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Abstract

Science data from the Gravity Recovery and Interior Laboratory (GRAIL) mis-
sion are time tagged by clocks onboard the two GRAIL spacecraft. However,
most of our scientific computer programs process data with Barycentric Dynam-
ical Time (TDB) time tags. This document describes the timing of the science data
and conversion of the onboard clock time tags to TDB scale. The GRAIL timing sys-
tem has unique timing aspects that differ significantly from its predecessor mission,
the Gravity Recovery and Climate Experiment (GRACE), which relied solely on the
Global Positioning System (GPS) system for timing. For GRAIL, the timing data
from the Deep Space Network (DSN), the onboard Time Transfer System (TTS)
and frequency observations from the Radio Science Receiver (RSR) are combined to
estimate the time tag conversion for the GRAIL science data. In order to assess the
Lunar Gravity Ranging System (LGRS) measurement error due to GRAIL timing
data sources, a second order derivation of the LGRS measurement model for the
Dual One Way Range (DOWR) is presented. Furthermore, a derivation is presented
for the extraction of the inter-satellite timing offset from the TTS ranging measure-
ments. Finally an algorithm is presented to compute the time correlation between
the LGRS clock and TDB time scale.
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1 Introduction

The objective of the GRAIL mission is to determine with high accuracy the lunar gravity
field for scientific research. The input data for the gravity field determination process are
Ka phase measurements between the two GRAIL spacecraft which are used to compute
the DOWR measurement. The DOWR measurement is then converted to instantaneous
range, range rate and range acceleration measurements, which serve as inputs to the
gravity field estimation process. Very accurate timing of the GRAIL measurements are
crucial to achieve the high accuracy measurements needed for a high quality gravity
field.

In this memorandum the GRAIL timing system and its performance will be discussed
in terms of errors in the LGRS measurements. For this purpose we derived the LGRS
model with second order terms and included the timing effects due to general relativity.
The GRAIL mission can not use the GPS system for timing like the GRACE mission [6]
did, but has to rely on the combination of several measurements to achieve the desired
timing accuracy. Furthermore, we will asses how the design of the GRAIL timing system
and its performance will impact the errors in the LGRS measurements. Based on this
assessment, algorithms and processing choices will be presented and developed to insure
that the required timing precision is achieved for the GRAIL mission.

2 Description of the GRAIL timing system

Figure 1: GRAIL clocks, models and measurements used for timing

This section describes the clocks and timing systems used by the GRAIL mission.
The GRAIL mission uses the following three timing systems: 1) The LGRS clock, which
is driven by an USO to create a highly stable clock, 2) the Onboard Spacecraft Clock
(OSC), which is used in the timing correlation between the LGRS/OSC clocks and
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the time correlation between the OSC/DSN clocks and 3) the DSN clock, which is
synchronized with highly stable time standard UTC. In figure 1 all the clocks used for
GRAIL timing are shown with information or data flows between the different clocks
and measurement systems. The ultimate goal is to provide a time correlation between
the LGRS clocks and the TDB time scale, which will be provided in the Level1 product
CLK1B.

2.1 LGRS clock

Each spacecraft has an LGRS clock which is driven by an USO to create a very stable
clock. The LGRS clock is used for timing of the LGRS Ka phase measurement and the
ranging data from the TTS. The LGRS clock has no notion of absolute time. Instead,
the LGRS clock reading is with respect to the clock startup epoch. The required stability
of the USO is listed in Table 1. The stability is given in terms of the Allan Deviation [1]
which is the frequency change divided by the reference frequency (δf/f) averaged over
a specific time interval.

Table 1: Allan Deviation requirements for GRAIL USO

Integration Time Allan Deviation
(seconds)

1 3× 10−13

10 3× 10−13

100 3× 10−13

1000 6× 10−13

57600 7× 10−11

2.2 Onboard spacecraft clock

The OSC is run by a crystal oscillator and has inferior stability characteristics compared
to the LGRS USO. The OSC is used for time tagging all spacecraft data and the arrival
of the LGRS data packets (which includes the LGRS 1 Pulse Per Second (PPS) packet)
by the onboard computer. By time tagging the arrival of LGRS data packets and the
arrival of the LGRS 1 PPS, a time correlation can be generated between the LGRS clock
and the OSC. Furthermore, the OSC is used to time stamp spacecraft time correlation
packets which are transmitted to a DSN station where the arrival time is recorded in
UTC and thus providing a time correlation between the OSC and UTC. By combining
the LGRS/OSC and OSC/UTC time correlation products, a time correlation between
the LGRS and UTC can be determined and the OSC clock drops out. Hence the stability
characteristics of the OSC do not affect the LGRS and UTC time correlation because
the OSC error over short intervals (< 1 second) are < 1 micro second.
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2.3 UTC clock used by DSN

The DSN uses very stable clocks which are maintained by the DSN Frequency and
Timing Subsystem (FTS) [7]. The DSN time stamps the arrival of telemetry and radio
metric tracking data in the UTC time scale, which is tied to the International Atomic
Time (TAI) time scale. Based on FTS reports the real-time timing performance is at
the 10−6 second level and post processing analysis improves the performance to the 10−9

second level.

3 LGRS DOWR measurement errors due to timing errors

3.1 LGRS DOWR measurement model

This subsection describes the mathematical model for the LGRS measurement in the
presence of time tag errors of the phase measurement, phase errors due to the instru-
ment, general relativity and random phase errors. Two mathematical descriptions are
considered in this section, both were developed for the GRACE mission [4],[8]. We
re-derived the mathematical model to account for differences between the GRAIL and
GRACE timing systems. Additionally, we must consider general relativity effects when
bounding errors in the LGRS measurement model.

The timing of an LGRS measurement has two components. First, absolute timing
knowledge allows us to properly assign a LGRS measurement to a position around the
moon. Secondly, the relative timing knowledge between the onboard LGRS clocks allows
the proper alignment of the LGRS phase measurements of both spacecraft at a common
coordinate time. This alignment is needed to form the DOWR measurement, which is
processed by the science team.

For GRACE the absolute and relative timing is determined from the onboard GPS
measurements [6]. On the other hand the GRAIL absolute timing is determined by the
DSN and the relative timing is determined by the TTS onboard GRAIL. The main
difference between the GRAIL and GRACE timing is that for GRACE the absolute
and relative timing is available continuously during an orbit, while for GRAIL the rela-
tive timing is available continuously but the absolute timing is only available when the
GRAIL spacecraft is visible from the Earth and tracked by the DSN. Furthermore, even
when the DSN tracks a spacecraft, we only generate an absolute timing measurement
once every 10 minutes. Based on planned DSN tracking and lunar orbit geometry, we
expect less than 100 absolute timing measurements per day.

