

  END_OBJECT    = COLUMN

END_OBJECT                   = ODF4B43_TABLE

 

OBJECT                       = ODF4A55_TABLE

  NAME                         = "RAMP GROUP 55 HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "Ramp Groups are

     usually the fourth of several groups of records in an

     Orbit Data File (ODF).  They contain information on

     tuning of receivers or transmitters.  There is usually

     one Ramp Group for each DSN station.  The Ramp Group

     Header is the first record in each Ramp Group.  It is

     one 36-byte record and is followed by one or more 36-

     byte Ramp Group data records.  Data records are time

     ordered within each Ramp Group.  The Ramp Group may be

     omitted from an ODF.  The row suffix bytes in the Ramp

     Group Header are set to 0."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the type

       of data records to follow.  In the Ramp Group Header

       this field is set to 2030."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2: Set to the Station ID Number."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length gives the

       number of 36-byte physical records making up each logical

       record in a Ramp Group data record.  For the Ramp Group

       it is set to 1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the

       Ramp Group Header; packet numbering starts with 0

       for the File Label Group Header."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF4A55_TABLE

 

OBJECT                       = ODF4B55_TABLE

  NAME                         = "RAMP GROUP 55 DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 139

  COLUMNS                      = 9

  ROW_BYTES                    = 36

  DESCRIPTION                  = "Ramp Groups are

     usually the fourth of several groups of records in an

     Orbit Data File (ODF).  They contain information on

     tuning of receivers or transmitters.  There is usually

     one Ramp Group for each DSN station.  The Ramp Group

     Header is the first record in each Ramp Group.  It is

     one 36-byte record and is followed by one or more 36-

     byte Ramp Group data records.  Data records are time

     ordered within each Ramp Group.  The Ramp Group may be

     omitted from an ODF."

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 1

    NAME          = "RAMP START TIME - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 1

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 1:  The integer part of the ramp

       start time, measured from 0 hours UTC on 1 January 1950."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 2

    NAME          = "RAMP START TIME - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 5

    BYTES         = 4

    UNIT          = NANOSECOND

    DESCRIPTION = "Item 2:  The fractional part of the ramp

       start time - see Column 1 (Item 1)."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 3

    NAME          = "RAMP RATE - INTEGER PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 9

    BYTES         = 4

    DESCRIPTION = "Item 3:  The integer part of the ramp

       rate."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 4

    NAME          = "RAMP RATE - FRACTIONAL PART"

    DATA_TYPE     = MSB_INTEGER

    START_BYTE    = 13

    BYTES         = 4

    DESCRIPTION = "Item 4:  The fractional part of the ramp

       rate, in units of 10^-9 of Column 3."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 5

    NAME          = "ITEMS 5-6"

    DATA_TYPE     = MSB_BIT_STRING

    START_BYTE    = 17

    BYTES         = 4

    DESCRIPTION = "Items 5-6 of the ODF."

 

    OBJECT        = BIT_COLUMN

      NAME          = "RAMP START FREQUENCY - GHZ"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 1

      BITS          = 22

      UNIT          = GIGAHERTZ

      DESCRIPTION   = "Item 5: Ramp Start Frequency, integer GHz.

         If this value is non-zero, Ramp Start Frequency and Ramp

         Rate are at sky level."

    END_OBJECT    = BIT_COLUMN

 

    OBJECT        = BIT_COLUMN

      NAME          = "STATION ID"

      BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

      START_BIT     = 23

      BITS          = 10

      DESCRIPTION   = "Item 6: Receiving/Transmitting Station

         ID Number."

    END_OBJECT    = BIT_COLUMN

 

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 6

    NAME          = "RAMP START FREQUENCY - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 21

    BYTES         = 4

    UNIT          = HERTZ

    DESCRIPTION = "Item 7:  The integer part of the

       Ramp Start Frequency, modulo 10^9."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 7

    NAME          = "RAMP START FREQUENCY - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 25

    BYTES         = 4

    DESCRIPTION = "Item 8:  The fractional part of the

       Ramp Start Frequency, in units of 10^-9 of

       Column 6."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 8

    NAME          = "RAMP END TIME - INTEGER PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 29

    BYTES         = 4

    UNIT          = SECOND

    DESCRIPTION = "Item 9:  The integer part of the ramp

       end time, measured from 0 hours UTC on 1 January 1950."

  END_OBJECT    = COLUMN

 

  OBJECT        = COLUMN

    COLUMN_NUMBER = 9

    NAME          = "RAMP END TIME - FRACTIONAL PART"

    DATA_TYPE     = MSB_UNSIGNED_INTEGER

    START_BYTE    = 33

    BYTES         = 4

    UNIT          = NANOSECOND

    DESCRIPTION = "Item 10:  The fractional part of the ramp

       end time (see Column 8)."

  END_OBJECT    = COLUMN

END_OBJECT                   = ODF4B55_TABLE

 

OBJECT                       = ODF8A_TABLE

  NAME                         = "END OF FILE GROUP HEADER"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 1

  COLUMNS                      = 4

  ROW_BYTES                    = 16

  ROW_SUFFIX_BYTES             = 20

  DESCRIPTION                  = "The End of File Group

     is usually the eighth and last of several groups of

     records in an Orbit Data File (ODF).  It is a single

     record of 36-bytes and denotes the logical end of the

     ODF.  Row  suffix bytes are set to 0."

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 1

    NAME             = "PRIMARY KEY"

    DATA_TYPE        = MSB_INTEGER

    START_BYTE       = 1

    BYTES            = 4

    DESCRIPTION = "Item 1:  The Primary Key indicates the type

       of data records to follow.  In the End of File Group

       this field is set to -1."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 2

    NAME             = "SECONDARY KEY"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 5

    BYTES            = 4

    DESCRIPTION = "Item 2:  The Secondary Key is not used in

       the ODF.  It is set to 0."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 3

    NAME             = "LOGICAL RECORD LENGTH"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 9

    BYTES            = 4

    UNIT             = PACKET

    DESCRIPTION = "Item 3:  The Logical Record Length is set

       to 0 in the End of File Group, indicating that no

       logical records follow."

  END_OBJECT       = COLUMN

 

  OBJECT           = COLUMN

    COLUMN_NUMBER    = 4

    NAME             = "GROUP START PACKET NUMBER"

    DATA_TYPE        = MSB_UNSIGNED_INTEGER

    START_BYTE       = 13

    BYTES            = 4

    DESCRIPTION = "Item 4:  The Group Start Packet Number

       gives the number of the ODF packet containing the

       End of File Group; packet numbering starts with 0

       for the File Label Group Header."

  END_OBJECT       = COLUMN

END_OBJECT                   = ODF8A_TABLE

 

OBJECT                       = ODF8B_TABLE

  NAME                         = "END OF FILE GROUP DATA"

  INTERCHANGE_FORMAT           = BINARY

  ROWS                         = 35

  COLUMNS                      = 1

  ROW_BYTES                    = 36

  DESCRIPTION                  = "The End of File Group Data

     are the last several records in an Orbit Data File

     (ODF).  They are not defined, and simply fill out

     the final 8064-byte logical blocks in the file."

  OBJECT                       = COLUMN

    NAME                         = "SPARE"

    DATA_TYPE                    = MSB_INTEGER

    BYTES                        = 36

    START_BYTE                   = 1

    ITEMS                        = 9

    ITEM_BYTES                   = 4

    ITEM_OFFSET                  = 4

  END_OBJECT                   = COLUMN

END_OBJECT                   = ODF8B_TABLE

 

END

 

 


7.3.3.3        RSR

 

The RSR data product has a label as follows:

 

PDS_VERSION_ID                  = PDS3

RECORD_TYPE                     = FIXED_LENGTH

RECORD_BYTES                    = 4260

FILE_RECORDS                    = 19801

DATA_SET_ID                     = "GRAIL-L-RSS-2-EDR-V1.0"

TARGET_NAME                     = "MOON"

INSTRUMENT_HOST_NAME            = "GRAVITY RECOVERY AND INTERIOR

                                   LABORATORY A"

INSTRUMENT_NAME                 = "LUNAR GRAVITY RANGING SYSTEM A"

MISSION_NAME                    = "GRAVITY RECOVERY AND INTERIOR   

                                   LABORATORY"

OBSERVATION_TYPE                = "SCIENCE"

PRODUCER_ID                     = DSN

DSN_STATION_NUMBER              = 45

NOTE                            = ""