Given the limited absolute timing information for the GRAIL mission, the LGRS
measurement model is re-derived and formulated in terms of the relative and absolute
timing error. For this discussion the formulation and notation in Kim [4] was chosen
because the Kim [4] formulation was in terms of the total time tag error. The Brooks
[8] formulation used time tag errors after an estimate of the time tag correction was
applied. Furthermore both Kim [4] and Brooks [8] assume that the time tag errors of
the phase measurements are small in the development of the LGRS measurement model.
However, due to limited absolute timing information, the time tag error of the phase
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measurements may not be small and a bias may exist in the relative timing as well. In
the re-derivation of the LGRS measurement model a second order expansion is used for
the phase approximation to assess the LGRS measurement errors due to larger phase
time tag errors and a bias in the relative timing.

Finally the LGRS measurement model described in Kim [4] and Brooks [8] did not
consider general relativity. In this derivation the treatment of the light time is such that
an assessment of not modelling general relativity on the LGRS measurement can be made
and the effect of general relativity on phase and clock drift is considered as well. Under
the assumptions and conditions described the derivation of the LGRS measurement
model is as follows.

The single carrier frequency phase measurement for a spacecraft at a given coordinate
time t can be written as

ϕ2
1(t+ ∆t1) = ϕ1(t+ ∆t1)− ϕ2(t+ ∆t1) +N2

1 + d21 + ε21 (1)

ϕ1
2(t+ ∆t2) = ϕ2(t+ ∆t2)− ϕ1(t+ ∆t2) +N1

2 + d12 + ε12 (2)

where

ϕ2
1(t+ ∆t1) = differential phase measurement at spacecraft 1

ϕ1
2(t+ ∆t2) = differential phase measurement at spacecraft 2

t = coordinate time

∆t1,∆t2 = time tag error at spacecraft 1 and 2 with respect to t

ϕ1(t+ ∆t1) = spacecraft 1 reference phase

ϕ2(t+ ∆t1) = received phase transmitted by spacecraft 2

ϕ2(t+ ∆t2) = spacecraft 2 reference phase

ϕ1(t+ ∆t2) = received phase transmitted by spacecraft 1

N2
1 , N

1
2 = integer ambiguities

d21, d
1
2 = phase shift due to instrument, offset, multipath, etc.

ε21, ε
1
2 = random measurement noise

It should be noted that the phase delay due to the ionosphere has been omitted from
the formulation described in [4] because of the lack of a lunar ionosphere.

Each phase consists of the reference phase ϕi which corresponds to the constant ref-
erence frequency, and the phase error δϕi(t) due to oscillator drift, frequency instability
and phase change due to general relativity and hence may be written as:

ϕ1(t) = ϕ1(t) + δϕ1(t) (3)

ϕ2(t) = ϕ2(t) + δϕ2(t) (4)

Additionally, the received phase ϕi(t) can be identified with the transmitted phase ϕi:

ϕi(t) = ϕi(t− τ ij) (5)
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where τ ij is the light time from the i-th satellite to the j-th satellite. It should be noted
that the light times of the two phase signals are different from each other since the two
satellites are moving. Substituting (3), (4), (5) into (1) and (2) yields

ϕ2
1(t+ ∆t1) = ϕ1(t+ ∆t1) + δϕ1(t+ ∆t1)−

ϕ2(t+ ∆t1 − τ21 )− δϕ2(t+ ∆t1 − τ21 ) +

N2
1 + d21 + ε21 (6)

ϕ1
2(t+ ∆t2) = ϕ2(t+ ∆t2) + δϕ2(t+ ∆t2)−

ϕ1(t+ ∆t2 − τ12 )− δϕ1(t+ ∆t2 − τ12 ) +

N1
2 + d12 + ε12 (7)

Adding (6) and (7) gives the DOWR phase measurement Θ(t) definition:

Θ(t) ≡ ϕ2
1(t+ ∆t1) + ϕ1

2(t+ ∆t2)

= ϕ1(t+ ∆t1)− ϕ1(t+ ∆t2 − τ12 ) + ϕ2(t+ ∆t2)− ϕ2(t+ ∆t1 − τ21 )

δϕ1(t+ ∆t1)− δϕ1(t+ ∆t2 − τ12 ) + δϕ2(t+ ∆t2)− δϕ2(t+ ∆t1 − τ21 ) +

(N2
1 +N1

2 ) + (d21 + d12) + (ε21 + ε12) (8)

Unlike in Kim [4], we choose to approximate our phase measurements by a second order
expansion about coordinate time t. Thus the second order expansion for phase terms in
equation (8) about the coordinate time t may be written as

ϕi(t+ ∆ti) = ϕi(t) + ϕ̇1(t)∆ti +
1

2
ϕ̈1(t)∆t

2
i (9)

δϕi(t+ ∆ti) ≈ δϕi(t) + δϕ̇i(t)∆ti +
1

2
δϕ̈1(t)∆t

2
i + ∆i (10)

where ϕ̇1(t) is the constant nominal frequency fi and ϕ̈1(t) = 0 because ϕ̇1(t) is per
definition a constant. δϕ̇ is the combined frequency offset δf due to the LGRS clock
frequency offset and general relativity . The δϕ̈1(t) represents the frequency drift δḟi,
which consists of a linear fit to the oscillator frequency and the frequency drift due
general relativity. The last term ∆i in equation (8) represents the phase error resulting
from integrating the frequency residuals of the linear fit of the oscillator frequency. To
assess the size ∆i we used five minute spaced GRACE clock solutions. From these clock
solutions, the clock drift was computed for each five minute sample as well as a one
hour clock drift using only hourly samples. The hourly clock drift estimates were then
differenced with the half our clock drift estimates from the five minute samples. The
size of ∆i was then computed by multiplying the speed of light, the half hour clock drift
difference and the light time of 10−3 sec. of Based on the GRACE clocks, the size of
∆i results in range errors less than 1 micro meter. Assuming the GRACE and GRAIL
USOs are similar then ∆i can be neglected. Thus the different phase and phase error
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terms in equation (8) can be written as the following second order expansions:

ϕi(t+ ∆ti) = ϕi(t) + fi∆ti (11)

ϕi(t+ ∆tj − τ ij) = ϕi(t) + fi(∆tj − τ ij) (12)

δϕi(t+ ∆ti) ≈ δϕi(t) + δfi∆ti +
1

2
δḟi∆t

2
i (13)

δϕi(t+ ∆tj − τ ij) ≈ δϕi(t) + δfi(∆tj − τ ij) +
1

2
δḟi(∆tj − τ ij)2 (14)

Substituting (11),(12),(13),(14) into (8) and combining where possible in terms of the
relative timing error (∆t1 −∆t2), equation (8) can be written as:

Θ(t) ≈ (f1τ
1
2 + f2τ

2
1 ) + (δf1τ

1
2 + δf2τ

2
1 ) +

(f1 − f2)(∆t1 −∆t2) + (δf1 − δf2)(∆t1 −∆t2) +

(δḟ1∆t2 − δḟ2∆t1)(∆t1 −∆t2) +
1

2
(δḟ1 + δḟ2)(∆t1 −∆t2)

2 +

1

2
δḟ1(2∆t2 − τ12 )τ12 +

1

2
δḟ2(2∆t1 − τ21 )τ21 +

(N2
1 +N1

2 ) + (d21 + d12) + (ε21 + ε12) (15)

The first term of equation (15) represents the true phase measurement and all the other
terms represent errors due to phase time tag errors, general relativity, phase noise,
frequency offset of the oscillator and random phase noise. The first four terms are
identical to the terms described in Kim [4] who used a linear expansion. All other terms
are the result from the second order expansion and many terms are a function of the
relative timing error (∆t1−∆t2). The second order expansion also shows a dependency
on the absolute timing error terms ∆t1 and ∆t2. It should be noted the DOWR phase
has an unknown bias due to the fact that the phase integer ambiguities (N2

1 +N1
2 ) are not

known. Thus the resulting DOWR range measurement has an unknown bias. In section
3.2 the performance of the GRAIL timing system will be discussed and an assessment
of the LGRS measurement errors

3.2 LGRS DOWR measurement errors due to expected timing performance of the
GRAIL system

This subsection describes the LGRS measurement errors due to expected timing perfor-
mance of the GRAIL system and the effects of general relativity for the GRAIL system in
lunar orbit as described in section 4.1. The expected timing performance listed in Table
2 is used to assess the error terms in the DOWR measurement as described in equation
(15). The error assessment is made in terms of the DOWR which can be defined from
Θ(t) in equation (15) as

Rdowr(t) ≡ c
Θ(t)

f1 + f2
(16)
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Table 2: Expected timing performance of the GRAIL timing system

Timing Bias Variability
(seconds) (seconds) (1σ)

absolute (∆ti) i=1,2 1× 10−1 1× 10−4

relative (∆t1 −∆t2) 1× 10−7 9× 10−11

where c is the speed of light. The error terms in equation (15) will be multiplied by a
factor

c

f1 + f2
≈ 3× 108

6× 1011
= O(10−3) (17)

to assess the error terms in range.
The first term of equation (15) only represents the true phase measurement for the

nominal constant frequencies f1 and f2. The second term of equation (15) represents
the part of the true measurement due to the oscillator frequency offset plus drift and
the frequency drift due to general relativity. When the actual measurement is made,
the actual frequencies (f1 + δf1) and (f2 + δf2) are used. For GRAIL we have a direct
measurement of (f1 + δf1) and (f2 + δf2) using RSR with an accuracy of 10−3 Hz at
X-band frequency. Therefore we need to combine the first and second term of equation
(15) to derive the total truth phase measurement. We start by defining:

f1 + δf1 = f1 + δf̄1 + εf1 = f̄1 + εf1 (18)

f2 + δf2 = f2 + δf̄2 + εf2 = f̄2 + εf2 (19)

where f̄1, f̄2 are the noise free frequency measurements by the RSR and δf̄1, δf̄2 represent
the best estimate of the actual frequency offset plus a linear drift of the oscillator and
the frequency offset due to general relativity. The RSR frequency measurement errors
are described by εf1 and εf2. Substitution of equations (18) and (19) into the first two
terms of equation (15) plus converting to DOWR range, results in

c

f̄1 + f̄2
Θ(t) =

c

f̄1 + f̄2
(f̄1τ

1
2 + f̄2τ

2
1 ) +

c

f̄1 + f̄2
(εf1τ

1
2 + εf2τ

2
1 ) (20)

Using the RSR frequency accuracy of 10−3 Hz, Ka frequency = 32×10−9 Hz and a light
time of 10−3 sec then the second term of equation (20)

c

f̄1 + f̄2
(εf1τ

1
2 + εf2τ

2
1 ) ≈ 3× 108

32× 109
× 2× 10−3 × 10−3 = O(10−7) meter (21)

can be neglected. Now we rewrite the light times τ21 and τ12 as:

τ12 = τ + δτ12 (22)

τ21 = τ + δτ21 (23)
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where τ is the euclidean instantaneous light time. Substitution of equations (22) and
(23) into equation (20) yields

c

f̄1 + f̄2
Θ(t) ≈ c

f̄1 + f̄2
(f̄1 + f̄2)τ +

c

f̄1 + f̄2
(f̄1δτ

1
2 + f̄2δτ

2
1 )

≡ cτ + ρTOF

= ρ+ ρTOF (24)

where δτ ij are the differences between the actual light time from satellite i to j (includ-
ing general relativity) and the euclidean instantaneous light time τ . ρ is the euclidean
instantaneous inter-satellite range. The ρTOF represents the range change due to space-
craft motion and general relativity. For GRACE the ρTOF was approximated in Kim [4]
with sufficient accuracy. However, most assumptions for the GRACE approximation in
[4] were invalid for GRAIL. Therefore the MIRAGE software is used for the ρTOF by
computing the one way ranges between the spacecraft which takes into account satellite
motion and general relativity without approximations. Before GRAIL becomes oper-
ational, we will need to verify that our MIRAGE calculation of τ ij has an accuracy of
better than 0.01 ps, because if our light time calculation has error less than 0.01 pico
seconds, then the DOWR error due to light time errors ετ12 and ετ21 can be written as:

c
(f̄1ετ

1
2 + f̄2ετ

2
1 )

f̄1 + f̄2
≈ O(10−6) meter (25)

which can neglected.
Terms three and four of equation (15) depends on the relative synchronization error

(∆t1 − ∆t2). The expected relative synchronization performance is listed in Table 2.
It should be noted that the bias in the relative synchronization does not add errors
to the DOWR measurement but adds an additional bias to the DOWR measurement.
Therefore, we can only evaluate the variability in relative clock synchronization when
bounding terms four and five of equation (15). Again we will combine terms three and
four of equation (15) to rewrite these terms with the observed frequencies from the RSR
measurement. Using definitions (18) and (19) plus converting to DOWR range we may
write terms three and four as:

c
(f̄1 − f̄2)
f̄1 + f̄2

(∆t1 −∆t2) +
c

f̄1 + f̄2
(εf1 − εf2)(∆t1 −∆t2) (26)