PRODUCT_CREATION_TIME           = 2012-148T11:35:00

PRODUCT_ID                      = "GRALUGF2012148_0605NNNX45RD.1A1"

^TABLE                          = "GRALUGF2012148_0605NNNX45RD.1A1"

START_TIME                      = 2012-148T06:05:00

STOP_TIME                       = 2012-148T11:35:00

SOFTWARE_NAME                   = "UNK"

DOCUMENT_NAME                   = "JPL D-16765"

OBJECT                          = TABLE

  INTERCHANGE_FORMAT              = BINARY

  ROWS                            = 19801

  COLUMNS                         = 72

  ROW_BYTES                       = 4260

  DESCRIPTION                     = "The Radio Science Receiver (RSR) is

  a computer-controlled open loop receiver that digitally records a

  spacecraft signal through the use of an analog to digital converter

  (ADC) and up to four digital filter sub-channels.  The digital samples

  from each sub-channel are stored to disk in one second records in real

  time.  In near real time the one second records are partitioned and

  formatted into a sequence of RSR Standard Format Data Units (SFDUs)

  which are transmitted to the Advanced Multi-Mission Operations System

  (AMMOS) at the Jet Propulsion Laboratory (JPL).  Included in each RSR

  SFDU are the ancillary data necessary to reconstruct the signal

  represented by the recorded data samples.

 

  Each SFDU is defined here as a single row in a PDS TABLE object; later

  SFDUs are later rows.  The first fields in each row contain the ancillary

  data (time tags and frequency estimates, for example) that applied while

  the samples at the end of the record were being collected.  The object

  definitions below explain where the fields are and what the contents

  represent.

 

  Analysis of variations in the amplitude, frequency, and phase of the

  recorded signals provides information on the ring structure, atmospheric

  density, magnetic field, and charged particle environment of planets

  which occult the spacecraft.  Variations in the recorded signal can also

  be used for detection of gravitational waves."

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU CONTROL AUTHORITY"

    COLUMN_NUMBER           = 1

    START_BYTE              = 1

    BYTES                   = 4

    DATA_TYPE               = CHARACTER

    UNIT                    = "N/A"

    DESCRIPTION             = "An ASCII string giving the SFDU

                               Control Authority for this data

                               type.  Set to 'NJPL', meaning the

                               data description information for

                               this type of SFDU is maintained

                               by the NASA/JPL Control Authority."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU LABEL VERSION ID"

    COLUMN_NUMBER           = 2

    START_BYTE              = 5

    BYTES                   = 1

    DATA_TYPE               = CHARACTER

    UNIT                    = "N/A"

    DESCRIPTION             = "An ASCII character giving the SFDU

                               Label Version Identifier.  Set to

                               '2', meaning the length given in

                               bytes 13-20 is formatted as a

                               binary unsigned integer."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU CLASS ID"

    COLUMN_NUMBER           = 3

    START_BYTE              = 6

    BYTES                   = 1

    DATA_TYPE               = CHARACTER

    UNIT                    = "N/A"

    DESCRIPTION             = "An ASCII character giving the SFDU

                               Class Identifier.  Set to 'I',

                               meaning this is a Compressed Header

                               Data Object (CHDO) structured SFDU."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU RESERVED"

    COLUMN_NUMBER           = 4

    START_BYTE              = 7

    BYTES                   = 2

    DATA_TYPE               = MSB_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "These two bytes are not defined."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU DATA DESCRIPTION ID"

    COLUMN_NUMBER           = 5

    START_BYTE              = 9

    BYTES                   = 4

    DATA_TYPE               = CHARACTER

    UNIT                    = "N/A"

    DESCRIPTION             = "An ASCII string giving the SFDU Data

                               Description Identifier.  Set to

                               'C997', a unique identifier for the

                               RSR data type within the NASA/JPL

                               Control Authority."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU RSR LENGTH PAD"

    COLUMN_NUMBER           = 6

    START_BYTE              = 13

    BYTES                   = 4

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "The high-order 32 bits of a 64-bit

                               unsigned binary integer giving the

                               number of remaining bytes in

                               the SFDU after the 20-byte label.

                               Always '0' in the RSR SFDU."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU RSR LENGTH"

    COLUMN_NUMBER           = 7

    START_BYTE              = 17

    BYTES                   = 4

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "BYTE"

    DESCRIPTION             = "The number of remaining bytes in

                               the SFDU after the 20-byte label.

                               Always less than 31000."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "HEADER AGGREGATION CHDO TYPE"

    COLUMN_NUMBER           = 8

    START_BYTE              = 21

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Header Aggregation CHDO Type.  Set

                               to '1', meaning this CHDO is an

                               aggregation of header CHDOs.  The

                               NJPL Control Authority maintains a

                               registry of CHDO types."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "HEADER AGGREGATION CHDO LENGTH"

    COLUMN_NUMBER           = 9

    START_BYTE              = 23

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "BYTE"

    DESCRIPTION             = "Header Aggregation CHDO Length. Set

                               to '232', meaning length of the

                               value field of the Header Aggregation

                               CHDO is 232 bytes (bytes 25-256)."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PRIMARY HEADER CHDO TYPE"

    COLUMN_NUMBER           = 10

    START_BYTE              = 25

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Primary Header CHDO Type.  Set to

                               to '2', meaning this CHDO is a

                               primary header CHDO.  The NJPL

                               Control Authority maintains a

                               registry of CHDO types."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PRIMARY HEADER CHDO LENGTH"

    COLUMN_NUMBER           = 11

    START_BYTE              = 27

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "BYTE"

    DESCRIPTION             = "Primary Header CHDO Length. Set to

                               '4', meaning length of the value

                               field of the Primary Header CHDO is

                               4 bytes (bytes 29-32)."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "MAJOR DATA CLASS"

    COLUMN_NUMBER           = 12

    START_BYTE              = 29

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Major Data Class.  Set to '21',

                               meaning this SFDU contains Radio

                               Science data."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "MINOR DATA CLASS"

    COLUMN_NUMBER           = 13

    START_BYTE              = 30

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Minor Data Class.  Set to '4'.

                               This Major/Minor Data Class

                               combination means the SFDU contains

                               Radio Science RSR data."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "MISSION IDENTIFIER"

    COLUMN_NUMBER           = 14

    START_BYTE              = 31

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Mission Identifier.  Set to '0',

                               meaning the RSR does not use this

                               field.  The value may be changed

                               if the Ground Data System handles

                               the data. If a Mission Identifier

                               is needed, values may be found in

                               DSN document 820-013, OPS-6-21A,

                               Table 3-4."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "FORMAT CODE"

    COLUMN_NUMBER           = 15

    START_BYTE              = 32

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Format Code.  Set to '0'.  The RSR

                               supports only one data format."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SECONDARY HEADER CHDO TYPE"

    COLUMN_NUMBER           = 16

    START_BYTE              = 33

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Secondary Header CHDO Type.  Set to

                               to '104', meaning this CHDO is an

                               RSR secondary header CHDO.  The NJPL

                               Control Authority maintains a

                               registry of CHDO types."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SECONDARY HEADER CHDO LENGTH"

    COLUMN_NUMBER           = 17

    START_BYTE              = 35

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "BYTE"

    DESCRIPTION             = "Secondary Header CHDO Length. Set to

                               '220', meaning length of the value

                               field of the Secondary Header CHDO is

                               220 bytes (bytes 37-256)."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "ORIGINATOR ID"

    COLUMN_NUMBER           = 18

    START_BYTE              = 37

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Originator Identifier.  A value '48'

                               means the data originated within the

                               DSN."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "LAST MODIFIER ID"

    COLUMN_NUMBER           = 19

    START_BYTE              = 38

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Last Modifier Identifier.  A value

                               '48' means the contents of the SFDU

                               were last modified by the DSN."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RSR SOFTWARE ID"

    COLUMN_NUMBER           = 20

    START_BYTE              = 39

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "RSR Software Identifier. The version

                               of the RSR software is indicated by

                               an unsigned binary integer between

                               0 and 65535."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RECORD SEQUENCE NUMBER"

    COLUMN_NUMBER           = 21

    START_BYTE              = 41

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "The Record Sequence Number (RSN)

                               starts at 0 for the first RSR SFDU

                               and increments by 1 for each

                               successive SFDU to a maximum of

                               65535, after which it resets to 0

                               and begins incrementing again.

                               The RSN may be reset at other times,

                               such as when the RSR is started or

                               restarted.  The RSN is provided by

                               the originator of the SFDU and should

                               not be changed during subsequent

                               handling or modification."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SIGNAL PROCESSING CENTER"

    COLUMN_NUMBER           = 22

    START_BYTE              = 43

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Signal Processing Center (SPC)

                               Identifier. Valid numbers include

                                 10   Goldstone

                                 40   Canberra

                                 60   Madrid

                                 21   DTF21"

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DEEP SPACE STATION"

    COLUMN_NUMBER           = 23

    START_BYTE              = 44

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Deep Space Station (DSS) Identifier.

                               This is the DSS identifier listed in

                               the frequency predicts file used to

                               collect the data in this SFDU.  DSS

                               identifiers are listed in DSN

                               document 820-013, OPS-6-3 and include

                               valid numbers such as 14, 15, 25, 43,

                               45, 54, and 63."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RADIO SCIENCE RECEIVER"

    COLUMN_NUMBER           = 24

    START_BYTE              = 45

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Radio Science Receiver (RSR)

                               Identifier.  Values can be in the

                               range 1-16 and specify the RSR used

                               to collect the data in this SFDU.

                               For example,

                                    RSR ID = 1  denotes  RSR1A

                                    RSR ID = 2  denotes  RSR1B

                                    RSR ID = 3  denotes  RSR2A

                               The SPC ID and RSR ID uniquely

                               specify the hardware used in the

                               data acquisition.  SPC 10 has three

                               RSR racks; SPC 40 and SPC 60 each

                               have two.  Each rack has two

                               receivers (A and B).  Except for the

                               analog components in the ADCs, the

                               end-to-end performance of every RSR

                               should be identical."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL IDENTIFIER"

    COLUMN_NUMBER           = 25

    START_BYTE              = 46

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Sub-Channel Identifier.  This can be

                               in the range 1-4 and specifies the

                               RSR sub-channel used to acquire the

                               the data in this SFDU."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SECONDARY HEADER CHDO RESERVED"

    COLUMN_NUMBER           = 26

    START_BYTE              = 47

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "This field is not used."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SPACECRAFT"

    COLUMN_NUMBER           = 27

    START_BYTE              = 48

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Spacecraft Identifier, as listed in

                               the frequency predicts file used to

                               collect the data in this SFDU. Values

                               are assigned by the Deep Space

                               Mission System (DSMS) and are in the

                               range 0-255.  Assignments are given

                               in DSN document 820-013, OPS-6-21A,

                               Table 3-4."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PREDICTS PASS NUMBER"

    COLUMN_NUMBER           = 28

    START_BYTE              = 49

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Predicts Pass Number (range 0-65535)

                               gives the DSN pass number in the

                               predicts file used to collect the

                               data in this SFDU."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "UPLINK FREQUENCY BAND"

    COLUMN_NUMBER           = 29

    START_BYTE              = 51

    BYTES                   = 1

    DATA_TYPE               = CHARACTER

    UNIT                    = "N/A"

    DESCRIPTION             = "The Uplink Frequency Band specified

                               in the predicts file used to collect

                               the data in this SFDU.  Possible

                               values include 'S' (S-Band), 'X' (X-

                               Band), and 'K' (Ka-Band)."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DOWNLINK FREQUENCY BAND"

    COLUMN_NUMBER           = 30

    START_BYTE              = 52

    BYTES                   = 1

    DATA_TYPE               = CHARACTER

    UNIT                    = "N/A"

    DESCRIPTION             = "The Downlink Frequency Band specified

                               in the predicts file used to collect

                               the data in this SFDU.  Possible

                               values include 'S' (S-Band), 'X' (X-

                               Band), and 'K' (Ka-Band)."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "TRACKING MODE"

    COLUMN_NUMBER           = 31

    START_BYTE              = 53

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "The Tracking Mode in use when the

                               data in this SFDU were acquired.

                               Possible values are '1' (one-way),

                               '2' (two-way), and '3' (three-way)."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "UPLINK DSS ID FOR 3-WAY TRACKING"

    COLUMN_NUMBER           = 32

    START_BYTE              = 54

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Deep Space Station (DSS) Identifier

                               for the uplink antenna when

                               TRACKING_MODE=3; otherwise,

                               undefined.  DSS identifiers are

                               listed in DSN document 820-013,

                               OPS-6-3 and include valid numbers

                               such as 14, 15, 25, 43, 45, 54, and

                               63."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "FGAIN"

    COLUMN_NUMBER           = 33

    START_BYTE              = 55

    BYTES                   = 1

    DATA_TYPE               = MSB_INTEGER

    UNIT                    = "DECIBEL HERTZ"

    DESCRIPTION             = "Expected ratio of signal power to

                               noise power in a one Hz bandwidth

                               when the data in this SFDU were

                               collected.  This parameter is used

                               to estimate the sample voltage

                               amplitudes at the RSR output and

                               to compute settings of the

                               sub-channel filter gain so that

                               there is no clipping of the sample

                               values. Possible values are in the

                               range -127 to +128."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "FGAIN IF BANDWIDTH"

    COLUMN_NUMBER           = 34

    START_BYTE              = 56

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "MEGAHERTZ"

    DESCRIPTION             = "IF Bandwidth expected to be in use

                               by the RSR at the time the data in

                               this SFDU were acquired. This value

                               is used to compute the settings of

                               the sub-channel filter gain. Values

                               can be in the range 1-127."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "FROV FLAG"

    COLUMN_NUMBER           = 35

    START_BYTE              = 57

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Frequency Predicts Override Flag.

                               Set to '0', this indicates that the

                               frequency predicts file was in use;

                               any other value indicates that the

                               frequency specified by the FROV

                               command was in use.  The value of

                               the override frequency is given by

                               PREDICTS_FREQUENCY_OVERRIDE in

                               Column 51."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DIG ATTENUATION"

    COLUMN_NUMBER           = 36

    START_BYTE              = 58

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "RSR Digitizer Subassembly (DIG)

                               setting.  Values are in the range

                               0-63, which correspond to 0.5 dB

                               increments in attenuation."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DIG ADC RMS"

    COLUMN_NUMBER           = 37

    START_BYTE              = 59

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Root-mean-square amplitude of about

                               10000 8-bit samples taken from the DIG

                               ADC stream.  Time of the measurement

                               is stored in bytes Columns 39-41."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DIG ADC PEAK"

    COLUMN_NUMBER           = 38

    START_BYTE              = 60

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Peak amplitude from about 10000 8-bit

                               samples taken from the DIG ADC stream.

                               Time for the measurement is stored in

                               Columns 39-41."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DIG ADC YEAR"

    COLUMN_NUMBER           = 39

    START_BYTE              = 61

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "UTC year on which the ADC data were

                               computed.  Values can range over

                               1900-3000."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DIG ADC DAY OF YEAR"

    COLUMN_NUMBER           = 40

    START_BYTE              = 63

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "UTC day-of-year on which the ADC

                               data were computed.  Values can

                               range over 1-366."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DIG ADC SECOND"

    COLUMN_NUMBER           = 41

    START_BYTE              = 65

    BYTES                   = 4

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "SECOND"

    DESCRIPTION             = "UTC second of day on which the ADC

                               data were computed.  Values can

                               range over 0-86400."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SAMPLE RESOLUTION"

    COLUMN_NUMBER           = 42

    START_BYTE              = 69

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "BIT"

    DESCRIPTION             = "Bits per sample in the data in this

                               SFDU.  Valid values are 1, 2, 4, 8,

                               and 16 and are selected by the RSR

                               operator while it is in configure

                               state."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DATA ERROR COUNT"

    COLUMN_NUMBER           = 43

    START_BYTE              = 70

    BYTES                   = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Number of hardware errors encountered

                               while the data in this SFDU were

                               being recorded. Values can range over

                               0-255, but any value greater than 0

                               indicates data may have been

                               corrupted by hardware errors."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SAMPLE RATE"

    COLUMN_NUMBER           = 44

    START_BYTE              = 71

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "KILOSAMPLE PER SECOND"

    DESCRIPTION             = "The rate at which samples were

                               collected in this SFDU. Sample rate

                               or bandwidth is specified by the

                               operator while the RSR is in the

                               configure state."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DDC LO FREQUENCY"

    COLUMN_NUMBER           = 45

    START_BYTE              = 73

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "MEGAHERTZ"

    DESCRIPTION             = "Digital Down Converter (DDC) Local

                               Oscillator (LO) Frequency. This

                               specifies the downconversion applied

                               to the signal in the DIG and DDC.