We know for GRAIL that the baseband frequency (f̄1 − f̄2) ≈ 6 × 105 Hz and the Ka
frequency f̄i ≈ 32× 109 Hz. Thus we can bound the first term of equation (26) by:

c
(f̄1 − f̄2)
f̄1 + f̄2

(∆t1 −∆t2) ≈ 3× 108
6× 105

6× 1010
× 9× 10−11 = O(10−6) meter (27)

I should be noted that the (f̄1− f̄2) is not constant in this context unlike the derivation
in Kim [4]. Therefore any variability will have an effect due to the bias in (∆t1 −∆t2).
However, based on the expected clock performance we do not expect a large effect on the
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LGRS measurement. Furthermore, the level-2 processing will have model parameters
to observe drifts in the LGRS measurement in case the LGRS clock does not have the
expected performance. Finally, for term one in equation (26), the differential effect of
general relativity on the frequency of both GRAIL clocks can be neglected because the
frequency difference is < 3 Hz based on the maximum relative clock drift in figure 3.
The second term in equation (26) may be bounded by

c

f̄1 + f̄2
(εf1−εf2)(∆t1−∆t2) ≈ 2×3×108

10−3

6× 1010
×9×10−11 = O(10−14) meter (28)

Before bounding term five of equation (15) we first rewrite this term as

c

f1 + f2
(δḟ1∆t2 − δḟ2∆t1)(∆t1 −∆t2) =

c

f1 + f2
(δḟ1 − δḟ2)∆t2(∆t1 −∆t2) +

c

f1 + f2
δḟ1(∆t1 −∆t2)

2 (29)

The first term of equation (29) may be bounded

c

f1 + f2
(δḟ1 − δḟ2)∆t2(∆t1 −∆t2) ≈ 2× 3× 108

10−9

6× 1010
∆t2 × 10−7

= ∆t2 ×O(10−17) meter (30)

For this bound a δḟi < 10−9 was used based on performance of the GRACE clocks. Even
though the bound is a function of the time tag error ∆t2, the error it self is � 10−6

meter for large time tag errors. The second order term of equation (29) and term six in
equation (15) can both be bounded by (∆t1 −∆t2)

2

c
(∆t1 −∆t2)

2

f1 + f2
≈ 3× 108

10−14

6× 1010
= O(10−16) meter (31)

Since all the multipliers for the (∆t1 − ∆t2)
2 terms in equation (15) are � 1, we can

neglect all these terms.
Finally terms seven and eight of equation (15) do also depend directly on the absolute

time synchronization errors ∆t1,∆t2 and the time of flight. Only the error bound for
term seven of equation (15) is discussed because term eight is similar and can be bounded
in the same way. Thus the seventh term can be written as:

1

2
c
δḟ1(2∆t2 − τ12 )τ12

f1 + f2
= c

δḟ1
f1 + f2

τ12∆t2 −
1

2
c

δḟ1
f1 + f2

(τ12 )2

≈ 3× 108
10−9

6× 1010
∆t2 −

1

2
× 3× 108

10−9

6× 1010
×O(10−6)

= 5× 10−12∆t2 +O(10−17) meter (32)

which shows that even for an absolute synchronization error of days the error in the
DOWR measurement is less than 10−6 meters. For this bound a δḟ1 < 10−9 was used
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based on performance of the GRACE clocks. Furthermore, the δḟ1 < 10−12 due to
general relativity based on data in figure 2. As listed in Table 2, we do not expected
absolute synchronization errors larger than 0.1 seconds, hence the seventh term should
not provide a significant error source.

In summary with the expected GRAIL timing performance, we do not expect that
the errors in the DOWR measurement are not going to exceed 10−6 meters.

4 Algorithms for GRAIL timing

This section describes our development of algorithms for time correlation between LGRS
clocks and TDB time. In this section, we describe the modeling of clock drift due to
general relativity and the modeling of the LGRS clock drift due to imperfections in the
LGRS clock. An important part of the GRAIL timing is the determination of the inter-
satellite clock time offset using the TTS system. We derive an algorithm to extract the
inter-satellite clock time offset from the measurements of the TTS system. A description
will be given of all GRAIL measurements used for timing and how they are used in the
computation of the time correlation. Finally, we describe our time correlation algorithm,
and our production of time tag corrections for science products.

4.1 Modelling LGRS clock rate due to general relativity

This section describes how the LGRS clock rate due to general relativity is modeled for
the GRAIL mission. For this discussion it is assumed that the LGRS clock is perfect
thus its drift with respect to coordinate time would be zero if it were infinitely far from
any mass. According to the theory of general relativity this perfect clock in lunar orbit
will have a clock rate which differs from the TDB clock rate. The change in clock rate
due to general relativity is described in [5] and can be written as:

dτ

dt
= 1− U

c2
− 1

2

v2

c2
+ L (33)

where τ is proper time, which is the perfect clock reading in lunar orbit, t is coordinate
time (TDB), U is the gravitational potential at the GRAIL spacecraft in lunar orbit, c
is the speed of light, v is the Solar-System barycentric velocity of the GRAIL spacecraft
and L is a constant value. The value of L is chosen such that the clock rate of TDB is
equal to the average clock rate of a clock on the Earth surface at sea level with respect to
TDB [5]. Thus L may be written in term of the Solar-System barycentric gravitational
potential of a clock at Earth’s sea level UE and the barycentric velocity vE of that clock
[5].

L =
1

c2
< UE +

1

2
v2E > (34)

The brackets <> denote a long term average. The reason for selecting this L is that
our notion of time is established by atomic clocks on the Earth’s surface also known as
TAI. Choosing another L would cause a linear trend between TDB and TAI. The DSN
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uses UTC for timing, which is offset by a constant with respect to TAI but this constant
changes every time a new leap second is introduced.

For GRAIL equation (33) is integrated to get proper time as a function of coordinate
time, using the GRAIL spacecraft ephemerides and the planetary ephemerides DE421[3]
for the ten principle solar bodies (point mass). In this integration L = 1.550520× 10−8

is used [5]. In Figure 2 the GRAIL clock drift rate due to general relativity is shown

Figure 2: GRAIL clock drift rate due to general relativity during the science phase

Figure 3: Differential GRAIL clock drift rate due to general relativity during the science
phase
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for the first 30 days of the GRAIL science phase, where the spacecraft separation starts
at 85 km and ends at 225 km. This figure contains the effects of the GRAIL orbit, lunar
orbit and the Earth/Moon system orbit around the Sun. The maximum drift rate is
about 2× 10−9 sec/sec. This number will be used in other sections to bound LGRS and
TTS measurement errors due to general relativity.