                               This frequency is needed to compute

                               the sky frequency of the data in

                               this SFDU:

 

                                     Fsky = RFtoIF_LO +

                                            DDC_LO -

                                            NCO_Freq +

                                            Fresid

                               where

 

                                    RFtoIF_LO is in Column 46,

                                    DDC_LO is in Column 45,

                                    NCO_Freq from Columns 61-63, and

                                    Fresid is the signal offset

                                       from DC in the RSR data."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RF-IF LO FREQUENCY"

    COLUMN_NUMBER           = 46

    START_BYTE              = 75

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "MEGAHERTZ"

    DESCRIPTION             = "RF to IF Down Converter Local

                               Oscillator (LO) Frequency. This

                               specifies the total downconversion

                               applied to the signal before it

                               entered the RSR DIG.  The value is

                               subtracted from the RF predict

                               points in order to obtain the

                               frequency of the desired signal at

                               IF.  The RSR selects a default value

                               based on the downlink band: 2000

                               (S-Band), 8100 (X-Band), or 31700

                               (Ka-Band).  This frequency is needed

                               in order to reconstruct the sky

                               frequency of the data contained in

                               this SFDU:

 

                                     Fsky = RFtoIF_LO +

                                            DDC_LO -

                                            NCO_Freq +

                                            Fresid

                               where

 

                                    RFtoIF_LO is in Column 46,

                                    DDC_LO is in Column 45,

                                    NCO_Freq from Columns 61-63, and

                                    Fresid is the signal offset

                                       from DC in the RSR data."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU YEAR"

    COLUMN_NUMBER           = 47

    START_BYTE              = 77

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "UTC year for the SFDU data and

                               models.  Values can range over

                               1900-3000."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU DAY OF YEAR"

    COLUMN_NUMBER           = 48

    START_BYTE              = 79

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "UTC day-of-year for the SFDU

                               data and models.  Values can

                               range over 1-366."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SFDU SECOND"

    COLUMN_NUMBER           = 49

    START_BYTE              = 81

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "SECOND"

    DESCRIPTION             = "UTC seconds of day for the SFDU

                               data and models.  Values can range

                               over 0-86400."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PREDICTS TIME SHIFT"

    COLUMN_NUMBER           = 50

    START_BYTE              = 89

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "SECOND"

    DESCRIPTION             = "The number of seconds added to the

                               time tags of the frequency predicts

                               to shift them in time. This feature

                               allows testing the RSR with old

                               predict files.  The value should be

                               0.0 during normal operations."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PREDICTS FREQUENCY OVERRIDE"

    COLUMN_NUMBER           = 51

    START_BYTE              = 97

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The value of the predicts frequency

                               override specified by the FROV

                               command; this constant value is

                               substituted for the value derived

                               from the predicts.  The flag in

                               Column 35 indicates whether the

                               frequency override is active."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PREDICTS FREQUENCY RATE"

    COLUMN_NUMBER           = 52

    START_BYTE              = 105

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ PER SECOND"

    DESCRIPTION             = "The frequency rate added to the RF

                               frequency predicts as specified by

                               the FRR command. The allowable range

                               is -8000 to +8000 Hz/s."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "PREDICTS FREQUENCY OFFSET"

    COLUMN_NUMBER           = 53

    START_BYTE              = 113

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The total frequency added to the

                               RF frequency predicts as specified

                               the FRO command and the accumulated

                               frequency rate as specified by the

                               FRR command. The allowable

                               range is -8 to +8 MHz."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY OFFSET"

    COLUMN_NUMBER           = 54

    START_BYTE              = 121

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The frequency added to the frequency

                               predicts for this sub-channel as

                               specified by the SFRO command."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RF POINT 1"

    COLUMN_NUMBER           = 55

    START_BYTE              = 129

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The radio frequency at the beginning

                               of the second as calculated from the

                               predicts."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RF POINT 2"

    COLUMN_NUMBER           = 56

    START_BYTE              = 137

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The radio frequency at the middle

                               of the second as calculated from the

                               predicts."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "RF POINT 3"

    COLUMN_NUMBER           = 57

    START_BYTE              = 145

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The radio frequency at the end

                               of the second as calculated from the

                               predicts."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY POINT 1"

    COLUMN_NUMBER           = 58

    START_BYTE              = 153

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The sub-channel frequency at the

                               beginning of the second.  This

                               point is used to create the

                               sub-channel frequency and phase

                               polynomials."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY POINT 2"

    COLUMN_NUMBER           = 59

    START_BYTE              = 161

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The sub-channel frequency at the

                               middle of the second.  This

                               point is used to create the

                               sub-channel frequency and phase

                               polynomials."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY POINT 3"

    COLUMN_NUMBER           = 60

    START_BYTE              = 169

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The sub-channel frequency at the

                               end of the second.  This

                               point is used to create the

                               sub-channel frequency and phase

                               polynomials."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY COEF F1"

    COLUMN_NUMBER           = 61

    START_BYTE              = 177

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The sub-channel frequency polynomial

                               coefficient F1 where the frequency

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 F(t) = F1 +

                                        F2*((t+0.5)/1000) +

                                        F3*((t+0.5)/1000)**2

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY COEF F2"

    COLUMN_NUMBER           = 62

    START_BYTE              = 185

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The sub-channel frequency polynomial

                               coefficient F2 where the frequency

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 F(t) = F1 +

                                        F2*((t+0.5)/1000) +

                                        F3*((t+0.5)/1000)**2

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL FREQUENCY COEF F3"

    COLUMN_NUMBER           = 63

    START_BYTE              = 193

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "HERTZ"

    DESCRIPTION             = "The sub-channel frequency polynomial

                               coefficient F3 where the frequency

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 F(t) = F1 +

                                        F2*((t+0.5)/1000) +

                                        F3*((t+0.5)/1000)**2

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL ACCUMULATED PHASE"

    COLUMN_NUMBER           = 64

    START_BYTE              = 201

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "CYCLE"

    DESCRIPTION             = "The accumulated whole turns of the

                               sub-channel phase at the beginning

                               of the present second.  The phase

                               during this second is the accumulated

                               phase incremented by the phase

                               computed using the coefficients in

                               Columns 65-68."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL PHASE COEF P1"

    COLUMN_NUMBER           = 65

    START_BYTE              = 209

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "CYCLE"

    DESCRIPTION             = "The sub-channel phase polynomial

                               coefficient P1 where the phase

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 P(t) = P1 +

                                        P2*((t+0.5)/1000) +

                                        P3*((t+0.5)/1000)**2 +

                                        P4*((t+0.5)/1000)**3

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL PHASE COEF P2"

    COLUMN_NUMBER           = 66

    START_BYTE              = 217

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "CYCLE"

    DESCRIPTION             = "The sub-channel phase polynomial

                               coefficient P2 where the phase

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 P(t) = P1 +

                                        P2*((t+0.5)/1000) +

                                        P3*((t+0.5)/1000)**2 +

                                        P4*((t+0.5)/1000)**3

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL PHASE COEF P3"

    COLUMN_NUMBER           = 67

    START_BYTE              = 225

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "CYCLE"

    DESCRIPTION             = "The sub-channel phase polynomial

                               coefficient P3 where the phase

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 P(t) = P1 +

                                        P2*((t+0.5)/1000) +

                                        P3*((t+0.5)/1000)**2 +

                                        P4*((t+0.5)/1000)**3

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SUB-CHANNEL PHASE COEF P4"

    COLUMN_NUMBER           = 68

    START_BYTE              = 233

    BYTES                   = 8

    DATA_TYPE               = IEEE_REAL

    UNIT                    = "CYCLE"

    DESCRIPTION             = "The sub-channel phase polynomial

                               coefficient P4 where the phase

                               over a one millisecond interval

                               beginning at t in msec is evaluated

                                 P(t) = P1 +

                                        P2*((t+0.5)/1000) +

                                        P3*((t+0.5)/1000)**2 +

                                        P4*((t+0.5)/1000)**3

                               The coefficients are derived from

                               the frequency points in columns

                               58-60."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SPARES"

    COLUMN_NUMBER           = 69

    BYTES                   = 16

    ITEMS                   = 16

    START_BYTE              = 241

    ITEM_BYTES              = 1

    ITEM_OFFSET             = 1

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "These 16 bytes are undefined."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DATA CHDO TYPE"

    COLUMN_NUMBER           = 70

    START_BYTE              = 257

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Data CHDO Type.  Set to '10', meaning

                               this CHDO contains binary data.  The

                               NJPL Control Authority maintains a

                               registry of CHDO types."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "DATA CHDO LENGTH"

    COLUMN_NUMBER           = 71

    START_BYTE              = 259

    BYTES                   = 2

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "BYTE"

    DESCRIPTION             = "Data CHDO Length. Gives the number of

                               bytes in the value field of the Data

                               CHDO -- the number of bytes containing

                               I and Q samples."

  END_OBJECT              = COLUMN

 

  OBJECT                  = COLUMN

    NAME                    = "SAMPLE WORDS"

    COLUMN_NUMBER           = 72

    START_BYTE              = 261

    BYTES                   = 4000

    ITEMS                   = 1000

    ITEM_BYTES              = 4

    ITEM_OFFSET             = 4

    DATA_TYPE               = MSB_UNSIGNED_INTEGER

    UNIT                    = "N/A"

    DESCRIPTION             = "Each ITEM contains one 32-bit sample

                               word: quadrature (Q) sample data in

                               the 16 most significant bits (MSBs)

                               followed by in-phase (I) sample data

                               in the 16 least significant bits

                               (LSBs).  Within each Q and I word,

                               individual outputs from the analog

                               to digital converters (ADCs) are

                               stored as 1, 2, 4, 8, or 16 bit values

                               in LSB to MSB time order (the sample

                               size is set in Column 42).  For

                               example, if the data were collected

                               using 8-bit samples, the arrangement

                               would be

 

                                    BYTES 1-2

                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                               BITS |1|2|3|4|5|6|7|8|1|2|3|4|5|6|7|8|

                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                    |<------Q2----->|<------Q1----->|

                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 

                                    BYTES 3-4

                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                               BITS |1|2|3|4|5|6|7|8|1|2|3|4|5|6|7|8|

                                    |<------I2----->|<------I1----->|

                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 

                               where (Q1,I1) is the earlier sample

                               and (Q2,I2) was taken later."

  END_OBJECT              = COLUMN

 

END_OBJECT                 = TABLE

 

END

 

 

7.3.4            LGRS RDR

 

Products in the LGRS RDR data set (GRAIL-L-LGRS-5-RDR-V1.0) have labels as follows:

 

7.3.4.1        Radio Science Digital Map Products (RSDMAP)

 

PDS_VERSION_ID               = PDS3

RECORD_TYPE                  = FIXED_LENGTH

RECORD_BYTES                 = 5760

FILE_RECORDS                 = 721

^IMAGE                       = ("JGGRX_0660B_ANOM_L320.IMG",1)

INSTRUMENT_HOST_NAME         = {"GRAVITY RECOVERY AND INTERIOR LABORATORY A",

                                "GRAVITY RECOVERY AND INTERIOR LABORATORY B"}

TARGET_NAME                  = "MOON"

INSTRUMENT_NAME              = {"LUNAR GRAVITY RANGING SYSTEM A",

                                "LUNAR GRAVITY RANGING SYSTEM B"}

DATA_SET_ID                  = "GRAIL-L-LGRS-5-RDR-V1.0"

ORIGINAL_PRODUCT_ID          = "GL0660B_ANOMALY_TRUNCATE_N=320"

PRODUCT_ID                   = "JGGRX_0660B_ANOM_L320.IMG"

PRODUCT_RELEASE_DATE         = 2013-02-05

DESCRIPTION                  = "

 This file contains a digital map of the gravity anomaly derived from

 the JPL GL0660B model of the Moon's gravity field.  Each point gives the

 Lunar gravity anomaly in milligals, which is the difference of the model

 gravity on the geoid from the gravity on a reference sphere

 with semi-major-axis = 1738.0 km, GM = 4902.8003055554 km**3/s**2,

 and zero rotation rate.

 

 The JGGRX_0660B_ANOM_320 gravity anomaly is computed from a truncated

 GL0660B solution (from degree 2 up to degree 320).

 

 The reference for the GL0660B gravity field is KONOPLIVETAL2013,

 published in the Journal of Geophysical Research with the DOI number

 0.1002/jgre.20097."

 

START_TIME                   = 2012-03-01T16:28:00.000

STOP_TIME                    = 2012-05-29T16:36:00.000

PRODUCT_CREATION_TIME        = 2013-02-05T00:00:00.000

PRODUCER_ID                  = "JPL LEVEL-2 TEAM"

 

OBJECT               = IMAGE

  LINES                      = 721

  LINE_SAMPLES               = 1440

  SAMPLE_TYPE                = "PC_REAL"

  SAMPLE_BITS                = 32

  UNIT                       = "MILLIGALS"

  OFFSET                     = 0.0E+00

  SCALING_FACTOR             = 1.0E+00

  DESCRIPTION                = "The Digital Map contains

   values of the gravity anomaly.  The values can be obtained

   by multiplying the sample in the map by SCALING_FACTOR

   and then adding OFFSET.  One milligal equals 0.01 mm/s/s."

END_OBJECT           = IMAGE

 

OBJECT               = IMAGE_MAP_PROJECTION

  ^DATA_SET_MAP_PROJECTION     = "DSMAP.CAT"

  COORDINATE_SYSTEM_TYPE       = "BODY-FIXED ROTATING"

  COORDINATE_SYSTEM_NAME       = PLANETOCENTRIC

  MAP_PROJECTION_TYPE          = "SIMPLE CYLINDRICAL"

  A_AXIS_RADIUS                = 1738.0 <km>

  B_AXIS_RADIUS                = 1738.0 <km>

  C_AXIS_RADIUS                = 1738.0 <km>

  FIRST_STANDARD_PARALLEL      = "N/A"

  SECOND_STANDARD_PARALLEL     = "N/A"

  POSITIVE_LONGITUDE_DIRECTION = "EAST"

  CENTER_LATITUDE              = 0.0 <DEGREE>

  CENTER_LONGITUDE             = 0.0 <DEGREE>

  REFERENCE_LATITUDE           = 0.0 <DEGREE>

  REFERENCE_LONGITUDE          = 0.0 <DEGREE>

  LINE_FIRST_PIXEL             = 1

  LINE_LAST_PIXEL              = 721

  SAMPLE_FIRST_PIXEL           = 1

  SAMPLE_LAST_PIXEL            = 1440

  MAP_PROJECTION_ROTATION      = 0.0 <DEGREE>

  MAP_RESOLUTION               = 4.0 <PIXEL/DEG>

  MAP_SCALE                    = 7583.4556 <M/PIXEL>

  MAXIMUM_LATITUDE             = 90.0 <DEGREE>

  MINIMUM_LATITUDE             = -90.0 <DEGREE>

  EASTERNMOST_LONGITUDE        = 179.75 <DEGREE>

  WESTERNMOST_LONGITUDE        = -180.0 <DEGREE>

  LINE_PROJECTION_OFFSET       = 361.0

  SAMPLE_PROJECTION_OFFSET     = 720.5

END_OBJECT           = IMAGE_MAP_PROJECTION

 

END

 

 

7.3.4.2        Spherical Harmonics ASCII Data Record (SHADR)

 

PDS_VERSION_ID               = "PDS3"

RECORD_TYPE                  = FIXED_LENGTH

RECORD_BYTES                 = 122

FILE_RECORDS                 = 218792

^SHADR_HEADER_TABLE          = ("JGGRX_0660B_SHA.TAB",1)

^SHADR_COEFFICIENTS_TABLE    = ("JGGRX_0660B_SHA.TAB",3)

INSTRUMENT_HOST_NAME         = {"GRAVITY RECOVERY AND INTERIOR LABORATORY A",

                                "GRAVITY RECOVERY AND INTERIOR LABORATORY B"}

TARGET_NAME                  = "MOON"

INSTRUMENT_NAME              = {"LUNAR GRAVITY RANGING SYSTEM A",

                                "LUNAR GRAVITY RANGING SYSTEM B"}

DATA_SET_ID                  = "GRAIL-L-LGRS-5-RDR-V1.0"

OBSERVATION_TYPE             = "GRAVITY FIELD"

ORIGINAL_PRODUCT_ID          = "GL0660B"

PRODUCT_ID                   = "JGGRX_0660B_SHA.TAB"

PRODUCT_RELEASE_DATE         = 2013-02-05

DESCRIPTION                  = "

 This file contains coefficients and related data for the JPL Lunar gravity

 field GL0660B, a 660th degree and order spherical harmonic model. It is

 a JPL gravity field that includes the entire primary mission of

 GRAIL tracking data (March 1, 16:30 to May 29, 16:36:00, 2012).