The relative clock drift rate between the two GRAIL clocks for the first 30 days of
the GRAIL science phase is shown in Figure 3. From this figure it can be seen that
the differential clock drift is less than ±40× 10−12 sec/sec. It should be noted that the
differential clock rate is shown for the orbit geometry of the first 30 days of the science
phase. However, an orbit geometry to maximize the differential clock drift error puts an
upper bound of ±70× 10−12 sec/sec [9]. The upper bound of 70× 10−12 sec/sec will be
used to bound LGRS and TTS measurement errors due to differential clock drift effects
of general relativity

4.2 Modelling the LGRS clock offset due to LGRS clock imperfections

This subsection describes the model used for the LGRS clock drift due to imperfections in
the LGRS clock. This model does not include LGRS clock drift due to general relativity.
The model described in this subsection when added to the general relativity contribution
from subsection 4.1 gives the total LGRS clock drift as seen from the TDB time scale.

Unlike GRACE, for which GPS measurements allow us to track clocks continuously,
we do not have continuous clock offset measurements for GRAIL. GRAIL may have
only 20 LGRS clock offset measurements per day. Moreover, these measurements are
biased and a have variability of 20 milli seconds (1 σ). The bias in the clock offset
measurement are due to unknown timing delays in the spacecraft. The variability in the
clock offset measurement is caused by unknown data packet traffic on the spacecraft bus,
which causes a variable transfer time of the time correlation packet from the onboard
computer to the spacecraft antenna.

As mentioned in subsections 2.1 and 2.3, we know that the LGRS clock and the
clocks that realize the UTC time tags at the DSN are very stable. Therefore, a simple
polynomial may be sufficient to describe the LGRS clock drift with respect to TDB,
where TDB time tags are determined from UTC using general relativity by integration
of equation 33 for a DSN station ( see subsection 4.1). It should also be noted that
the clock offset measurements also contain a contribution due to general relativity. The
general relativity contribution is computed as described in subsection 4.1 and removed
from the measurements before fitting a second order polynomial to the measurements.

Using 60 days of clock offset measurements as observed by GRACE, an assessment
is made of modeling a second order polynomial for the clock drift error. The GRACE
clock serves as a proxy for the LGRS clock since both clocks have similar stability
characteristics. The residual for the second order fit is shown in Figure 4.

From Figure 4 it can be seen that throughout the 60 days, the time tag error using
a second order polynomial for the LGRS clock drift would be less than 2 micro seconds.
Therefore the error in the clock offset is 2 micro seconds or less due to the the non-
quadratic LGRS clock drift behavior. The use of higher order polynomials was found
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not to reduce the time tag errors significantly, therefore we will use a second order
polynomial to model the LGRS clock drift due to imperfections in the LGRS clock. If
clock drift should prove larger than we hope, we will allow our second order polynomial
coefficients to random walk.

Figure 4: Time tag residuals for GRACE-2 clock after second order polynomial fit

4.3 Algorithm for inter-satellite LGRS clock offset determination

This subsection describes the algorithm and assumptions for the extraction of the inter-
satellite LGRS clock offset using the GRAIL TTS inter-satellite ranging system. A
complete description of the TTS ranging algorithm can be found in [2]. For this dis-
cussion it is assumed that an inter-satellite range measurement is available from both
GRAIL spacecraft and that the objective is to determine the LGRS clock offset at a given
coordinate time. It should be noted that the relative LGRS clock relationship derived
in this section is the inverse of the relative coordinate time clock offset in equation (15)
(see section 3.1). The relative LGRS clock offset derived in this section will be used as
an observation equation in the determination of the LGRS clock error model described
in section 4.4.5. The inversion of the relative LGRS clock offset is part of the complete
clock offset model inversion described in section 4.4.6

The objective is to determine the clock offset O12(T ) of the two LGRS clocks at a
given coordinate time T which may be written as

t̃S1(T )− t̃S2(T ) = O12(T ) (35)

where t̃1(T ) is the satellite 1 LGRS clock reading at coordinate time T and t̃2(T ) is the
satellite 2 LGRS clock reading at coordinate time T . Our first assumption is that the
interpolation errors of the inter-satellite range are small for both spacecraft. Therefore
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with interpolation it is possible to change the time of the data and thus change the clock
reading without having to restart the range code generation.

At satellite 1 we measure:

t̃1S1(T1)− t̃1S2(T1 − τ21 ) + ν (36)

where τ21 is the light time of the ranging signal from spacecraft 2 to spacecraft 1 and ν is
random noise (assumed to be 10 nsec for GRAIL). In this measurement t̃1(T1) is known
and τ21 is unknown. Expanding t̃1S2(T1 − τ21 ) about T1

t̃1S2(T1 − τ21 ) = t̃1S2(T1)− ˙̃t
1

S2(T1)τ
2
1 + ∆1

S2 +O((τ21 )2) (37)

where ˙̃t
1

S2(T1) is a linear fit to the clock drift of spacecraft 1 with respect to coordinate
time at T1. This clock rate is the sum of the clock rate due to general relativity and the
LGRS clock error rate. ∆1

S2 represents the residuals about the linear fit of the clock drift
of spacecraft 1. The last term in equation (37) represents the second order term caused
by general relativity. The size ∆1

S2 is based on the same GRACE clock analysis used for
equation (10) and can be bounded by 10−12 sec over the GRAIL light time of τ21 = 10−3

sec. Assuming the GRAIL USO is similar to the GRACE USO, we can neglect ∆1
S2. To

bound the last term in equation (37) we determined an upper bound of O((10−12) for
¨̃t
1

S2 based on general relativity and shown in figure 2. Thus the last term of equation
(37) can be bounded by

O((τ21 )2) ≈ 1

2
¨̃t
1

S2(T1)(τ
2
1 )

2
< O(10−12)×O(10−6) = O(10−18) sec (38)

Substituting (37) into (36) we measure

t̃1S1(T1)− t̃1S2(T1) + ˙̃t
1

S2(T1)τ
2
1 + ν = O12(T1) + ˙̃t

1

S2(T1)τ
2
1 + ν (39)

Thus with no knowledge of τ21 we know O12(T1) to 10−3 sec since the clock drift rate is

˙̃t
1

S2(T1) = 1 + r where r = O(10−6) sec/sec (40)

Parameter r in equation (40) is determined from actual GRACE clock error drift obser-
vation and found to be O((10−6) assuming the GRACE and GRAIL USOs are similar.
The clock drift due to general relativity is of O((10−9) thus the bound for parameter
r is O((10−6). Since the LGRS clocks of satellite 1 and satellite 2 are synchronized to
10−3 sec level we can resample R2. Thus we have now the following range measurements
R1, R2 (in terms of seconds)

R1 = t̃1S1(T1)− t̃1S2(T1 − τ21 ) + ν1 (41)

R2 = t̃2S2(T2)− t̃2S1(T2 − τ12 ) + ν2 (42)
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where |t̃1S1(T1) − t̃2S2(T2)| < 10−3 sec and given the clock rate in equation (40) then
T1 − T2 = O(10−3). Substituting (39) into (41) and (42) results in

R1 = O12(T1) + ˙̃t
1

S2(T1)τ
2
1 + ν1 (43)

−R2 = O12(T2)− ˙̃t
2

S1(T2)τ
1
2 − ν2 (44)

Expanding O12(T2) about T1 results in

O12(T2) = O12(T1) + Ȯ12(T1)(T1 − T2) + ∆O12 (45)

where term ∆O12 can be neglected using similar arguments as for ∆1
S2 in equation (37).

Adding equations (43), (44) and substituting (45) results in

R1 −R2 ≈ 2O12(T1) + Ȯ12(T1)(T1 − T2) + ˙̃t
1

S2(T1)τ
2
1 − ˙̃t

2

S1(T2)τ
1
2 + ν1 − ν2 (46)

To understand the error terms we rewrite the light times τ21 and τ12 as:

τ21 = τ(T ) + δτ21 (47)

τ12 = τ(T ) + δτ12 (48)

where τ is the euclidean instantaneous light time at a given coordinate time T . We

may assume that the LGRS clock rates ˙̃t
2

S1(T2),
˙̃t
1

S1(T1) are identical since T1 and T2 are

already synchronized to 10−3 sec after one iteration and using ¨̃t
1

S2 from equation (38)
we can show

˙̃t
2

S1(T2) = ˙̃t
1

S1(T1) +O(10−3)×O(10−10) sec (49)

Substituting (47),(48),(49) into (46) results in:

R1 −R2 ≈ 2O12(T1) + Ȯ12(T1)(T1 − T2) + (˙̃t
1

S2(T1)− ˙̃t
1

S1(T1))τ(T1) +

˙̃t
1

S2(T1)δτ
2
1 − ˙̃t

1

S1(T1)δτ
1
2 + ν1 − ν2 (50)

≈ 2O12(T1) + Ȯ12(T1)(T1 − T2) + (˙̃t
1

S2(T1)− ˙̃t
1

S1(T1))τ(T1) +

r2δτ
2
1 − r1δτ12 + δτ21 − δτ12 + ν1 − ν2 (51)

where

r1 ≡ ˙̃t
1

S1(T1)− 1 (52)

r2 ≡ ˙̃t
1

S2(T1)− 1. (53)

Substituting the expected values for clock drifts (40)), clock synchronization error and
light time, then the terms of (51) can be approximated as follows:

Ȯ12(T1)(T1 − T2) = O(10−6)×O(10−3) = O(10−9) sec (54)

(˙̃t
1

S2(T1)− ˙̃t
1

S1(T1))τ(T1) = O(10−6)×O(10−3) = O(10−9) sec (55)

r2δτ
2
1 − r1δτ12 = O(10−6)×O(10−7) = O(10−13) sec (56)

δτ21 − δτ12 = O(10−7) sec (57)

ν1 − ν2 = O(10−8) sec (58)
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The first observation that can be made is that the clock drift difference multiplied by
the light time or synchronization error is determining the size of the of the error terms.
It can also be seen that the clock drifts due to general relativity do not play a role
because these drifts are nearly identical (difference < 70 psec/sec) and cancel out when
computing the terms of equation (51).

The term in equation (54) can be made small by iterating equation (51), so it can
be neglected. The iteration procedure will be described later when the algorithm of the
inter-satellite clock offset extraction is discussed.

The second term (55) is a variable term because the light time τ(T1) varies over the
science phase from about 0.3 to 0.7 milli seconds. If the clock drift rates are of order
O(10−6) then this term needs to be computed and used as a correction since the size of
this term is larger than the expected variability in the TTS measurement of 9 × 10−11

sec (1σ). The relative clock rate due to general relativity is of order O(10−11) and can
be neglected

The third and fourth terms (56) represent the change in light time due to satellite
motion and general relativity. The size of the third term is well below the expected noise
of the TTS measurement of 9× 10−11 sec (1σ) therefore it can be neglected. The fourth
term needs to be computed. Given our expected orbit determination accuracy, residual
error should fall at or below O(10−11).

The fifth term (58) is the error due the random noise in the range measurements.
Given the size ofO(10−8) sec, smoothing is required. We can use carrier phase smoothing
since both phase and range measurements are available from the TTS system. The
noise on the phase measurements are significant lower than the range measurements.
However, the phase measurements have an unknown bias due to the phase ambiguity.
With carrier phase smoothing the bias in the phase measurements is computed using
the range measurements. The computed phase bias is then used to adjust all phase
measurements to form new range measurements with less noise.

The procedure for carrier phase smoothing is as follows. Given are range R(t̃i) and
phase Φ(t̃i) measurements (expressed in range) at the same observation time t̃i which
may be written as

R(t̃i) = R̄(t̃i) + νi i = 1, N (59)

Φ(t̃i) = Φ̄(t̃i) +K + εi i = 1, N (60)

where K is the phase bias, R̄(t̃i) is the truth range and Φ̄(t̃i) is the truth phase range.
The range and phase noise are denoted by νi and εi. Equations (59) and (60) can now
be used to solve for K under the assumption that R̄(t̃i) = Φ̄(t̃i)

K =
1

N

N∑
i=1

(R(t̃i)− Φ(t̃i)) +
1

N

N∑
i=1

(νi − εi) (61)

For large N the second term of equation (61) will approach zero. N can be chosen
over time intervals for which continuous phase measurements are available. Finally the
estimate for K is removed from the phase range measurement to form the new range
measurements.
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In conclusion the algorithm for extracting the inter-satellite clock offset is as follows.
First perform carrier phase smoothing for both spacecraft’s range and phase measure-
ments according to

R̃1(t̃
1
i ) = Φ(t̃1i )−K1 i = 1, N (62)

R̃2(t̃
2
i ) = Φ(t̃2i )−K2 i = 1, N (63)

where t̃1i ) and t̃2i ) are the observation times reported by the LGRS clock. Next iteratively
apply equation (51) to minimize the synchronization error in coordinate time (T1 − T2)
shown in equation(54). The iteration procedure starts by computing the first estimate
of the clock offset Õ1

12(t̃
1
i )

Õ1
12(t̃

1
i ) =

1

2
(R̃1(t̃

1
i )− R̃2(t̃

2
i ))−

1

2
(˙̃t

1

S2 − ˙̃t
1

S1)τ (64)

where we assume the LGRS clock drifts ˙̃t
1

S1,
˙̃t
1

S2 and the light time τ at observation time
t̃1i are known. In general the estimate for the clock offset Õ1

12(t̃
1
i ) is not equal to (t̃1i − t̃2i ).

We can now use the difference to update t̃2i by defining

δ1 = (t̃1i − t̃2i )− Õ1
12(t̃

1
i ) (65)

where 1 denotes the iteration number of the t̃2i update. Using δ1 to update t̃2i ) we can
now update the calculation for the relative time offset

Õ2
12(t̃

1
i ) =

1

2
(R̃1(t̃

1
i )− R̃2(t̃

2
i + δ1)−

1

2
(˙̃t

1

S2 − ˙̃t
1

S1)τ (66)

Thus the complete iteration procedure of M iterations for equation (64) until t̃2i con-
verges, may be written as

δM = (t̃1i − t̃2i )− ÕM−1
12 (t̃1i ) (67)

ÕM+1
12 (t̃1i ) =

1

2
(R̃1(t̃

1
i )− R̃2(t̃

2
i +

M∑
k=1

δk)− 1

2
(˙̃t

1

S2 − ˙̃t
1

S1)τ (68)

It should be noted that the convergence of t̃2i depends on the phase range noise εi. The
evaluation of R̃2(t̃

2
i +

∑M
i=1 δk) is done with lagrangian interpolation of the R̃2(t̃

2
i ) data.

Depending on the size of the spacecraft’s phase range noises εji , additional smoothing
may be needed of the time series after M iterations.

ÕM
12 (t̃1i ) + ε1i + ε2i (69)

In case additional smoothing is needed, a simple box car filter will suffice to attenuate
the remaining εji noise. The derived time series in equation (69) is known as a function
of the LGRS observation time t̃1i . In the final step the t̃1i time tags are changed to TDB
time using the time correlation function described in section 4.4.6.
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4.4 Measurements and Algorithm for determination of LGRS clock error model

This subsection describes the measurements and algorithm for the determination of the
LGRS clock error model. The LGRS clock error models the observed LGRS clock drift
after the clock drift due general relativity has been removed. As described in section 4.2
the LGRS clock error is modelled as a second order polynomial with TDB time as the
independent variable. The second order polynomial will model a clock bias, clock drift
due to a frequency offset and linear drift in the frequency. The measurements available
to estimate the LGRS clock drift model parameters are shown in Table 3.

Table 3: Measurements available for LGRS clock error model determination

Source Observable Frequency Measurement Availability
(seconds) Errors (µ, σ)

DSN LGRS/DSN time offset 600.0 (0.01, 0.03) sec DSN uplink
(in view)

RSR SRB X-band frequency 300.0 (1e-5, 1e-3) Hz RSR tracking
(in view)

TTS LGRS inter-satellite time offset 10.0 (1e-7, 9e-11) sec continuous

4.4.1 LGRS/DSN time offset measurements

The only direct measurement of the total LGRS clock drift is provided by the DSN,
which records the reception time at a DSN station of a time correlation packet sent by
the spacecraft. The time correlation packet is only sent by the spacecraft when the DSN
has an uplink to the spacecraft, which is planned for 8 hours per day. Another limitation
is that the time correlation packet can only be received when the spacecraft is in view of
the DSN station. At the beginning and end of the science phase the spacecraft will be
occulted by the Moon for tens of minutes every orbit. Therefore, at the beginning and
ending of the science phase we may only have 20 to 30 observations/day/spacecraft.

The time correlation provided by the DSN is not a direct time correlation between
the LGRS clock and the DSN clock UTC. The DSN time correlation is instead between
the OSC and UTC. The time correlation between the LGRS clock and the OSC can be
reconstructed on the ground based on the OSC time stamp for the 1 PPS pulse of the
LGRS with an accuracy is of 40 ±15 micro seconds. Thus, the total time correlation
between the LGRS and UTC is achieved by combining the time correlations from the
LGRS/OSC clocks and the time correlation between the OSC/LGRS clocks.

It should also be noted that our DSN/LGRS time offset measurements are not only
sparse, but also suffer from a much higher expected bias and sigma than do our GRACE
GPS measurements. However, the LGRS/OSC time correlation is known to accuracy
of 40 ±15 micro seconds, the time OSC/DSN correlation is not, due variable transmis-
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sion times of the time correlation packet from the onboard computer to the spacecraft
antenna. There may be also unknown timing delays in the transmission of the time
correlation packets. For this memo we assume bias delays of up to 100 milli seconds and
30 milli seconds (1σ) for the variability.

4.4.2 RSR frequency measurements

At each DSN complex multiple RSR receivers are deployed to facilitate open loop record-
ing of spacecraft signals for science purposes. For GRAIL the plan is to observe the
GRAIL X-band Radio Science Beacon (RSB) which is directly connected to the GRAIL
USO. The GRAIL LGRS clock is driven by the USO. Therefore any change in the USO
frequency would be directly measured by the RSR and thus a direct measurement of
the slope of the LGRS clock drift due to imperfections in the LGRS clock and general
relativity.

The tracking plan for the RSR is to observe both GRAIL spacecraft 24 hours a day
during the science phase. The RSR can only observe when the GRAIL spacecraft are in
view from a given DSN station. In the beginning and end of the science phase, 40 to 50
% of each orbit can not be observed due to occultation by the Moon.

The RSR measurements are expected to have a small frequency bias (< 10−5 Hz)
and a variability of 10−3 Hz (1σ).

4.4.3 TTS inter-satellite time offset measurements

The TTS inter-satellite time offset measurement is the combination of the two GRAIL
inter-satellite range measurements as described in subsection 4.3. The main objective
for the TTS measurements is to minimize errors in the LGRS DOWR measurements (see
section 3.1), however the measurements also provide information of the relative clock
drifts between the two LGRS clocks.

The TTS inter-satellite time offset measurements are continuously available and the
expected bias is < 10−7 seconds and variability of 9× 10−11 seconds (1σ).

4.4.4 TTS-DTE LGRS/DSN time offset measurements

Twice every two weeks, DSS-24 eavesdrops on TTS inter-satellite signals. These TTS-
DTE measurements provide a more accurate measurement of absolute time than time
correlation packets, since we don’t need to estimate a transmission delay bias.

4.4.5 Algorithm for determination of LGRS clock error model

This subsection describes the algorithm for determination of the LGRS clock error model
parameters. This algorithm combines DSN time correlation measurements, RSR X-band
RSB frequency measurements, TTS inter-satellite time offset measurements, and TTS-
DTE time offset measurements into one estimate for the LGRS clock error.

The algorithm consists of two steps. First, for each measurement the effects of
general relativity are computed according to the description presented in subsection 4.1.

22



The effects of general relativity are then removed from the measurements so that the
measurements only contain the effect of frequency bias and drift in the LGRS clocks.
For the remainder of this subsection it is assumed that measurements are corrected for
effects from general relativity. Second, the second order polynomial coefficients of both
LGRS clock error models are simultaneously estimated in a non-causal Kalman filter,
with random walks on offset, bias, and drift.

For Grail spacecraft i = 1, 2, our Kalman filter moves from time tk to tk+1 = δk + tk
by applying the update equations:

∆T i (tk+1) = ∆T i (tk) + bi (tk) δk + ai (tk) δk
2/2 + wi (70)

bi (tk+1) = bi (tk) + ai (tk) δk + vi (71)

ai (tk+1) = ai (tk) + ui (72)

where ∆T i (tk) is the clock offset on spacecraft i at time tk, bi and ai are clock bias and
drift, and white noise parameters ui, vi, and wi allow random walk on clock offset, rate,
and drift.

DSN time correlation and TTS-DTE observations, adjusted for relativistic effects
and time scales, directly measure ∆T i. RSR frequency observations f iRSR, scaled by the
reference X-band RSB frequency f i0, measure clock rate.

f iRSR

f i0
− 1 = bi (73)

TTS inter-satellite time offset observations measure relative clock offset.

∆TTTS = ∆T 1 −∆T 2 (74)

Simulation results, solving for LGRS clocks as quadratics with offset, bias, and drift
random walks parameters constrained to 0, for a 90 day science period, suggest that the
quadratic and linear terms of the LGRS clock drift models are well determined assuming
the measurement errors in Table 3 and appropriate data type weighting to account for
the number of measurements available per data type. In our simulation the truth clock
drift model also included the non-quadratic clock drift behavior as shown in Figure 4
extended to 90 days. We did not include TTS-DTE measurements in our simulation,
hence the constant terms in our quadratics were only known to about 0.5 ms, due to
the fact that the DSN time correlation measurements are sparse and have much higher
noise than the RSR and TTS measurements. It should also be noted that the assumed
unknown 100 milli second spacecraft timing bias is not included in this analysis because
there is no observability of this bias with measurements available. Thus a more accurate
timing bias for both LGRS clocks is at the level of 100 milli seconds. Including TTS-
DTE measurements should reduce these constant biases by several orders of magnitude.
In either case, this offset can be estimated with the lunar gravity field estimation using
the LGRS measurements.
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4.4.6 Computation of LGRS/TDB time correlation

This section describes the computation of LGRS to TDB time correlation. The LGRS/TDB
time correlation has two objectives. First to provide an absolute TDB time tag for the
LGRS measurements. Second, to preserve the relative LGRS inter-satellite relative clock
TTS information which minimizes the LGRS DOWR errors due to timing errors.

The LGRS clock error models estimated in section 4.4.5 provide a time correlation
between an LGRS time t̃ and coordinate time t, ignoring general relativity corrections.
The total time correlation may be formed by combining general relativity, the clock error
model from section 4.4.5 and adding a correction term δTTS(t), which insures that the
difference between the two clock correlation models is the TTS measurement. Thus the
total time correlations may be written as:

δTTS(t) = ∆Ttts(t)−∆T 1
gr(t) + ∆T 2

gr(t)−∆T 1(t) + ∆T 2(t) (75)

t̃ = t+ ∆T 1
gr(t) + ∆T 1(t) +

1

2
δTTS(t) = t+ C1(t) (76)

t̃ = t+ ∆T 2
gr(t) + ∆T 2(t)− 1

2
δTTS(t) = t+ C2(t) (77)

where ∆Ttts(t) is the measured clock offset at coordinate time t, ∆T 1
gr(t), ∆T 2

gr(t) are
the clock offsets due general relativity at coordinate time t and C1(t), C2(t) are the time
correlation functions from coordinate time t to LGRS time t̃. Note that time correlations
C1(t), C2(t) preserve the measured relative clock offset, which is the second objective.

For observations we actually need the inverse time correlation functions C−1
1 (t̃),

C−1
2 (t̃) because we want to find the time correlation from LGRS time to TDB. The

inverse time correlation functions C−1
1 (t̃), C−1

2 (t̃) are determined numerically because
the time correlation functions C1(t), C2(t) are not linear. The time correlation equations
for operations may then be written as

t = t̃+ C−1
1 (t̃) (78)

t = t̃+ C−1
2 (t̃) (79)

The time series of the inverse time correlation functions C−1
1 (t̃), C−1

2 (t̃) are stored in
the the GRAIL Level-1 product CLK1B. Note that the time correlation functions C1(t),
C2(t) are nearly linear and therefore any error bound analysis for the components of
C1(t), C2(t) are applicable for the inversion time correlation functions C−1

1 (t̃), C−1
2 (t̃).

5 Summary

In this memorandum we have shown, with the current design of the GRAIL timing
system and the expected performance of the GRAIL timing system, that the LGRS
measurement error is less than the 1 micro meter. Timing Effects due to general relativity
were included and where necessary, corrections were added in the algorithms to determine
the instantaneous range from the DOWR measurement . The processing of the TTS to
determine the relative timing offset of the LGRS clocks is crucial to achieve the 1 micro
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meter error in the LGRS measurement. It was determined that the relative timing
algorithm only requires the two range measurements from the TTS and a correction for
the LGRS clock drifts to achieve the relative timing performance after carrier smoothing
is performed.Furthermore, we have demonstrated that absolute timing knowledge plays
only a minute role in the LGRS measurement errors due to timing errors. Finally we have
demonstrated that the algorithm to combine 90 days of the DSN time correlation, TTS
and RSR measurements to compute the LGRS clock to TDB time correlation meets the
science relative timing requirement and absolute timing knowledge < 10 milli seconds.
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7 Acronyms

DOWR Dual One Way Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

DSN Deep Space Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GRACE Gravity Recovery and Climate Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GRAIL Gravity Recovery and Interior Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

GPS Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

LGRS Lunar Gravity Ranging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

OSC Onboard Spacecraft Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

PPS Pulse Per Second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

RSB Radio Science Beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

RSR Radio Science Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

TAI International Atomic Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

TDB Barycentric Dynamical Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

TTS Time Transfer System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

USO Ultra Stable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

UTC Coordinated Universal Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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