 

 Some details describing this model are:

   The spherical harmonic coefficients are fully normalized.

   The reference radius = 1738.0 km

   The planetary ephemeris is de421 and defines the lunar body-fixed

       coordinate system.

   A Kaula type power law constraint is applied to the spherical harmonics

       coefficients for degrees >330 (3.6e-4/n^2).

   The weighting of the KBRR data is mostly 0.03 microns/sec.

 

   The second degree Love number solution is k2=0.02405. The second degree

   gravity coefficients of this model do not include the permanent tide.

 

 The reference for the GL0660B gravity field is KONOPLIVETAL2013,

 published in the Journal of Geophysical Research with the DOI number

 0.1002/jgre.20097.

 

 This file is a pair of ASCII tables: a header table and a table of

 436920 coefficients plus a value for GM.  Definitions of the tables

 follow."

 

START_TIME                   = 2012-03-01T16:28:00.000

STOP_TIME                    = 2012-05-29T16:36:00.000

PRODUCT_CREATION_TIME        = 2013-02-05T00:00:00.000

PRODUCER_FULL_NAME           = "JPL LEVEL-2 TEAM"

PRODUCER_INSTITUTION_NAME    = "JET PROPULSION LABORATORY"

PRODUCT_VERSION_TYPE         = "PRELIMINARY"

PRODUCER_ID                  = "GRAIL"

 

 

OBJECT               = SHADR_HEADER_TABLE

ROWS                       = 1

COLUMNS                    = 8

ROW_BYTES                  = 137

ROW_SUFFIX_BYTES           = 107

INTERCHANGE_FORMAT         = ASCII

DESCRIPTION                = "The SHADR header includes

descriptive information about the spherical harmonic

coefficients which follow in SHADR_COEFFICIENTS_TABLE.

The header consists of a single record of eight (delimited)

data columns requiring 137 bytes, a pad of 105 unspecified

ASCII characters, an ASCII carriage-return, and an ASCII

line-feed."

 

  OBJECT                   = COLUMN

    NAME                         = "REFERENCE RADIUS"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 1

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "KILOMETER"

    DESCRIPTION                  = "The assumed reference

    radius of the spherical planet."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "CONSTANT"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 25

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "N/A"

    DESCRIPTION                  = "For a gravity field model

    the assumed gravitational constant GM in kilometers cubed

    per seconds squared for the planet.  For a topography

    model, set to 1."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "UNCERTAINTY IN CONSTANT"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 49

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "N/A"

    DESCRIPTION                  = "For a gravity field model

    the uncertainty in the gravitational constant GM in kilometers

    cubed per seconds squared for the planet.  For a topography

    model, set to 0."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "DEGREE OF FIELD"

    DATA_TYPE                    = ASCII_INTEGER

    START_BYTE                   = 73

    BYTES                        = 5

    FORMAT                       = "I5"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The degree of model field."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "ORDER OF FIELD"

    DATA_TYPE                    = ASCII_INTEGER

    START_BYTE                   = 79

    BYTES                        = 5

    FORMAT                       = "I5"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The order of the model field."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "NORMALIZATION STATE"

    DATA_TYPE                    = ASCII_INTEGER

    START_BYTE                   = 85

    BYTES                        = 5

    FORMAT                       = "I5"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The normalization indicator.

    For gravity field:

        0   coefficients are unnormalized

        1   coefficients are normalized

        2   other."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "REFERENCE LONGITUDE"

    POSITIVE_LONGITUDE_DIRECTION = "EAST"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 91

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "DEGREE"

    DESCRIPTION                  = "The reference longitude for

    the spherical harmonic expansion; normally 0."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "REFERENCE LATITUDE"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 115

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "DEGREE"

    DESCRIPTION                  = "The reference latitude for

    the spherical harmonic expansion; normally 0."

  END_OBJECT               = COLUMN

 

END_OBJECT           = SHADR_HEADER_TABLE

 

OBJECT               = SHADR_COEFFICIENTS_TABLE

  ROWS                     = 218790

  COLUMNS                  = 6

  ROW_BYTES                = 107

  ROW_SUFFIX_BYTES         = 15

  INTERCHANGE_FORMAT       = ASCII

  DESCRIPTION              = "The SHADR coefficients table

  contains the coefficients for the spherical harmonic model.

  Each row in the table contains the degree index m, the

  order index n, the coefficients Cmn and Smn, and the

  uncertainties in Cmn and Smn.  The (delimited) data

  require 107 ASCII characters; these are followed by a pad

  of 13 unspecified ASCII characters, an ASCII carriage-

  return, and an ASCII line-feed."

 

  OBJECT                   = COLUMN

    NAME                         = "COEFFICIENT DEGREE"

    DATA_TYPE                    = ASCII_INTEGER

    START_BYTE                   = 1

    BYTES                        = 5

    FORMAT                       = "I5"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The degree index m of the

    C and S coefficients in this record."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "COEFFICIENT ORDER"

    DATA_TYPE                    = ASCII_INTEGER

    START_BYTE                   = 7

    BYTES                        = 5

    FORMAT                       = "I5"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The order index n of the

    C and S coefficients in this record."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "C"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 13

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The coefficient Cmn

    for this spherical harmonic model."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "S"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 37

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The coefficient Smn

    for this spherical harmonic model."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "C UNCERTAINTY"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 61

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The uncertainty in the

    coefficient Cmn for this spherical harmonic model."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "S UNCERTAINTY"

    DATA_TYPE                    = ASCII_REAL

    START_BYTE                   = 85

    BYTES                        = 23

    FORMAT                       = "E23.16"

    UNIT                         = "N/A"

    DESCRIPTION                  = "The uncertainty in the

    coefficient Smn for this spherical harmonic model."

  END_OBJECT               = COLUMN

 

END_OBJECT           = SHADR_COEFFICIENTS_TABLE

 

END

 

 

7.3.4.3        Spherical Harmonics Binary Data Record (SHBDR)

 

PDS_VERSION_ID               = "PDS3"

FILE_NAME                    = "JGGRX_0660B_SHB_L50.DAT"

 

RECORD_TYPE                  = FIXED_LENGTH

RECORD_BYTES                 = 512

FILE_RECORDS                 = 52835

^SHBDR_HEADER_TABLE          = ("JGGRX_0660B_SHB_L50.DAT",1)

^SHBDR_NAMES_TABLE           = ("JGGRX_0660B_SHB_L50.DAT",2)

^SHBDR_COEFFICIENTS_TABLE    = ("JGGRX_0660B_SHB_L50.DAT",43)

^SHBDR_COVARIANCE_TABLE      = ("JGGRX_0660B_SHB_L50.DAT",84)

 

INSTRUMENT_HOST_NAME         = {"GRAVITY RECOVERY AND INTERIOR LABORATORY A",

                                "GRAVITY RECOVERY AND INTERIOR LABORATORY B"}

TARGET_NAME                  = "MOON"

INSTRUMENT_NAME              = {"LUNAR GRAVITY RANGING SYSTEM A",

                                "LUNAR GRAVITY RANGING SYSTEM B"}

DATA_SET_ID                  = "GRAIL-L-LGRS-5-RDR-V1.0"

OBSERVATION_TYPE             = "GRAVITY FIELD"

PRODUCT_ID                   = "JGGRX_0660B_SHB_L50.DAT"

PRODUCT_RELEASE_DATE         = 2012-07-31

DESCRIPTION                  = "

 This file contains coefficients and related data for the JPL Lunar gravity

 field GL0660B, a 660th degree and order spherical harmonic model. It is

 a JPL gravity field that includes the entire primary mission of

 GRAIL tracking data (March 1, 16:30 to May 29, 16:36:00, 2012).

 

 Some details describing this model are:

   The spherical harmonic coefficients are fully normalized.

   The reference radius = 1738.0 km

   The planetary ephemeris is de421 and defines the lunar body-fixed

       coordinate system.

   A Kaula type power law constraint is applied to the spherical harmonics

       coefficients for degrees >330 (3.6e-4/n^2).

   The weighting of the KBRR data is mostly 0.03 microns/sec.

 

   The second degree Love number solution is k2=0.02405. The second degree

   gravity coefficients of this model do not include the permanent tide.

 

 This product contains the truncated n=50 covariance of the GL0660B

 gravity model or JGGRX_0660B_SHA.

 

 The reference for the GL0660B gravity field is KONOPLIVETAL2013,

 published in the Journal of Geophysical Research with the DOI number

 0.1002/jgre.20097.

 

 This product is a set of binary tables:

 a header table, a names table, a coefficients table, and a covariance

 table. Definitions of the tables follow. This GRAIL moon gravity model

 is in the form of a Spherical Harmonics Binary Data Record (SHBDR)."

 

START_TIME                   = 2012-03-01T16:28:00.000

STOP_TIME                    = 2012-05-29T16:36:00.000

PRODUCT_CREATION_TIME        = 2013-06-06T00:00:00.000

PRODUCER_FULL_NAME           = "JPL LEVEL-2 TEAM"

PRODUCER_INSTITUTION_NAME    = "JET PROPULSION LABORATORY"

PRODUCT_VERSION_TYPE         = "PRELIMINARY"

PRODUCER_ID                  = "GRAIL"

 

/* Structure Objects */

 

OBJECT                     = SHBDR_HEADER_TABLE

  ROWS                       = 1

  COLUMNS                    = 9

  ROW_BYTES                  = 56

  INTERCHANGE_FORMAT         = BINARY

  DESCRIPTION                = "The SHBDR Header includes

  descriptive information about the spherical harmonic

  coefficients which follow in SHBDR_COEFFICIENTS_TABLE.

  The header consists of a single record of nine data

  columns requiring 56 bytes.  The Header is followed by

  a pad of binary integer zeroes to ensure alignment

  with RECORD_BYTES."

 

  OBJECT                   = COLUMN

    NAME                         = "REFERENCE RADIUS"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 1

    BYTES                        = 8

    UNIT                         = "KILOMETER"

    DESCRIPTION                  = "The assumed reference

    radius of the spherical planet."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "CONSTANT"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 9

    BYTES                        = 8

    UNIT                         = "N/A"

    DESCRIPTION                  = "For a gravity field model

    the gravitational constant GM in kilometers cubed per seconds

    squared for the planet.  For a topography model, set to 1."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "UNCERTAINTY IN CONSTANT"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 17

    BYTES                        = 8

    UNIT                         = "N/A"

    DESCRIPTION                  = "For a gravity field model

    the uncertainty in the gravitational constant GM in kilometers

    cubed per seconds squared for the planet.  For a topography

    model, set to 0."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "DEGREE OF FIELD"

    DATA_TYPE                    = LSB_INTEGER

    START_BYTE                   = 25

    BYTES                        = 4

    UNIT                         = "N/A"

    DESCRIPTION                  = "Degree of the model field."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "ORDER OF FIELD"

    DATA_TYPE                    = LSB_INTEGER

    START_BYTE                   = 29

    BYTES                        = 4

    UNIT                         = "N/A"

    DESCRIPTION                  = "Order of the model field."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "NORMALIZATION STATE"

    DATA_TYPE                    = LSB_INTEGER

    START_BYTE                   = 33

    BYTES                        = 4

    UNIT                         = "N/A"

    DESCRIPTION                  = "The normalization indicator.

    For gravity field:

        0   coefficients are unnormalized

        1   coefficients are normalized

        2   other."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "NUMBER OF NAMES"

    DATA_TYPE                    = LSB_INTEGER

    START_BYTE                   = 37

    BYTES                        = 4

    UNIT                         = "N/A"

    DESCRIPTION                  = "Number of valid names in

    the SHBDR Names Table.  Also, the number of valid

    coefficients in the SHBDR Coefficients Table."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "REFERENCE LONGITUDE"

    POSITIVE_LONGITUDE_DIRECTION = "EAST"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 41

    BYTES                        = 8

    UNIT                         = "DEGREE"

    DESCRIPTION                  = "The reference longitude for

    the spherical harmonic expansion; normally 0."

  END_OBJECT               = COLUMN

 

  OBJECT                   = COLUMN

    NAME                         = "REFERENCE LATITUDE"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 49

    BYTES                        = 8

    UNIT                         = "DEGREE"

    DESCRIPTION                  = "The reference latitude for

    the spherical harmonic expansion; normally 0."

  END_OBJECT               = COLUMN

 

END_OBJECT           = SHBDR_HEADER_TABLE

 

OBJECT               = SHBDR_NAMES_TABLE

  ROWS                     = 2598

  COLUMNS                  = 1

  ROW_BYTES                = 8

  INTERCHANGE_FORMAT       = BINARY

  DESCRIPTION              = "The SHBDR Names Table

  contains names for the solution parameters (including

  gravity field coefficients) which will follow in

  SHBDR_COEFFICIENTS_TABLE.  The order of the names

  in SHBDR_NAMES_TABLE corresponds identically to the

  order of the parameters in SHBDR_COEFFICIENTS_TABLE.

  Each coefficient  name is of the form  Cij  or  Sij

  where  i  is the degree of the coefficient and  j  is

  the order of the coefficient.  Both indices are three-

  digit zero-filled right-justified ASCII character strings

  (for example,  C010005  for the 10th degree 5th order C

  coefficient, or  S002001  for the 2nd degree 1st order

  S  coefficient).  The eighth byte in the table is an

  ASCII blank used to ensure that the row length

  is equal to RECORD_BYTES.  Names of other solution

  parameters are limited to 8 ASCII characters; if less

  than 8, they will be left-justified and padded with

  ASCII blanks.  The Names Table itself will be padded

  with ASCII blanks, if necessary, so that its length is

  an integral multiple of RECORD_BYTES."

 

  OBJECT                   = COLUMN

    NAME                         = "PARAMETER NAME"

    DATA_TYPE                    = CHARACTER

    START_BYTE                   = 1

    BYTES                        = 8

    UNIT                         = "N/A"

    DESCRIPTION                  = "The name of the

    coefficient or other solution parameter, left-

    justified and padded with ASCII blanks (if needed)

    to 8 characters."

  END_OBJECT               = COLUMN

 

END_OBJECT           = SHBDR_NAMES_TABLE

 

OBJECT               = SHBDR_COEFFICIENTS_TABLE

  ROWS                     = 2598

  COLUMNS                  = 1

  ROW_BYTES                = 8

  INTERCHANGE_FORMAT       = BINARY

  DESCRIPTION              = "The SHBDR Coefficients Table

  contains the coefficients and other solution parameters

  for the spherical harmonic model.  The order of the

  coefficients in this table corresponds exactly to the

  order of the coefficient and parameter names in

  SHBDR_NAMES_TABLE.  The SHBDR Coefficients Table will be

  padded with double precision DATA_TYPE zeroes so that

  its total length is an integral multiple of RECORD_BYTES."

 

  OBJECT                   = COLUMN

    NAME                         = "COEFFICIENT VALUE"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 1

    BYTES                        = 8

    UNIT                         = "N/A"

    DESCRIPTION                  = "A coefficient Cij or

    Sij or other solution parameter as specified in the

    SHBDR Names Table."

  END_OBJECT               = COLUMN

 

END_OBJECT           = SHBDR_COEFFICIENTS_TABLE

 

OBJECT               = SHBDR_COVARIANCE_TABLE

  ROWS                     = 3376101

  COLUMNS                  = 1

  ROW_BYTES                = 8

  INTERCHANGE_FORMAT       = BINARY

  DESCRIPTION              = "The SHBDR Covariance Table

  contains the covariances for the spherical harmonic model

  coefficients and other solution parameters.  The order of

  the covariances in this table is defined as columnwise

  vector storage of the upper triangular matrix formed by

  the product of the SHBDR Names Table with its transpose.

  For example, if the Names Table has four entries  A, B,

  C, and D,  then the covariances are given by the column

  vectors in the upper triangular matrix of

 

           | A | [ A B C D ] = | AA AB AC AD |

           | B |               | BA BB BC BD |

           | C |               | CA CB CC CD |

           | D |               | DA DB DC DD |

 

  That is, the covariance table will list (in this order)

  AA, AB, BB, AC, BC, CC, AD, BD, CD, and DD.

  The SHBDR Covariance Table will be padded with double

  precision DATA_TYPE zeroes so that its total length is

  an integral multiple of RECORD_BYTES."

 

  OBJECT                   = COLUMN

    NAME                         = "COVARIANCE VALUE"

    DATA_TYPE                    = PC_REAL

    START_BYTE                   = 1

    BYTES                        = 8

    UNIT                         = "N/A"

    DESCRIPTION                  = "The covariance value

    for the coefficients and other solution parameters

    specified by the product of SHBDR_NAMES_TABLE with

    its transpose, after omitting redundant terms."

  END_OBJECT               = COLUMN

 

END_OBJECT           = SHBDR_COVARIANCE_TABLE

 

END

 

 

7.3.4.4        SPICE ephemeris files (SPK)

 

SPK files have labels similar to the following:

 

PDS_VERSION_ID        = PDS3

RECORD_TYPE           = UNDEFINED

RECORD_BYTES          = 1024

INSTRUMENT_NAME       = "LUNAR GRAVITY RANGING SYSTEM A"

INSTRUMENT_ID         = "LGRS-A"

TARGET_NAME           = "MOON"

DATA_SET_ID           = "GRAIL-L-LGRS-5-RDR-V1.0"

MISSION_NAME          = "GRAVITY RECOVERY AND INTERIOR LABORATORY"

INSTRUMENT_HOST_NAME  = "GRAVITY RECOVERY AND INTERIOR LABORATORY A"

PRODUCT_ID            = "GRALUGF2012_061_2012_062.SPK"

FILE_NAME             = "GRALUGF2012_061_2012_062.SPK"

ORIGINAL_PRODUCT_ID   = "GRA_LUGF2012_061_2012_061.BSP"

START_TIME            = 2012-061T10:01:06

STOP_TIME             = 2012-062T00:01:06

PRODUCT_CREATION_TIME = 2012-242T20:27:11

OBSERVATION_TYPE      = SCIENCE

PRODUCER_ID           = "SDS"

NOTE                  = "Based on V02 data, gravity field 660c7b"

^DESCRIPTION          = "SPK_MM_SIS.LBL"

END

 

8           Applicable Documents

 

Bolded documents can be found in the DOCUMENT directory of the archive volumes.

 

  1. 0172 Telecomm-090 Rev C: Multi-Mission TIS Packet Secondary, Turbo-era Data, 2010.
  2. Acton, C., CK-MM-SIS, Multimission Software Interface Specification, SPICE C-Matrix Kernel, NAIF Document No. 370, 14 June 2000.
  3. Acton, C., LSK-MM-SIS, Multimission Software Interface Specification, SPICE Leapseconds Kernel, NAIF Document No. 373, 25 May 2000.
  4. Acton, C., SCLK-MM-SIS, Multimission Software Interface Specification, SPICE Spacecraft Clock Coefficients Kernel, NAIF Document No. 374, 28 Aug 2001.
  5. Acton, C., SPK-MM-SIS, Multimission Software Interface Specification, SPICE Spacecraft and Planetary Ephemeris Kernel, NAIF Document No. 367, 25 May 2000.
  6. Adams, Dana Flora, TRK-2-34 DSN Tracking System Data Archival Format, 2009. JPL D-16765.
  7. Asmar, Sami, 2012. GRAIL Science Data Management Plan, JPL D-44349.
  8. Clark, Tracy, 0161-Telecomm: Telemetry Standard Formatted Data Unit (SFDU) Interface, 2008. JPL D-16765.
  9. Connally, M. J., 0159-Science Radio Science Receiver Standard Formatted Data Unit (SFDU), 2004. JPL D-16765.
  10. Connally, M. J., TRK-2-24 DSN Tracking System Interfaces Weather Data Interface, 2006. JPL D-16765.
  11. Fahnestock, E., R. Park, D-N Yuan, and A. Konopliv, Spacecraft Thermal and Optical Modeling Impacts on Estimation of the GRAIL Lunar Gravity Field, AIAA Astrodynamics Specialist Conference, 13-16 August 2012, Minneapolis, Minnesota.                              http://arc.aiaa.org/doi/pdf/10.2514/6.2012-4428.
  12. Farrington, Allen H, BlackJack Data Link Protocol: Interface and Implementation Description. JPL D-20675.
  13. Folkner, William M., The Planetary and Lunar Ephemeris DE 421, 2009. IPN Progress Report 42-178. http://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf.
  14. GRAIL Telemetry Dictionary (CTD). JPL D-49059.
  15. Harvey, Nate, Eugene Fahnestock, Daniel Kahan, Alexander Konopliv, Gerhard Kruizinga, Kamal Oudrhiri, Meegyeong Paik, Dah-Ning Yuan, Sami Asmar, and Mike Watkins, GRAIL Algorithm Theoretical Basis Document, 2012. JPL D-75862.
  16. Kahan, Daniel, 2013. GRAIL Archive Volume Software Interface Specification.
  17. Kruizinga, Gerhard L. H., and William I. Bertiger, 2013. Timing of Science Data for the GRAIL mission. JPL D-75620.
  18. Kwok, Andrew, TRK-2-18, 1983. Tracking System Interfaces: Orbit Data File Interface. JPL D-16765.
  19. Jester, P. L., Radio Science Digital Map (RSDMAP) Products Software Interface Specification, Version 4.2, September 13, 2013.
  20. Levesque, M., 0171-Telecomm-NJPL: JPL created SFDU structures, 2003. JPL D-16765.
  21. Liewer, K., TRK-2-21 DSN Tracking System Earth Orientation Parameter Data Interface, 1995.
  22. Moyer, Theodore, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Monograph 2, Deep Space Communications and Navigation Series, JPL, 2000. http://descanso.jpl.nasa.gov/Monograph/series2/Descanso2_all.pdf
  23. Olds, R., 2009, LIB-10: ACS Hardware Coordinate Frame Definitions and Transformations, EM Number GRA-AC-09-0013.
  24. Planetary Data System Archive Preparation Guide, April 1, 2010, Version 1.4, JPL D-31224.
  25. Planetary Data System Standards Reference, February 27, 2009, Version 3.8, JPL D-7669, Part 2.
  26. Roncoli, R. B., and K. K. Fujii, Mission Design Overview for the Gravity Recovery and Interior Laboratory (GRAIL) Mission, AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ontario, Canada, 2010. http://arc.aiaa.org/doi/pdf/10.2514/6.2010-8383.
  27. Runge, T., TRK-2-23 Media Calibration Interface, 2000. JPL D-16765.
  28. Slavney, Susan, GRAIL Science Team and PDS Geosciences Node Interface Control Document (ICD), 2012.
  29. Lemoine, F. G. and P. L. Jester, Spherical Harmonics ASCII Data Record (SHADR) Software Interface Specification, Version 2.1, May 22, 2013.
  30. Lemoine, F. G. and D. S. Kahan, Spherical Harmonics Binary Data Record (SHBDR) Software Interface Specification, Version 2.3, September 11, 2013.
  31. Standish, E. M., Jr. (November 1982), Conversion of positions and proper motions from B1950.0 to the IAU system at J2000.0,  Astronomy and Astrophysics 115 (1): 20–22. Bibcode 1982A&A...115...20S. http://adsabs.harvard.edu/full/1982A%26A...115...20S
  32. Tapley, B. D., Bettadpur, S., Watkins, M., Reigber, C., The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., Vol. 31, No. 9, L09607, 10.1029/2004GL019920, 08 May 2004. Copyright 2004, American Geophysical Union. http://www.agu.org/pubs/crossref/2004/2004GL019920.shtml
  33. Tjoelker, R. L. Time and Frequency Activities at the NASA Jet Propulsion Laboratory.  39th Annual Precise Time and Time Interval (PTTI) Meeting, Nov 2007. http://www.pttimeeting.org/archivemeetings/2007papers/paper14.pdf
  34. Tracking Data Message: Recommended Standard, 2007. Published by CCSDS Secretariat, Space Communications and navigation Office, 7L70, Space Operations Mission Directorate, NASA Headquarters, Washington DC 20546-0001, USA.
  35. Wilson, E., 0172-Telecomm-CHDO: DSN Created CHDO Structures, 2012. JPL D-16765.
  36. Wu, Sien-Chong, Gerard Kruizinga, and Willy Bertiger, Algorithm Theoretical Basis for GRACE Level-1B Data Processing V1.2. GRACE 327-741, 2006, JPL D-27672. ftp://podaac.jpl.nasa.gov/allData/grace/docs/ATBD_L1B_v1.2.pdf
  37. Folkner, William M., James G. Williams, Dale H. Boggs, Ryan S. Park, and Petr Kuchynka, The Planetary and Lunar Ephemerides DE 430 and DE431, 2014. IPN Progress Report 42-196. http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf.