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Abstract

The transmission of radio waves from the earth to a receiver in a
spacecraft that is moving behind a planet makes it possible to observe
the variations in the amplitude, phase path, or group path caused by the
planetary ionosphere. It is shown that measurement of any one of these
quantities may be used to determine the radial electron density distri-
bution in that part of the planetary ionosphere which is probed by the
signal. Measurement of two of these quantities simultaneously will
reduce uncertainties due to changes in the interplanetary medium or
the earth's ionosphere during the experiment, Separate radial electron
density distributions can be obtained from the measurements during
immersion and emersion and these are related to the spatial properties
of the atmosphere on the planet. It is shown that the lower atmosphere
as well as the ionosphere of a planet can be studied by using so high
a frequency that the signal is not influenced by the ionized component
of the atmosphere.

It is also shown that the statistical properties of a signal
reflected from a planetary surface can be related to the surface statis-
tics when the surface roughness scale is larger than the wavelength. A
relation is found between the surface-autocorrelation function and the
time-autocorrelation function of the reflected signal, a generalization
of results obtained previously for monostatic radar. When a circularly
polarized wave is transmitted, it is shown that the mean value of the
dielectric constant and the conductivity for the planetary surface may
be found from the shape and orientation of the polarization ellipse for

the reflected signal,
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I. INTRODUCTION

Ground-based radar equipment is being used to study the moon and
the closest planets. However, there are severe limitations associated
with having both the transmitter and the receiver on the earth. These
limitations can now be overcome, however, since it has become possible
in recent years to send equipment to the moon and the closest planets.

In the following chapters techniques are studied for exploring the
moon and the planets using bistatic radar. Bistatic radar differs from
monostatic radar in that the transmitter and the receiver are situated
at different locations.

One can transmit radio waves from the earth and receive them in a
spacecraft moving behind a planet. If the planet is surrounded by an
ionosphere, the signal will be influenced during the occultation., The
changes in the signal due to the planetary ionosphere can be used to
determine the electron density distribution and possibly some other
interesting properties of the planetary ionosphere. The solution of
this problem is presented in two steps. First, the changes in the
signal are found in terms of the electron density profile of the plane-
tary ionosphere (Chapter II). Later (in Chapter V) the problem is re-
versed and it is shown how the electron density distribution can be
determined.

More specifically, Chapter II is used to develop high-frequency
approximations (transmitter frequency much higher than the maximum
plasma frequency in the planetary ionosphere) for amplitude, phase,
etc.,, for the waves received behind a planetary ionosphere with known
electron density distribution. Why the high-frequency case is of such
importance will become clear at the end of the study.

The results derived in Chapter II are applied to the exponential
and the Chapman ionospheric model in Chapters III and IV, respectively.
The results are represented graphically in a normalized form so that
they can be easily used when the exponential or the Chapman model
applies. It is also shown that more complex ionospheres can be studied
by considering them as being constructed from a combination of these

basic models,
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Chapter V is mainly devoted to the development of processes that
can be used to determine the radial electron density distribution in
that part of the planetary ionosphere which is probed by the signal. It
is shown that measurement of either the amplitude, the phase path, or
the group path during the occultation can be used to determine the
electron density profile.

Radio waves reflected from the planetary surface will also be
received in the spacecraft while it %s in the vicinity of the planet.
It is,of course, necessary to be able to distinguish between the direct
and the reflected signal. Chapter VI shows “that this is possible, and
it also shows that the reflected signal may be used to determine sta-
tistical properties of the planetary surface, such as roughness-

autocorrelation function, mean dielectric constant, etc.
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II. PROPAGATION OF HIGH-FREQUENCY RADIO WAVES IN PLANETARY
IONOSPHERES WITH KNOWN ELECTRON DENSITY DISTRIBUTION

This chapter is devoted mainly to the study of amplitude, and of
the phase and group paths for waves refracted in a planetary ionosphere
with a known electron density profile.

Later (in Chapter V) the problem is reversed in order to determine
what can be learned about the ionosphere when the properties of the
transmitted and the received waves are known. This is analogous to the
circuit engineering problem of finding the two-port network equivalent
when input and output are given.

We will assume that a c1rcu1ar1y polarlzed wave is transmitted from

the earth and that the transmltted frequencies lie well above the maxi-

———e  ——————— e —— ——————— A ——
mum plasma crltlcgl frequency, both for the earth's ionosphere and for

et A —— e e e .

the planetary 1onosphere to be explored Under these conditions the
A ——— R

magnetoionic theory shows that the effect of magnetic fields on ampli-

tude and phase can be neglected.

The results derived for phase path and amplitude are also valid
when a linearly polarized wave is transmitted from the earth. In the
latter case one can also observe Faraday rotation. Assuming that the
Faraday rotation due to variations in the earth's ionosphere can be
neglected or subtracted out, transmitting linearly polarized waves
yields a means of exploring the planetary magnetic field (if there is
any). This problem is discussed later.

The geometry is illustrated in Fig. 1. That part of the trajectory
along which occultation can be observed may often be well approximated
with a straight line. The y axis goes through the center of the planet
and the transmitter on the earth. The x-y plane is chosen parallel to
the fly-by trajectory.

For a spherically symmetric ionosphere, it is convenient to rotate
the points along the trajectory around the y axis until they end up in
the x-y plane. In this way a new curve, which here will be called the
equivalent trajectory, is obtained in the x-y plane. 1In the spherically
symmetric case, it is sufficient to study the phase and amplitude of the
waves in the x-y plane, which will then also give phase path and ampli-

tude along the true trajectory.
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TRAJECTORY ALONG
WHICH OCCULTATION
}S OBSERVED

EQUIVALENT \ D
TRAJECTORY

PLANET

TO THE TRANSMITTER

FIG. 1. GEOMETRY DURING THE OCCULTATION.

In the following sections the ray theory is applied to analyze the
propagation through the planetary ionosphere. The refracting medium is
inhomogeneous but isotropic. The energy is therefore propagating along
the wave normal and this direction can be found from Snell's Law.

Necessary corrections to the ray-theory solution are taken up later.

A. RAYPATHS

Refraction in spherically symmetric ionospheres is discussed first

because the effect of nonspherical perturbations in the electron density

—

distribution is small. A polar coordinate system can be used to describe

the raypaths in the x-y plane when the ionosphere is assumed spherically

symmetric.
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The differential equation for the raypaths can be derived in the

following way. From the triangle ABC in Fig. 2 it is seen that

de .
rar = tan i (2.1)

To obtain an explicit expression for the rays in terms of r and ¢,
a relation between i and the refractive index p(r) is needed. It is
seen from Fig. 3 that for an ionosphere built up of shells (spherical

layers) with constant 1, one has

r, sin i, = r, sin y, (1aw of sines)

. _ N .
uy sin y, = p, sin i, (Snell's Law)
r, sin i, = r, sin y, (law of sines)
Hooq sin Yo = My sin in (Snell's Law)

The product of these equations gives
HyTy sin i1 =0, T sin in

or when p(r) is a continuous function of r,

ur sin i = p r = a (2.2)

where ro is the radius of closest approach for the raypath and Ho is
the refractive index at this point. The distance between the center of
the planet and the raypath asymptote is denoted by a. Equation (2.2)
is sometimes called Bouguer's rule.

Combining Eqs. (2.1) and (2.2) yields the differential equation for

g2y -7 =

This is a fairly well known result [Ref. 1].

the raypath
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FIG. 2. RAYPATH GEOMETRY.

RAYPATH

CENTER OF
PLANET

FIG. 3. REFRACTION OF RAYPATH BY CONCENTRIC
SPHERICAL LAYERS.



Assuming that the effects of the magnetic field and the collisions

are negligible, we get from the magnetoionic theory

ui(r) = 1 - x(r) (2.4)
where
x(r) = 222 n(x) (2.5)
f

Here, f 1is the frequency and N(r) is the radial distribution of
electron density in the planetary ionosphere.

By combining Eq. (2.3) and Eq. (2.4) and integrating, one obtains
¢-frl[(i>2%fl%)_1]l/2dr (2.6)

r r 1 - X(r )
To o o

where ¢ = o for r = ro.

Assuming that the electron density profile is known, one can use
Eq. (2.6) to determine raypaths for different ro. This family of ray-
paths (Fig. 4) may be used to find the ray pictures when some radiating
source is present inside or outside the ionosphere. For instance, when
the source is far away from the planet, all the rays should be rotated
about the origin so that one of their asymptotes points towards the
source.

In most fly-by experiments, it is expected that the trajectory will
lie well outside the ionosphere, and this makes it possible to simplify
the procedure. Instead of finding the total raypath, it is sufficient

to determine the asymptotes. The geometry is shown in Fig. 5 where:

7 : 1 r . 1 - X(r) ) 1/2
L CE= - A

and

a
9= cos (2 +B) Rp (2.8)

The new geometrical quantities involved are shown in Fig. 5,
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RAYPATHS

PLANETARY SURFACE

ZfZ//////l

FIG. 4. FAMILY OF RAYPATHS.

RAYPATH AND RAYPATH
ASYMPTOTE

= — = "TRANSMITTER

FIG. 5. IMPORTANT RAYPATH PARAMETERS.
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We will now introduce a new variable & given by

r
o = arccos(—o\, (2.9)
ry

Now one obtains for the total angle (ZW) that the rays are refracted:

-
=

/2 . X<ro) 1/2
20 = 2,/. 1 s 2 ao
-4 . X(ro) cos " - X(ro/cos o) (2.10)
L sinza

This equation is correct for a wide range of frequencies as long as
collisions and magnetic fields are absent, However, we are mainly
interested in the high-frequency case (X << 1), and- it would be
desirable to simplify Eq. (2.10). Looking at

9 X(ro/cos a)
cos O -
XZroi
8(a,ro) = x(rO) — (2.11)
sin O

one sees that [6[ is less than 1 for & greater than O because

X(ro) << 1. For |Q| << 1 we have

r
.
2

= X(ro) + o X'(ro) +

P4
o
0
Q
w e |
o o]
""h._____.l
|

Thus for small Q:

5(a,r )

r X'(ro}
- X(ro) [} + 5 g > }

which also turns out to be small compared to 1 for the ionospheric models
we will consider. Using this, we can expand the integrand in Eq. (2.10)

and, maintaining only the first-order terms in X, we obtain:

X(ro/cos a)

T[/z 1- —X(Tj———
2v = x(r ) : = do (2.12)
0 sin

when IS(a,ro)l << 1,
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For the cases we shall consider, 2V turns out to be less than 1 or 2
deg, and Eq. (2.12) usually provides good accuracy.

Equation (2.12) shows that there is a linear relation between 2V¥
and X. If we have an ionospheric model [X(ro/cos )] built up of

several layers [Xv (ro/cos a)], this can be written

X(CZZ Cf) =Z Xv (cocs) Ot) (2.13)
v

Applying Eq. (2.12), we find for the refracted angle:

2\ =E 2 (2.14)
v

where 2¢v is caused by the vth layer, etc. In other words, super-
position applies, and refraction due to each layer may be treated as if
it were the only layer present.

In Chapters III and IV, exponential and Chapman-distributed electron
density profiles are assumed. More complex ionospheres can be studied
by considering them as being constructed from a combination of these
basic models,

We have so far assumed a spherically symmetric ionosphere and, on
this basis, determined the raypath. However, one can also start by
assuming an ionosphere with nonspherical perturbations. Let us look at
the wavefronts as a wave propagates through a planetary ionosphere for
the high-frequency case illustrated in Fig. 6. The wavefronts become
slightly perturbed as the wave propagates through the ionosphere. The
phase at point P in Fig. 6 is proportional to the integral of | along
the raypath. For the case shown, it does not matter whether one inte-
grates p along the raypath or along the straight line /. (This is
only true when the point P is close behind the ionosphere and when the
refraction is small.) Using this argument, we see that f(l - u) dy

taken along / gives the perturbation on the wavefront in the y direction.

SEL-64-025 - 10 -



WAVE NORMAL

PLANET

A P WAVE FRONT

INCOMING
WAVES

FIG. 6. PERTURBATION OF THE WAVEFRONTS.

The angle the wave normal makes with the y axis (ZW) is equal to

minus the slope of the wavefront, and we therefore obtain:

d
2 = o f u dy (2.15)
through
e
medium

where the gradient in p 1is assumed negligible perpendicular to the
x-y plane.

Equation (2.15) states that the angular deviation of the rays in the
high-frequency case is equal to the gradient in the integrated phase

refractive index, p. This result has, for instance, been used to
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determine horizontal gradients in the total ionization of the earth's
ionosphere by measuring the ionospheric refraction of waves from radio
stars [Ref. 2].

Let us apply Eq. (2.15) to the spherically symmétric case and
compare this with the results we obtained previously. Equation (2.4)

gives in the high-frequency case:
1
p(r) =1 - 5 X(r) (2.16)

thus

fu dy=fdy-%fx(r) dy

and

2y

+00
1d
=T fX(r) dy
~"to

After introducing x = r, and y = ro tan ¢, we obtain:

4 x/2 % T, /2 X(ro/cos a)
2 = - —— { e
v dr f x(cos Cﬁ) costy © cos2Ct o
o o
X2 r r dod
. ] o
(coa 0) cos
s}

The last integral can be integrated by parts giving

n/z X(r /cos a) ﬂ/z X
2y = - s} 34 X o 1. 1 ao
cos 20, cos O cosza sin20

Q o]

1
+ X(r ) 1lim (—T—**———*——J
o 0= 0 sin O cos &

Further manipulations give

n/z r = I Jcos W
2y =/ . ") a o/ C() do + X(ro) lim (—————l— - cot oc)

= sin @ cos
J sin=( Q- 0 @ cos &

SEL-64-025 - 12 -



where the limit is zero. By comparing this expression with Eq. (2.12),
we see that the two approaches yield the same result, and we have there-
fore justified the simple arguments leading to Eq. (2.15).

We have so far limited the discussion to refraction caused by
gradients in the ionization. However, it is worthwhile noting that the
same results can be used to treat refraction in the lower atmosphere.

For the refraction index in this case, we can use [Ref. 3]:

T . 2

L= s 1076 (79P 5 380,000e) (2.17)
4

where P is the partial pressure of dry air in millibars, e 1is the
partial pressure of water vapor in millibars, and T is the tempera-

ture in degrees Kelvin. This corresponds to replacing Eq. (2.5) by

T 2

X = - 2-10-8 (79P 2 380,0009) (2.18)
T

When T is constant throughout the atmosphere, the pressure can be
expressed as an exponential function of height., We can therefore use

Chapter III to take into account the influence of the atmosphere.

B. PHASE PATH (sp) AND GROUP PATH (sg)

The ray picture is useful in the visualization of the propagation,
but we are more interested in those quantities which can be measured,
such as phase and group paths. The phase path of the signal is found
by integrating the phase refractive index u along the raypath from the
transmitter (or some reference surface), through the planetary ionosphere
and to the receiver.

There are two reasons why the phase path changes as the transmitter
is occulted by the ionosphere:

1. The electrons advance the phase and therefore tend to make the
phase path shorter.

2. The raypaths are curved due to refraction and this tends to
increase the phase path.

It is necessary to study both these competing effects in order to draw

any conclusions about how the phase path is changing.
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Previously we indicated that the phase path could be found by inte-
grating p along the raypath. This method is sufficient when the
propagation takes place over relatively short distances, such as between
two points on the earth's surface. However, it is not a practical
approach in our case because for most fly-by trajectories, one has to
integrate over such huge distances that the effect of the planetary
ionosphere more or less disappears. One can improve the accuracy, when
a digital computer is available, by using double-precision arithmetic.
However, since the use of double-precision arithmetic slows down the
execution of the program considerably, it is not a very attractive
solution from an economical point of view. Hence, it is desirable to
look for a more sophisticated method for the calculation of the phase
path.

Our primary interest is not so much the total phase path itself,
but rather the changes in the phase path due to the planetary ionosphere.
These changes would be fairly simple to compute if the raypaths were the
same with and without the ionosphere. In the latter case, it would only
be necessary to integrate the electron density along straight lines.
However, we must look deeper into this because the rays are curved.

Defining sp as the decrease in the phase path due to the presence

of the planetary ionosphere, we can write:

sp = %( f ds - f 1 ds) (2.19)

along along
straight raypath
line

where the second integral is taken along the actual raypath, and the
first integral is taken along the raypath connecting transmitter and
receiver when the planetary ionosphere is (imagined) removed. The
parameter c¢ 1is the free-space phase velocity and f is the frequency.

Thus, sp gives the phase difference in cycles.

SEL-64-025 - 14 -



In the high-frequency case, Eq. (2.19) gives

-ﬁ—( / ds - / ds +% de):sp:—sl+s2 (2.20)
along along along
straight raypath raypath
line
where
s, = ds - ds) (2.21)
1 (4] :
along along
raypath straight
line
B et X ds (2.22)
2 2c .
along
raypath

The group path is of interest when one transmits pulses instead of
cw. For the increase in group path (sg) due to the presence of the

planetary ionosphere, one obtains

S =5sS, +8 (2.23)

when magnetic fields and collisions can be neglected. The group time
delay due to the planetary ionosphere is (sg/f) with this notation.
Equation (2.21) gives sl in terms of two integrals; the magnitude
of these integrals is very large compared to their difference. It is
therefore not practical, as described earlier, to compute the two inte-
grals and then subtract them. Instead, one can compute s in two

1
steps. The first step consists of finding s as if the propagation

1
was along the raypath asymptotes. The actual raypath between the trans-
mitter and the receiver may be shorter or longer than the distance
measured along the raypath asymptotes, and it is the purpose of the
second step to correct for this difference (Asl).
One obtains, when the rays can be considered parallel before they

enter the planetary ionosphere:

f R
s, =3 (x - a) tan ¥ + Ns, (2.24)
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where x designates the x-coordinate of the receiver for the equivalent
trajectory, and a and V| are given by Eq. (2.2) and Eq. (2'12)i
respectively.

Computation of Asl requires integration. Use of a polar coordinate
system to find Asl is not practical because the errors get larger as
the distance to the planetary center is increased and the process does,
for this reason, not converge., Figure 7 shows a more convenient coordi-
nate system giving fast convergence when £ 1is used as a dummy variable
of integration. It turns out that Asl represents a higher order
correction to 54 and can often be neglected, as later results will show,.

The phase advance or group delay due to the electrons is given by
Eq. (2.22). Again using the polar coordinate system and O as a dummy

variable, we obtain:

RAYPATH ASYMPTOTE

RAYPATH

dE ]

k,_.-w

FI1G. 7. A CONVENIENT COORDINATE SYSTEM
FOR CALCULATION OF Asl.

SEL-64-025 - 16 -



x 2
0 ]‘/2 X(r,/cos @) 2 2 d¢)2 H

SZ = ~eosla sin & + cos (a do (2.25)
o
where
2 X(r ) cos%d - X(r /cos a) p
(93) = [1-X(r )] {1+ —2 2 (2.26)
do o sindQ )

Expanding the integrand in Eq. (2.25) and maintaining only the first-

order term in X gives

£ ﬁ/z X(ro/cos a)
27 ¢ rof TeosTa (2.27)
o

which is the same as integrating X along a straight line through the
ionosphere. It is important to notice here that while refraction can be
neglected as far as computation of sz goes, one cannot at all neglect
the influence of refraction on sp or sg when the receiver is well
behind the ionosphere.

Combining Eq. (2.15) and Eq. (2.27), one obtains:
dsz(ro)

dr
o

c
2y = - 3 (2.28)
which will prove useful in later chapters.
The time rate of change in sp gives the doppler shift due to the
ionosphere. One may measure dsp/dt in the following way. Assume that
two harmonically related frequencies £ and f are transmitted from

1 2
the earth, Thus f.m = fz, where m 1is an integer larger than 1.

Before occultation iakes place, one will receive the frequencies

fl[l - (vr/c)] and fz[l - (vr/c)], where v is the velocity at which
the transmitter and receiver move apart. The lowest frequency will in
addition be shifted by Aii during occultation. We will assume that

fz is so high that this wave propagates undisturbed through the
planetary ionosphere. After mixing of f2[1 - (vr/c)] and the mth
harmonic of fl[l - (vr/b)] = Afi, one can filter out mﬁfi. This

yields sp after integration, It is here assumed that the effect of
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changes in the earth's ionosphere and in the interplanetary medium can
be neglected or predicted.

The total electron content of the earth's ionosphere is about
2-1017 electrons/meter2 in the daytime. Ionospheric 1irregularities
cause fluctuations of about *2 percent in the daytime content [Ref. 4].
This variation corresponds to a change in s of about 10 wavelengths

2
at frequency 50 Mc. Nighttime variations in s would be smaller.

Even less is known about the density fluctuitions one may encounter
in the interplanetary medium. However, the Stanford Center for Radar
Astronomy has radio propagation experiments to be included on Pioneer I
and II which will help answer these questions.

Group-path measurements may also be used. This can be done by trans-
mitting two pulse trains of frequency fl and fz, respectively, and
observing the change in the time delay between pulses of different
frequency.

Other possible measurement techniques are discussed by Eshleman,

Gallagher, and Barthle [Ref. 5].

C. REFRACTION GAIN (Gr)

Another measurable quantity of great interest is the amplitude of
the signal. Rather than compute the absolute value of the amplitude,
we will find the changes in the amplitude due to the presence of the
planetary ionosphere.

Let us define the '"refraction gain" (Gr) as

S
2
G_ = 10 log —— (av) (2.29)
r S
1
where S1 is the Poynting vector one would have at the position of the
receiver without any planetary ionosphere, and S2 is the Poynting

vector at the receiver in the presence of the ionosphere. Figure 8
illustrates, considerably exaggerated, the effect of refraction on the
amplitude. We will assume that the gain of the transmitting antenna can
be considered constant over a solid angle, including that part of the
fly-by trajectory along which the occultation is observed. This assump-

tion implies that, in the absence of any planetary ionosphere, the power
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(x,y) RECEIVER POSITION

)

TRANSMITTER

FIG. 8. REFRACTION GAIN DUE TO PLANETARY
ATMOSPHERE.

- 19 - SEL-64-025



density is the same at positions 1 and 2 in Fig. 8. Hence one can relate

S1 and S2 to geometric quantities on the ray picture
SlrlAr1 = SerArz

which gives

ATy
G, =10 log(rzAr2> (2.30)

We can simplify Eq. (2.30) further because the angle by which the rays
are refracted (Zv) is very small in the high-frequency case, Let the

coordinates of the receiver be (x,y). We have, using quantities defined

in Fig. 5:

]
Il

g = Rp+a+ (2¥ +p)y

and

- a +B
*1 = Ccos B o

After introducing r,_, = x, one obtains

2
1
— =1 —21];% (2.31)

Ty

where only first-order terms in 2 and B are maintained. We can

also write

_ dzy Dy
Ar, = Arg +dro A 5y (2.32)
Combining Egs. (2.30), (2.31), and (2.32), one obtains
1 -2y ¥
G, = 10 log 357 Dy (2.33)
: dr D +
% y
Close behind the ionosphere one has
-y—Y
I 2y X|<< 1
2y Dy | o4
dro D+y
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and this gives for the gain
a2y y
Gr~4,34( ar, y - 2V x) (2.34)

where one can often neglect the term (2¢'y/x).

We have here based the definition of the gain on the ray theory.
This implies that Gr does not describe the amplitude variations close
to shadow boundaries or caustics. Approximations for the amplitude can

in these regions be found from the wave theory as shown in Appendix A,

D. CAUSTIC FORMATION

The distance (yc) behind the ionosphere at which the rays cross
each other can. be found by setting the denominator of Eq. (2.33) equal

to zero:

D
a2y Ve
l +—————=0
dr D+ y
o] (o}

or
-1
d2y 1
Vo = (- = D) (2.35)
o
Caustics are formed only when

e P (2.36)

for some finite interval in ro, while d21lr/dr0 > - 1/D tends to

defocus the energy.
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ITII. APPLICATION TO AN IONOSPHERE WITH EXPONENTIAL ELECTRON DENSITY
DISTRIBUTION

One can, for planetary atmospheres in hydrostatic equilibrium, show
that the electron density will be an exppnential function of height when
the density in the atmosphere is sufficiently low., This is a special
case of the Chapman theory [Ref. 6].

We will in this chapter use

X(r) = X_ exp <— igé—EE> (3.1)

where XS is the normalized electron density at the surface, H is the
scale height in the atmosphere, and Rp is the planetary radius.

The complete Chapman formula will be used in the next chapter.

A. RAYPATHS

The raypaths can be determined by combining Eq. (2.6) and Eq. (3.1).
However, it is sufficient for our purpose to know the raypath asymptotes
and these are determined by Egs. (2.8) and (2.12). Using Egs. (2.12)
and (3.1), we obtain the angle of refraction (2V¥):

r
- (1o 2]
1 - = B
2y °*P | 5H \' " s o

X(r) = SinZo & g2l
o

This is shown in Fig. 9 as a function of r0/2H.

Equation (3.2) gives the high-frequency approximation for 2V,
However, we would also like to know what accuracy we can expect from the
high-frequency approximation. This can be seen by comparing it with the

exact solution., Combining Eq. (2.10) and Eq. (3.1), we find the exact

solution:

1/2

w5 [ 1 - x(r,)
= 1 - - do
X(r,) ﬂro)f ; T

To
cos“0 - exp [— oH (1 = Ees OL)]
1+ X(r) —
o sin<(

(3.3)
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7.0 = Eq. (3.2)
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3.0 f— w3 Bg - r
X(rg) =Xg * exp (-_WE)
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0 ! 1 1 | I
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FIG. 9. NORMALIZED ANGLE OF REFRACTION FOR THE
EXPONENTIAL IONOSPHERE.

The right-hand side is in this case a function both of ro/2H and
X(ro). It is therefore necessary to choose some particular value of
X(ro) in order to compare the two solutions given by Eq. (3.2) and
Eq. (3.3) respectively. With X(ro) = 0.01 in Eq. (3.3) one obtains
the lower curve in Fig. 9.

Figure 9 may give the false impression that the accuracy in 2y is
decreasing with increasing r0 when the high-frequency approximation is
used. However, this is not true because X(ro) falls off very fast with

increasing L
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As an example, let us use H = 50 km and XS = 0.01 for the moon.
This gives ro/2H ~ 17 for the grazing ray. From Fig, 9 we find that
this corresponds to an error in 2¥ of about 3 percent. The error is
less for rays missing the surface.

It may seem surprising that the curves on Fig. 9 go through the
origin, This may occur in two different situations:

1. In the r,= 0O case, there is no planet in the center of the
ionosphere. The ray passing through the center of the ionized
blob is not bent in any direction.

2, In the 1/H = 0 case, 2y 1is also zero because there is no
gradient in the ionization,

The curves in Fig. 9 have been found by integrating Eq. (3.2) and
Eq. (3.3) on a digital computer. Analytic techniques can also be
employed. One can, for instance, expand the integrand into the follow-
ing form:

Cv o (3.4)

exp (—kot
v=0,4,6,...
This form enables us to evaluate the integral when the upper limit (n/2)

can be replaced by infinity. For 2§ one can derive

1/2
i o T\ [, 3T
2V ~3 X\ = €XP\ T 2H 1 - 76 7n X(r,) (3.5)

A numeric example has been worked out in order to illustrate the
theory developed so far., The example assumes an exponential model for
the lunar ionosphere with Rp = 1738 km, H = 50 km, f = 50 Mec, and
an electron density at the surface equal to 200 electrons/cm3
(Xs =] 6.44-10_6). The corresponding ray picture is shown in Fig. 10.
The scale is different along the two axes, and the moon will therefore
look like an ellipsoid in this space. The waves are assumed to be

transmitted from the earth.

B. PHASE PATH (sp) AND GROUP PATH (sg)

It was shown in Sec. IIB that the changes in the group path and the
phase path, due to the planetary ionosphere, can conveniently be ex-
pressed as the sum of, and the difference between, s2 and sl,
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GRAZING RAY
: (DEFINING THE
10+ 10 % SHADOW BOUNDARY )

. 108 —

KILOMETERS
o

CROSS SECTION
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TRANSMITTER (ON EARTH)

| | | J |
0 700 200 300 500

K ILOMETERS

FIG. 10. REFRACTION IN A LUNAR IONOSPHERE AT 50 Mc WITH THE TRANSMITTER
ON THE EARTH. (Assumed electron density: N(h) = N .. XD (-h/2H),
where Nmax = 2.108 electrons/ma; H = 50 knm.
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respectively. Here Sg is approximately proportional to the electron

density integfated along straight lines, and s1 is proportional to the

difference in path length with and without the planetary ionosphere.
The high-frequency approximation for S, is given by Eq. (2.27).
Combining this with Eq. (3.1), one obtains:

r
cs n/2 exp = (1 - C )]
2H d

2 . cos O
fr X(r ) cos«y
o o
o

Qa (3.86)

The result is shown in Fig. 11 as a function of ro/2H (upper curve).

Equation (3.6) gives the high-frequency approximation for Soe We
also like to know what accuracy we can expect from the high-frequency
approximation., One can determine the accuracy of Eq. (3.6) by comparing
it with the exact solution given by Eq. (2.25) and Eq. (2.26). The
exact solution can be normalized in the same way as Eq. (3.6). However,

the right-hand side will be a function both of r0/2H and X(ro). It

0.9
=/
sg = — | X ds
0.8 27 %
ALONG RAYPATH
Rp = ¢
— P o
= - ex
o7 - X=X * exp ( = )
HO
>~ 0.6
>
LO
¥ 0.5t
=
&
Ay -
H1GH- FREQUENCY APPROXIMATION, EQ. (3.6)
0.3
0.2
EXACT SOLUTION
0.1 FOR X(ro) = 0.0l
0 1 1 | | | |
0 10 20 30 40 50 60

ro/ZH

FIG. 11. NORMALIZED So FOR THE EXPONENTIAL IONOSPHERE.
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is therefore necessary to keep X(ro) constant in order to compare the
exact solution with the high-frequency approximation. Choosing
X(ro) = 0,01, one finds the lower curve in Fig. 11.

The pole at the origin in Fig. 11 is caused by the normalization
and does not mean that s2 is infinite for a ray passing through the
center of a blob of exponentially distributed ionization,

The curves on Fig. 11 have been obtained by evaluating the integrals

on a computer. Analytic techniques can also be employed, as already

mentioned in Sec. IIIA. For instance, one can show that:
f
S, & E*dnHro X(ro) (3.7)

For certain intervals in ro/ZH, one can find better approximations
for Sge

We also need to find 1 given by Eq. (2.21). The rays can first
be replaced by their asymptotes as described in Sec, IIB. This computa-
tion does not require any new integration when V¥ is known. Equation
(2.24) gives Sy when the waves can be considered plane before they
are refracted in the planetary ionosphere. The term Asl is the
difference between the phase path measured along the raypath and the
phase path measured along the raypath asymptotes.

The term Asl can be approximated in different ways. For instance,
one can replace that part of the raypath that is closest to the plane-
tary ionosphere by an arc of a circle., This raypath shape gives

3§
sec U - 1

=~

As, = 2 5 (¥ - tan ¥) ro<1 - f; sec ¢>

f
1 c
o

- 5 ¢ Tf(z,)

(3.8)
which is usually negligible at high frequencies,

The raypath is not really an arc of a circle close to the surface,
and it is therefore necessary to check how much the actual shape of the
raypath will influence the form of the expression for Asl. For in-
stance, one can replace the arc of the circle by a piece of a parabola
with maximum curvature at the point of closest approach,. (The reason
for choosing a parabola is, of course, that the line integral of this
conic section can be found in terms of elementary functions.) By com-

paring the two results one finds that the difference in Asl is negligible.

- 27 - SEL-64-025



The reason why s1 can be approximated in such a simple way is, of

course, that the raypaths are almost straight lines.

C. REFRACTION GAIN (Gr)

The refraction gain (Gr) was defined in Sec. IIC as the change
in signal strength due to the refraction in the planetary ionosphere,
Equation (2.33) shows that this gain depends on which part of the
ionosphere the signal is propagating through and how far the receiver
is behind the planetary ionosphere, The numerator of Eq. (2.33)
contains 2¥ which can be found from Eq. (3.5), and the denominator

of Eq. (2.33) can be approximated in the following way:

1/2
X TR R -r r = R 5
1+ d!2¢j Dy ~ 1 - Dy S P exp P o\ll1 1 N o P
dr0 D +y D+y 2 H 2H 2H 2Rp 4HRP

(3.9)
where 2¥ has been approximated by

Xs ﬂRp 1/2 1 I‘0 - Hp Rp = r
2"’*—2(—1{—) [“5—?{;— xp(—zr“>

D. CAUSTIC FORMATION

An approximation for the caustic can be found by combining Eq. (2.35)
and Eq. (3.5). This corresponds to setting the right-hand side of Eq.
(3.9) equal to zero. One then obtains for the y-coordinate (yc) of

the caustic:

= f
1 X an 1/2 1 1 X, - Rp Rp -r
Vo ™ 'ﬁ*?(T) (z—H"ZR T )“P(“—“za ) (3.10)
p P /
This expression can be simplified further when H << R and rO = Rp

<< 2Rp. If one also approximates Xc with (ro + yCZW), one obtains

. 2
fg___EE ~ 1 + ZE - 1n 4 [ H 1/ T S (3 11)
2H - D X an v, )

where (xc,yc) designates the coordinates of the caustic.

=1
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A ray picture was shown in Fig, 10, but it did not have any caustic,
the reason being that the curvature of the wavefronts was too large
before the waves were refracted in the lunar ionosphere. However, the
result will look different if the wavefronts are assumed plane before
they are refracted in the moon's ionosphere., This is illustrated in
Fig. 12, The ionospheric model and the frequency are the same as in the
previous example shown in Fig. 10, but the source is at infinity.

The caustic in Fig. 12 is given by Eq. (3.11) with 1/D = 0, which

gives

1/2 x ~-R
- - i - c P
v, ~ X (“Rp) exp ( 1 +ompg ) (3.12)

In order to have a caustic, it is necessary that yc in Eq. (3.10)

be positive for some finite interval in ro. This requires that

1/2 -
xs>%(ﬁl*;>/<%q;_p) ' (5.19)

We note that at sufficiently low frequencies there will exist a caustic,
but as the frequency is increased, Xs ceases to satisfy the above

relation, and the caustic disappears.
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FIG. 12. REFRACTION IN A LUNAR IONOSPHERE AT 50 Mc WITH THE SOURCE AT
INFINITY. (Assumed electron density: N(h) = N . €XP (-n/2H), where

N = 2-108 electrons/ms; H = 50 km.)
max
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IV. APPLICATION TO AN IONOSPHERE WITH CHAPMAN-DISTRIBUTED ELECTRON
DENSITY

The Chapman theory [Ref. 6] gives the electron density as a function
of solar zenith angle (X) and radial distance from the center of the
planet (r). Normalizing the Chapman electron density distribution

using Eq. (2.5), one obtains:

r
o _ 1 p_ o _ [e] _ ( p o _ o
x(cos O!’X)'_ Xmax exPlZ o & H H cos sec X exp H H cos O

(4.1)

where ro/cos O represents the distance to the center of the planet (r)

R +h r R +h P )

[using Eq.(2.9)], X is the solar zenith angle, H is the scale height
in the atmosphere, Rp is the radius of the planet, h0 is the height
of the maximum electron density at X = 0, and Xmax is the maximum
in the normalized electron density. The Chapman ionosphere is not
spherically symmetric.

The signal transmitted from the earth and received in a space probe
behind the Chapman ionosphere will only propagate through part of the
planetary ionosphere. The variations in the electron density with
longitude and latitude can be neglected as a first approximation in that
part of the ionosphere which is probed by the waves. This corresponds
to setting X in Eq. (4.1) equal to a constant Xo' For Xo we will
use the solar zenith angle at the point where the ray passing through
the receiver is closest to the planet.

Equation (4.1) can now be rewritten in a more convenient form:

r r r
X ( o > =X N cos Xo exp % l1 +K - D exp (K —-——Jl———)

cos max H cos & H cos O
(4.2)
where
Rp + ho
= ——— 1
K i + 1n sec Xo (4.3)

Equation (4.2) represents the normalized electron density distribu-

tion in a spherically symmetric ionosphere. The maximum X is
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- a . . . . A
Xmax cos Xo t a height hmax The height hmax is given by

h o =h, +HIn sec X (4.4)

It is important to notice here that we are not replacing the entire
Chapman ionosphere with a spherically symmetric ionosphere. We are
merely neglecting the nonspherical variations in the relatively small
part of the ionosphere which is probed by the signal. This simplifica-

tion will be further justified later.

A, RAYPATHS

Section IIA describes how one can determine the raypath asymptotes
when the ionosphere is given. The determination of the raypath
asymptotes mainly amounts to calculation of the angle (ZW) that the
rays are refracted.

Combining Eqs. (2.12) and (4.2), one obtains the high-frequency

approximation for 2V:

n/zexpll[l VK - o exp(K_iz)”
2 H H
2y Nsee X = 5
X (o} sin=Q
max o
1 ro ro
_ eprE[I r K- H cos 0 exp(K " H cos a)], da (4 5)
sinZo S

The right-hand side can be considered a function of KX and (h—hmax)/ZH.
‘Here h denotes the height at which the ray is missing the surface,

thus h is equal to (ro - Rp)' The result of integrating Eq. (4.5) is
shown in Fig. 13.

Figure 14 gives an indication of what accuracy one can expect from
the high-frequency approximation by comparing it with the exact solution.
The exact solution is found by combining Eq. (2.10) and Eq. (4.2).
Normalizing the exact solution in the same way as in Eq. (4.5),
one obtains a function of K, (h-hmaX»@IL and Xmax'JZ;;_i; on the
right-hand side of the equal sign, The curve representing the exact

solution in Fig. 14 is drawn for K = 30 and Xma£Jcos Xo = 0.01.
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FIG. 13. NORMALIZED ANGLE OF REFRACTION FOR THE CHAPMAN IONOSPHERE.
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IONOSPHERE.



B. PHASE PATH (sp) AND GROUP PATH (sg)

It was shown in Sec. IIB how the changes in group path or phase path,
due to the planetary ionosphere, can be expressed respectively as the

sum of or the difference between s1 and 52.

Sections IIB and IIIB showed that Sy can be approximated as the

phase path along the raypath asymptotes minus the phase path along a
straight line connecting transmitter and receiver. Thus s1 can be
found without integration when the raypath asymptotes are determined.

Equation (2.27) gives the high-frequency approximation for s

g
Combining Eq. (2.27) and Eq. (4.2), one obtains:

W 2  SE
s o se¢ %o i}r eXp,§[1 *E - Yoesa " exp(k " H cos a/ll cosZa

(o]

(4.6)

The result is shown in Fig. 15 where h 1is the raypath miss distance and
hmax is the height of the maximum electron density.

Figure 16 shows a comparison between the high-frequency approximation
given by Eq. (4.6) and the exact solution given by Egs. (2.25), (2.26),
and (4.2) for K = 30 and X oy VCOS X = 0.01.

For large values of (h—hmax)/ZH, one can use the results in
Chapter III.

The integrals in this chapter have mainly been evaluated on a digital
computer, but analytic techniques can also be employed. The integrand
in Eq. (4;6) can for instance be expanded as described in Chapter III.
However, different intervals in & require different expansions, and
it is therefore difficult to obtain good accuracy when adding and sub-
tracting the different areas. For rays that do not pass inside the
maximum in the electron density, one can show that

r r
o 1/2 B _o)”z 2 exp|- 1 ( _o)”
Sy &3 Xmax (ﬂHrocos Xo) exp 2(i + K 0 s 3 exp 5 ©Xp H

(4.7)
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Similar approximations have been found for other intervals in (h-hmax)/ZH,

but the accuracy of these approximations is not very good and they are

therefore not given here.

$2 c
0.6 P

Rp + h
\ K= % + In(sec xo)

0.5

Pmax = ho + H + In(sec X,)

-

=ro - Rp

-3.0 -2.0 -1.0 0 1.0 2.0 3.0 4.0 5.0
h-h_ . /24

max

FIG. 15. NORMALIZED S, FOR THE CHAPMAN IONOSPHERE.
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FIG, 16. COMPARISON BETWEEN EXACT AND APPROXIMATE
S, FOR THE CHAPMAN IONOSPHERE.
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C. CAUSTICS

The refraction gain (Gr) behind a Chapman ionosphere can be
computed using Sec. IIC and Sec. IVA., The gain Gr is infinite along
caustics and this fact is made use of in Sec. IID to obtain the equation
for the caustic [Eq. (2.35)].

Combining Eq. (4.5) and Eq. (2.35), one obtains for the caustic

ordinate yc behind a Chapman ionosphere:

Yc XmaxJ F' n/z d 1 1‘o o
o
T Je 2 %X T .[ d(-—‘i) (expl2[1 v K- 2 - expk - H)”
D i © 2H
r r -1
_ 1 ) ( o )] doy
°xp 2[1 + K H cos O ik = H cos O sin2Q
(4.8)

The result is shown in Fig. 17 as a function of (h—hmax)/ZH, where
h is the raypath miss distance and hmax is the height at which the
electron density has its maximum. We see from Fig. 17 that two

caustics may exist behind a Chapman ionosphere.

FIG. 17, NORMALIZED DISTANCE TO THE
CAUSTIC FOR THE CHAPMAN IONOSPHERE.
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D. NUMERIC EXAMPLE USING A CHAPMAN MODEL FOR THE MARTIAN IONOSPHERE

The previous sections have shown how the refractive properties of
the Chapman layer can be represented graphically in a normalized form.
In this section a numeric example is given assuming that Mars has a
Chapman ionosphere. The signals are transmitted from the earth and
received in a spacecraft that is being occulted by the Martian iono-
sphere. We will compute phase path and refraction gain of the signal
received in the spacecraft. The geometry is illustrated in Fig. 18,
Two receiver trajectories are shown.

The radial distribution of the electron density along the x axis is
shown in Fig. 19, We will first neglect the nonspherical variations in

the electron density distribution, thus

X =X

(o]

where Xo is the angle between the x axis and the direction to the sun.
This approximation will be justified later.

Figure 20 shows the ray picture in the x-y plane for f = 50 Mc.
The curvature of the wavefront is much smaller before it reaches Mars
than after it has been refracted in the Martian ionosphere. The waves
have therefore, for simplicity, been assumed plane before they are
refracted in the Martian ionosphere.

The atmosphere on Mars also causes refraction. Chapter III, with
X defined by Eq. (2.18), is well suited for making estimates of the
atmospheric effects. Reference 7 gives the necessary atmospheric
parameters for Mars, Using these parameters one finds that the effect
of the atmosphere can be neglected.

Figures 21 and 22 show how amplitude and phase change when occulta-
tion takes place along trajectory 1. The doppler shift of the signal,

caused by the Martian ionosphere, is given by

ds ds
» P _ _Pp(4dx cps
dt dx dt

The first factor (dsp/dx) is shown as a function of receiver miss

distance (x - Rp) in Fig. 23. For —dx/dt = 103 m/sec we see that
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the Martian ionosphere causes a doppler shift of 1.7 cps at miss distance

600 km. As explained in Sec. IIB, this can be measured by comparing it
with the eighth subharmonic of a 400-Mc signal.

The shape of the curves for phase path and refraction gain vs re-
ceiver miss distance depends strongly on the trajectory. Figures 24 and
25 show the results for trajectory 2. We see that the gain and the phase
path now are multivalued functions of (x - Rp). This is because the
signal in certain regions is received over more than one propagation
path at a time.

Trajectory 2 crosses two branches of the outer caustic at miss
distances 1700 km and 1300 km, respectively. The inner caustic in this
numeric example has only one branch in the x-y plane. This branch is
encountered at miss distance -1100 km,

So far we have neglected the nonspherical variations in the electron
density distribution. Taking these into account we find the changes
shown in Figs. 26 and 27. The nonspherical ionosphere used here corre-

sponds to Eq.(4.1) for X =< 85 deg and

r r
0 o
X( ’ ) = ( ) >
e X X — » 85 deg for X 85 deg
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[A modification of Eq. (4.1) is necessary because it is not valid for

large X.]

The two ionospheres used in the comparison in Figs. 26 and

4
27 have the same electron density only along the x axis.

1 1 1
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'V. DETERMINATION OF THE ELECTRON DENSITY DISTRIBUTION FROM AMPLITUDE,
PHASE PATH, OR GROUP PATH

Previous chapters have discussed how to find amplitude, phase path,
and group path of high-frequency radio waves propagating through a
planetary ionosphere with known electron density profile. The purpose
of an experiment would of course be to measure the gain Gr(x), the
changes in the phase path sp(x), or the changes in the group path
sg(x) as the transmitter is occulted by the ionosphere, and from this,
deduce the distribution of electron density for that part of the iono-
sphere which is probed by the waves reaching the receiver. In other
words the problem has been reversed, but the results derived previously
are still of great value.

Propagation through a nonspherical ionosphere can, as has been
shown, be treated as if the ionosphere were spherically symmetric. We
then use the same radial distribution of electron density in that part
of the ionosphere which is probed by the signal, but variations in the
electron density with longitude and latitude are neglected.

The equivalent trajectory (Fig. 1) comes in very handy here too;
and we will assume that Gr(x), sp(x), and sg(x) correspond to
measurements along this trajectory.

The two first sections in this chapter are mainly devoted to
studies of processes which can be used to find the angle of refraction
ZW(ro) or the normalized straight-line integrated electron density
sz(ro) from Gr(x), sp(x) or sg(x). Here x denotes the abscissa
coordinate of the receiver and r0 the radius of closest approach for
the raypath. (See Fig. 5.)

Later we show how the normalized electron density distribution

X(r) can be found from sz(ro).

A. DETERMINATION OF THE NORMALIZED STRAIGHT-LINE INTEGRATED ELECTRON

DENSITY sz(ro) FROM THE REFRACTION GAIN Gr(x)

The refraction gain Gr(x) along the equivalent trajectory is given
by Eq. (2.33). We will assume that that part of the equivalent tra-
jectory along which the occultation is observed can be approximated with
a straight line: |

y =y, - ux (5.1)
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The same procedure can be employed when a piecewise linear approximation
is used for the equivalent trajectory.
The radius of closest approach ro for the ray that is crossing the

receiver will be approximated by
r = x - (2¢ +B) y (5.2)

where (x,y) are the receiver coordinates. This corresponds to setting
T equal to (Rp + q) in Fig. 5. We will further assume that y << D,
The geometrical quantities used here are shown in Fig. 5.

Some remarks are also necessary on the notation we are going to use.
A ray with radius of closest approach, ro, is bent an angle 2¢(ro)
which is a unique function of ro. Since the rays in the x-y plane cross
the equivalent trajectory, the same angle can also be considered a
function of receiver abscissa x and we will then write ZW*(X). Al-
though 2¢(ro) and ZW*(X) are equal when they refer to the same ray,
it is still convenient to have some difference in the notation, espe-
cially since ZW*(X) may be a multivalued function of x. TFor S, and
B, we will similarly use sz(ro), sz*(x), B(ro), and B*(x). For

B(ro) we have

Blr,) ~— (5.3)
From Eq. (2.33) one can now obtain
d[Zw*(i) + B*(i)] - e(x) dx (5.4)
1 +ul2v (x) + B (%)]
where
G.(x)/10
(o) = i o7yt | (59
° (12— (- ' =)

The upper sign in Eq. (5.5) should be used when there is no caustic
between the receiver and the planetary ionosphere; and the lower sign
should be used when the rays have crossed each other somewhere between
the receiver and the ionosphere. The expression for g(x) can be

simplified when the trajectory lies close behind the ionosphere.
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* *
Rewriting Eq.(5.4) in integral form and neglecting u[2Vy (x) +B (x)],

one obtains

X
* * *
2¥ (x) +p (x) - (x) =f g(x) dx (5.6)
Xb
where Xb corresponds to a position of the receiver before the occulta-
tion has started. At x = X, we have
Gr(xb) =0
*
2V (xb) =0
* b
B (x,) = (5.7)

D =
+ ¥, - ouxy

Equation (5.6) may at first appear to be useless because g(x)
depends on the unknown function Zw*(x). However the term containing
Zw*(x) in the expression for g(x) is small compared to 1 in the high-
frequency case. This makes Eq. (5.6) a very useful tool for obtaining
ZW*(X).

Let us first look at a method that can be used to integrate Eq. (5.6)
directly. The integration can be done by summing —g(x) Ax  from
large toward smaller values of x. Let us assume that 2¢*(x) and
B*(x) are found in the region from x_ to x (where x 1is less than

* * .
x The next step consists of determining 2V¥ (x - Ax) and B (x - Ax).

b). * *

One can calculate g(x - Ax) wusing 2V (x) instead of 2V (x - Ax),
This is possible because the term containing Zw*(x) in Eq. (5.5) is
small compared to 1., Equation (5.6) now gives [ZW*(X - Ax) + B*

(x - Ax)], which again can be used to calculate the corresponding ro
by means of Eq. (5.2). Thus B*(x - Ax) can now be computed from

Eq. (5.3). This also enables us to find Zw*(x - Ax) since we already
know [ZW*(X - Ax) + 5*(x - Ax)]. By repeating this procedure one
obtains ZW*(X) and B*(x) for all values of x where Gr(x) is

known. This method is well suited for use on a digital computer when

Gr(x) is known in sufficient detail.
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Another way to approach this problem is to neglect 2W*(x) in g(x)

as a first approximation. One then obtains

X
* *
20, "(x) + 8, (x) - 8%(x,) f g, (x) dx (5.8)
)
where
Gr(x) /10
1 10°Y
gl(x) = v, - 13 v, = (5.9)
1 + )

By using Eqs. (5.8), (5.2), and (5.3) one can now determine a first
. ] * *
approximation [2llfl (x)] for the angle of refraction 2V (x).
* *
A second approximation [ZWZ (x)] for 2V (x) can be found by

repeating this procedure, One obtains

2, () + 5, 0) - 87(x,) = () e (5.10)
*b
where
Gp(x) /10
g,(x) = - - — {17 — ig i ] (5.11)
’ | I A I

This iterative process can be employed until sufficient accuracy is
obtained for ZW*(X) and B*(x).

The functions Gr(x), g({x) and [Zw*(x) + B*(x)] are multivalued
functions of x when the rays cross each other somewhere between the
receiver and the planetary ionosphere. Figure 28 illustrates how
[zw*(x) + B*(x) - B*(xb)] is obtained from integration along the
branches of g(x). The poles in g(x) coincide with the poles in
Gr(x), and they lie where the trajectory crosses caustics. However, the
amplitude never goes to infinity at caustics such as Gr(x) predicts.
(See Appendix A.) Thus the true gain GT(X) does not have any poles.
One can therefore not expect to obtain an accurate determination of
[ZW*(X) + B*(X) - B*(Xb)] by substituting GT(x) for Gr(x) when the

trajectory is crossing one or more caustics. However if the detailed
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behavior of GT(x) is known around the caustics, one may from this
estimate the corresponding ray theory gain Gr(x) and thereby improve
the accuracy. (Multipath propagation can be avoided by choosing the
frequency high enough such that the caustics will lie behind the space-
craft trajectory. Estimates can be made by using the results derived
in Chapters III and IV.)

The next step in the process of obtaining sz(ro) from Gr(x)
consists of finding ZW(ro). This is done by changing the variable
from x to r, using Eq. (5.2).

Finally, Eq. (2.28) relates 2w(ro) and sz(ro). Thus,

(e ]

sy(r ) = EJ/. ZW(rO) dr_ (5.12)

To

- 581 ~ SEL-64-025



We have now seen how sz(ro) can be deduced from the refraction
gain Gr(x). The function sz(ro) is only related to that part of the
ionosphere through which the signal is propagating; and we have there-
fore eliminated the dependence upon the particular trajectory along
which the measurements happen to be made,.

The next section shows that sp(x) or sg(x) also can be used to
obtain sz(ro) in the high-frequency case.

The radial distribution in electron density X(r) in that part of
the ionosphere which is probed by the signal, can be determined from
sz(ro). (See Secs. C and D.)

Losses due to electron collisions cause absorption at lower fre-
quencies. This absorption coefficient is proportional to the product
of collision frequency and X [Ref. 8]. One may, by observing the
amplitude at different frequéncies, be able to determine the radial
variation in the collision frequency (if the data are good enough).

The highest frequency would yield X(r) and this enables us to compute
the refraction gain at the lowest frequency. The difference between
the observed gain and the computed refraction gain at the lowest fre-
quency yields the radial variations in the straight-line integrated
absorption coefficient. The problem of finding the radial variation in
collision frequency is analogous to determining X(r) from sz(ro).

Sections C and D can therefore be used in both cases.

B. DETERMINATION OF THE NORMALIZED STRAIGHT-LINE INTEGRATED ELECTRON
DENSITY sz(ro) FROM THE PHASE PATH sp(x) OR THE GROUP PATH sg(x)

The only difference between the form of sp(x) and sg(x) is a
difference in sign in front of- Sy- [ See Egs. (2.20)and (2.23)J We
shall first look at a method in which this sign difference is of no
importance as far as the determination of sz(ro) goes. We will use
sp(x) here but the method also applies to sg(x).

Equation (2.20) gives

—sl(x) + sz*(x) = sp(x) (5.13)

* s .
where the again is used to emphasize that s here is considered a

2
function of the receiver abscissa x. One can neglect (x) when the

%1
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receiver is flying close to the planetary ionosphere. Thus as a first

approximation 521(ro) to sz(ro), one obtains:
r )=s(r) (5.14)

where the receiver abscissa x 1is simply replaced by the radius of
closest approach ro for the ray that crosses the receiver. The first
approximation in 2¢1(ro) can now be determined from Eq. (2.28).

The function le(ro) may not be a sufficiently accurate approxi-
mation to sz(ro), but this approximation can be improved by repeated
use of Eq. (5.13). For instance, when the waves can be considered plane
before they are refracted in the planetary ionosphere, this gives:

hif
szz(roj = sp(x) + g (x - ro) Wl(ro) (5.15)

This equation is obtained by combining Eqs. (5.13) and (2.24). The term
Asl in Eq. (2.24) has been neglected and so has the difference between
a and ro. When the receiver trajectory is given by Eq. (5.1), one can

show that

roo+ Yo 2¢1(r0)
1 +u Zwl(rd)

X =

r ) of

This enables us to determine the second approximation 522( N

sz(ro) frqm Eq. (5.15).

Higher order corrections to sz(ro) can be found by repeating this

procedure,
Another way to approach the problem is to consider the slope of
ds
s (x). For |2u< B << 1, one can show that
P f dx
’ ds (x)
* c P
2 = = — = .
v (%) A (5.16)

where 2¢*(x) denotes the angle of refraction as a function of receiver
abscissa x. This equation can be considered a generalization of

Eq. (2.28). Once ZW*(X) is determined from Eq. (5.16), one can use
the method explained in Sec. VA to find sz(ro). [Equation (5.16) does

not apply to sg(x).]
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Other ways to determine sz(ro) have been found during this study.
However, they are believed to be of less importance and are therefore
not given here,

We have shown that either the phase path, the group path, or the
amplitude can be used to obtain sz(ro). However, it may be an advantage
to make two of these measurements simultaneously in order to reduce
experimental errors and possible uncertainties introduced by variations
in the medium between the transmitter and the planetary ionosphere.
Ambiguities can also be avoided by receiving on several frequencies in

the spacecraft,

C. DERIVATION OF A RECURSIVE FORMULA RELATING THE NORMALIZED ELECTRON
DENSITY DISTRIBUTION X(r) TO THE NORMALIZED STRAIGHT-LINE INTE-
GRATED ELECTRON DENSITY sz(ro)

It was shown in the two previous sections how Gr(x). sp(x), or
sg(x) can be used to obtain sz(ro). In this and the next section we
will show how to determine the normalized electron density distribution
X(r) from sz(ro).

In this section the coordinate system shown in Fig. 29 is used.

Let us consider the planetary ionosphere built up of K spherical

layers with constant electron density in each. Equation (2.27) can now

be rewritten in the following form:
m-1
2 % sy(m) = X(m) Ay(m,m) + 22 X(n) ay(m,n) (5.17)

n=1

th
Here s2 is denoted s (m) for the m ray and X(n) is the normal-

ized electron density in the nth layer. In Fig., 29, Ay(m,n) desig-

th th
nates the line element corresponding to the n layer and the m ray.
From Eq. (5.17),

2 %—sz(l) .
) = R
1
2 % 52(2) - 2:2: X(n) Ay(2,n)
5 =]
X2) = Ay(2,2)

. -
. .
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m-1
2 2 sy(m) - 2‘; X(n) Ay(m,n)

X(m) = &yzﬁn,m)

(5.18)

which provides us with a recursive formula relating X to s2.
The two-dimensional matrix Ay can be expressed in terms of the

radii of the spherical layers:

r +r 2 1/2 2 1/2
Ay(m n) = r2 Y (L P e - rz + rm N el
? n 2 n+l —

(5.19)

sytmm) = 22 - (D) Taet) (5.20)

It turns out that these results can be extended to include a special
case where the ionosphere is not spherically symmetric. Although this
case is not of much importance in this context, it may clarify the
inversion process and will therefore be included,

Iet X be a separable function of the radial distance to the center

of the planet r and of the solar zenith angle X:

X(r,x) = x,(r) A(X)

Using A(m,n) and A'(m,n) to denote the solar zenith angles for the

line elements Ay(m,n) above and below the x axis respectively, one

finds
m—1
2§ 5,(m) §_:1 x,(n) Ay(m,n)[A(m,n) + A'(m,n)]
%y(m) = ~ Zy(m,m) Alm,m) (5.21)

which shows that it is necessary to know A(X) in order to find Xl(r).
Another convenient method for calculation of X(r) from sz(ro)

is given in the next section.
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APPLICATION OF THE ABELIAN INTEGRAL EQUATION TO THE DETERMINATION
OF THE NORMALIZED ELECTRON DENSITY DISTRIBUTION X(r) FROM THE
NORMALIZED STRAIGHT-LINE INTEGRATED ELECTRON DENSITY sz(ro)

Equation (2.27) is a special case of an integral equation solved by

Abel. His results can be found in most textbooks on the subject [Ref.Q]

Changing the variable of integration in Eq. (2.27) gives

. -1/2

o) of s [ (]

. 2
where r 1is given by Eq. (2.9). By using l/r as a dummy variable

of integration in Eq. (5.22), one can obtain from comparison with Abel's
solution:

r

s.(r) [ 2 7171/2
cof o ()] e

(o]
o]
Y =00
(o]

X(r) =

Al

This is the formal solution to the problem, but it is not a very

convenient solution from the point of view of numerical analysis., It

is therefore tempting to try to modify Eq. (5.23). One can show, after

differentiation with respect to r, that:

o]

-3/2
M) =22 [ lo,0) - aye ) r (% - e, (.20

r

This form of the integrand cannot be evaluated accurately close to

the lower 1limit r. Expanding the integrand in the interval

r to
r + Ar gives:
1/2
x(r) _._E.c_iis_z_(_r_)_ Lx
- nf dr ar
2 r s 2,732
c
&L S - = d 5.25
+ =3 [sz(r) sz(ro)] (ro r) r dr ( )
r+AY
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where Ar should be small enough so that sz(ro) can be approximated
accurately by sz(r)+-[ds2(r)/ar](ro - r). It is also assumed that
LHr << r.

The function 52(r ) in the integrand of Eq. (5.25) decreases
o 2 2.,-3/2
(7 -~ %)
o' o
fore, in order to cut down the computation time, one can modify the

rapidly with increasing ro, but r does not. There-

integral in the following manner. Let

sz(ro) =0 for ro > r,
Splitting up the integration in two new intervals (r + Ar, rb) and
(rb, m) gives
r
b
ds, ( 1/2
Rl e S 3t ) (£>/ w2 £ [s.(r) - s (xr )]
n f dr 2r nf 2 2o
r+Ar
2 2,-3/2 9 ¢ o  g.-1/2
(ro -r) rdr o+ — % sz(r)(rb -r) (5.26)

and this form is very well suited for use on a digital computer.

We have now discussed procedures which can be used to obtain the
normalized electron density profile X(r) from measurements of changes
in the amplitude, the phase path, or the group path during occultation,
Because of the complexity of the methods and the many approximations
involved, it appears almost impossible to carry out any general analysis
of the final errors in X(r). However, let us briefly look at the
simplest case where refraction is negligible so that sz(ro) can be
determined directly from phase-or group-path measurements. We will use
szE(ro) to denote the error in sz(ro), and XE(r) to denote the
corresponding error in X(r). One can show that XE(r) is given by
Eq. (5.26) when SZ(ro) is replaced by SZE(ro) [and X(r), by XE(r)].
[Errors in sz(ro) for r, > ry do not influence the final result when
Eq. (5.26) is used in the inversion process.] Equation (5.26) can be

simplified when sZE(ro) can be considered as varying rapidly around

zero so that
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r
b

-3 /2
C 2 2
f “/F - S2E(ro)(ro - r ) rodro

r+Ar

AN

may be neglected. One then obtains for the absolute error in X(r):

[ dSZE(r)

dr

2N
H) O

xE(r) ~ Ar o+ SZE(I‘J (2mr)‘1/2

showing that the error in X at r 1in this case only depends on

SZE(r) around r. In order to determine the standard deviation in
XE(r), it would be necessary to assume a probability distribution for
SZE(r) and dSZE(r)/dr.

The experimental errors may be the largest errors, but we also like
to check the approximations we have developed. A complete numerical
example is therefore worked out in the next section. This example may

also clarify some of the previous derivations.

E. NUMERIC EXAMPLE

A numeric example was given in Sec., IVD, where it was shown how
amplitude and phase may vary during an occultation, In particular,
Fig. 21 shows Gr(x - Rp) for trajectory 1.

We will now use, as an example, the gain shown in Fig. 21 and from
this try to determine the corresponding electron density distribution
in the Martian ionosphere. In doing so, we will make use of the results
developed in Secs. VA and VD,

Equation (5.9) and Fig. 21 can be used to determine gl(x). We
note that 1/D and B in Egqs. (5.9) and (5.8) are both zero in this
example because in Sec. IVD we neglected the curvature of the wavefronts
before refraction in the Martian ionosphere. (The quantities D and
B are defined in Fig. 5.) The result of computing gl(x) is shown in
Fig. 30 where x - Rp is the receiver miss distance as viewed from the
earth,

Integration of Eq. (5.8), where gl(x) is taken from Fig. 30, gives
ZWl*(x) as shown in Fig, 31.
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FIG. 31. THE FUNCTION 2y (x—Rp) FOR TRAJECTORY 1.
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This procedure can now be repeated. By using Eqgs. (5.11) and (5.10),
we obtain gz(x) and 2¢2*(x). The result is shown in Figs. 30 and 31.

Neglecting the difference hetween ZWZ*(X) and 2W*(x), we can now
determine ZW(ro) by means of Eq. (5.2). The result of this nonlinear
scale transformation is shown in Fig. 32.
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g+ o3
6 - 1073
T
2+ 1073}~

L L i 1 = | =] |
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FIG. 32. THE FUNCTION 2y (r -R ) AT 50 Mc FOR A
MARTIAN IONOSPHERE. °c P

The next step consists of determination of sz(ro). By using Eq.
(5.12), one obtains the result shown in Fig. 33,

Finally, Eq. (5.26) gives the electron density distribution that is
causing the gain fluctuations in Fig. 21. The calculated points are
plotted in Fig. 34, together with a curve representing the Chapman model
originally assumed in Sec. IVD (Fig. 19). The agreement between the
assumed and the calculated electron density distribution is good in
spite of the many approximations involved.

Looking at both Secs. IVD and VE, we see that we have ended where we
started, namely with the electron density distribution. When the data
from an occultation experiment become available, it may be useful to
check the result with a similar loop:

1. Use the data to determine the electron density distribution, then

2. Use the electron density distribution and calculate the quantities
that were measured during the occultation.
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Note that the last step can easily be carried beyond the first-order
approximation (high—frequency approximation), while the first step
cannot.

sz(ro - RD)
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300 [~

200 |-
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b | 1 r 1 I
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FIG, 33, THE FUNCTION sz(ro-R )} AT 50 Mc FOR A
MARTIAN IONOSPHERE. p
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FIG. 34. COMPARISON BETWEEN ASSUMED AND
CALCULATED ELECTRON DENSITY PROFILES,
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F. OTHER ALTERNATIVES

In the previous sections we have seen some methods that can be used
to determine the electron density distribution from measurement of
amplitude, phase path, or group path. However, the methods are
laborious, and it may turn out that the data, when available really
will not qualify for this type of procedure. In other words, it may
be that the uncertainties will be so large that, even after careful
smoothing, the data may yield an unrealistic electron density distribu-
tion. In this case it may be better to determine characteristic
properties of the ionosphere by comparing the data with the results
obtained in Chapter III or Chapter IV. From this it may be possible,
for instance, to determine upper and lower limits for the parameters of
a Chapman-model ionosphere that will yield amplitude, phase path, or

group path in agreement with the measurements.

Faraday rotation is another quantity that can be measured as
mentioned in the introduction to Chapter II. One can show, when the
quasi-longitudinal approximation applies, that the Faraday rotation is
proportional to the integral along the raypath of X +times the longi-
tudinal component of the magnetic field [Ref. 10]. This yields a means
of exploring the planetary magnetic field. However, assuming that the
magnetic field around the planet may be considered a dipole field, one
may also use the Faraday rotation to check or improve X(r) found from
phase or amplitude. The dipole field is uniquely specified by three
numbers (two angles and the dipole moment), and the rest of the informa-
tion contained in the Faraday rotation vs miss distance curve is there-
fore on X(r).

So far we have studied radio-wave propagation through planetary
atmospheres and ionospheres. It is also necessary to consider the
waves reflected from the surface of the planet. The next chapter will

deal with this problemn.
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VI. REFLECTION OF RADIO WAVES FROM PLANETARY SURFACES

Section IVD shows how amplitude and phase may vary for a signal
propagating through a Martian ionosphere; however, waves will also be

reflected from the surface of Mars. Let us therefore, in order to

complete the example in Sec. IVD, briefly consider the reflected signal.

Figure 35 shows the ray picture around the limb of Mars, assuming a
smooth surface. It is clear from this picture that the intensity of
the reflected signal will be way below the intensity of the direct
propagating signal both along trajectory 1 and along trajectory 2.
(See Fig. 18.) It therefore appears easy to distinguish the direct
traveling wave from the wave reflected from the surface. This pre-
liminary conclusion is based on the simple model used in Fig. 35. How-

ever, a more detailed study in the next sections will show essentially

the same result.

INCOMING

PLANETARY SURFACE = ——— % WAVES

FIG. 35. REFLECTION FROM A SMOOTH, PERFECTLY REFLECTING PLANETARY
SURFACE,
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A, APPLICATION OF HUYGENS-KIRCHHOFF PRINCIPLE

The balance of this chapter considers radio waves transmitted from
the earth and reflected from a rough planetary surface. -A receiver is
flying by the planet. The planetary surface is moving relative to the
receiver, and this motion will impose a phase modulation on the re-
flected signal.

Many authors have studied radio-wave reflections from the moon and
planets for the monostatic case in which both transmitter and receiver
are situated on the earth [Refs. 11, 12, 13]. Here we will extend some
of this work for use in the case where the transmitter is on the earth
and the receiver is in a spacecraft flying by the planet (bistatic

radar). The geometry at time t is illustrated in Fig. 36. The

PLANETARY SURFACE

RECEIVER

/

WAVES FROM
THE EARTH

FIG. 36. GEOMETRY OF THE PROPAGATION PATH AT
TIME t,
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gonOCo—coordinate system is chosen with the origin in the center of the
first Fresnel zone and both the §o and the no axes are tangential

to the mean planetary surface. The gonoCO—coordinate system is moving
relative to the surface such that its origin always remains in the
center of the first Fresnel zone. We also need a coordinate system
that is fixed to the surface. Let us call its axes £, 7, and £.
The last coordinate system coincides with the Eonoéo-coordinate system
at time t as shown in Fig. 36,

We will apply the Huygens-Kirchhoff principle in order to try to
relate the statistics of the reflected signal to the statistics of the
planetary surface. In order to do that, we need an expression for the
phase of the signal reflected from a point on the planetary surface.

Figure 37 shows a point (go, ., Co) on the mean planetary surface.

o

The reflection takes place on the surface at a distance h(go, Ny t)

below the mean surface. It is necessary to make approximations in the

expression for the phase path., Assuming that h(go, n., t) is small

o
compared to the other dimensions involved, one obtains for the phase

path between the transmitter, the reflection point, and the receiver,

2
§2 (cosze cos @ 2 cos B )
o o o o

k(dr * dt) e dor * dot i 2 d N d * R
or ot p
ni 1 1 2 cos 90
+-§' 3 +d + R + 2h cos 80 (6.1)
or ot p
h{€gmg. t)

PLANETARY SURFACE
(£grm0: §5)

MEAN PLANETARY
SURFACE

FIG. 37. CROSS SECTION OF SURFACE FEATURE.

. Y
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where k 1is the free-space wave number, Rp is the mean planetary
radius, 90 is the angle of incidence at the origin, and dor and
dot are the distances between the origin, the receiver, and the trans-
mitter, respectively., Only the first-order terms are maintained in
(6.1). We have also neglected the effect of the ionosphere because
this only causes a constant phase shift when the ionospheric contribu-
tion is independent of the position on the surface where the reflection
takes place.
Let Et be the amplitude at unit distance of the electric field
of the transmitter. The Huygens-Kirchhoff principle then gives for the

amplitude of the reflected wave at the receiver:

ikEt - ds
Er(t) R exp {ifwt - k(dt + dr)]](cos et + cos er) T4 (6.2)

tr

where et and er are the angles that the normal to the surface
element dS makes with dt and dr’ respectively. The Huygens-
Kirchpoff principle applies when the surface does not have any roughness
scale comparable to the wavelength, =
Equation (6.2) can be simplified by neglecting the variation in the
distance and obliquity factors over the region of the surface con-

tributing to the reflected signal. This simplification gives

1kE cos ©
E (t) ~ zﬂd o ff exp {ilwt - k(d, +d )1} 4t dn (6.3)

where the limits in the .integration have been set equal to oo, This
is valid when a large number of complete Fresnel zones take part in
the reradiation from the surface. (This approximation is not valid
when the first Fresnel zones approach the shadowed part of the
surface.)

We will define the time autocorrelation function R(T) of Er<t)

in terms of an ensemble average:

5 zi<Er*(t) E(t + 'r)> (6.4)
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where z, is the free-space wave impedance. The dimension of R(T)
is power per unit area.

We can now combine Eqs. (6.3) and (6.4), which gives

1 kEt cos 9
R(T z§< 2xd_d_ ffexp {i[ -wt +k(d +d )]} dg_dn

400 400

f/exp {(ilwt + wT - k(dt' + dr')]} dg ! dno' > (6.5)

-0 -0

Note here that the last double integral is not equal to the first double
integral since the coordinate system used for the integration has moved
during the time T.

For the phase path in the last integral one can  show that ﬁmv d J% 04” )

. . §0'2 coszeo 005290
1 ] ~
k(dt +d ) d, +d_ + (dot + dor) T+ 5 + =
or ot
2 cos 8 n 2z 2 cos 6
+ i L + L +
R 2 d d R
p or ot P
+ 2h' cos 0 |k (6.6)
where d and & denote the time rate of change of d and 4 _,
ot or ot or
respectively.

Combining Eq. (6.5) and Eq. (6.6), one obtains:

1 kEt cos 80 B . .
R(T) =3 —Z— —m—) exp {1[u)"l.’ - k(dor + dOt)T] ] ff
o) or ot

cosze cosze 2 cos O
.k o o o 2 2
- exp (i3 + + (e, - £,')

d d R
or ot P
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[ 1 il & 2 cosg ( 2 ,2)
(d d R Mo = Mo
or ot »

-<%xp [i2k cos eo(h - h’)£> dgo dgo‘ dn dn (6.7)
where
h=h(g, n, t)
‘ h'= h(go’, Ng'r t +7)

The next step in this development consists of changing dummy
variables of integration. To be more specific, what we want to do is to
integrate in a coordinate system that is fixed to the surface instead
of moving along with the Fresnel zone pattern, such as our present
coordinate system does. We have already defined a useful coordinate
system for this purpose in Fig. 36. This was the EHC-Coordinate system
which coincides with the subscripted coordinate system (§onoC0 system)
at time t (see Fig. 36), but is fixed om the surface.

Let vg and Vn be the velocity with which the center of the

first Fresnel zone is moving over the surface in the £ and 70

directions, respectively. Then we have at time t,

E=¢ n="n

o o

and at time (t + T),

gl

ng + go' e

]
<
A
+
=
o-.

If we also introduce At = E' ~ & and Ay =1n' -1,

A 1 T
we can use £, 7N, Af, and AN as dummy variables of integration.
This gives

§o' E + AE - VET

=
i

n + Ay - VnT (6.8)
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2 2 N _
£ - &) = (ng AE)(28 + At ng) .
2 2
Ny =Ny = (VTIT - m)(2n +aq - vn'r)
and h - h' = h(&,n) - h(¢ + AE, 1 +20) (6.10)

We will now assume that h has a gaussian joint-probability density

function. This gives

(o Lik cos 0,(h - w1) = e (- 48 12 coso [1-p (Yot + 7))

(6.11)

»
(The left side can be considered the joint characteristic function of

the gaussian random variables h and h'. Expressions for the joint
characteristic function of gaussian random variables can be found in
most textbooks on thg_subject.)

In Eq. (6.11), .h2 denotes the mean square height and pQJA§2+An2)
is the normalized autocorrelation function for h. The mean of h is
%gro since we have chosen the mean planetary surface with radius Rp
as the reference level.

We can now combine Eqs. (6.7), (6.8), (6.9), and (6.11), which

gives:

1 kEt cos 6

o R [ ] *
R(T) =~ = W) exp {ilw - k(d,, +d  )IT)
or ot

490 400 - - -
// exp { - 4Kk b2 coszeo [1 - p(«/Agz + Anz)]}

~00 =00

[ cosze cos29 2 cos B
exp |- 1 e S = 2 (v,T - AE)Z
|2\ 4, e R E

2 cos ©
.k 1 1 o 2
exp 12<d + 3 + = )(VnT—AT])]
L ot or P
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1 1 2 cos 60
f exp 1k<d el = )(vﬂ’r—An)n dn d{AE) d(an)

(6.12)

The integrations in €& and 71 yield © functions, After inte-

gration also with respect to Af and 43, one ®inds

R(7) =~ R(0)exp {ilwT - k(éOr + &Ot)r]} exp { - x> £§ coszeo [1 - p(vD)]}

(6.13)
where
v = VE + v (6.14)
and N
2
1 Et cos 60
r(0) ¥z |d a cos © cos © 2 cos @ (6.15)
o or ot 8., (. 225 1 N 1 . o
d d R d d R
or ot r or ot P

Equation (6.13) shows that by measuring R(T) we can determine
p(vT) _if the rest of the parameters are known,

We see that h2 = 0 gives a doppler shift of the reflected signal
but no frequency broadening. Howeve_zi we are not interested in smooth
spheres but in rough planets. For h2 >> Kz one has the situation

illustrated in Fig, 38, where it is assumed that the derivative of

p(vT) exists for vT = 0, and that for small (vT):
vT
p(vr) =~ 1'ﬂ<ir> (6.16)
This gives
. . 2 2 2 v\
R(T) zR(O) exp {1[w -k (dor + dot)]T} exp[-4k h” cos 90<T) I

(6.17)
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~
S~ \ . DIFFERENT o(vr) GIVING

/ “\\ THE SAME R(T)

vT

Y

exp {-4k2h—2 005200[1 - p(vr)]}

Y

vT

FIG. 38, SURFACE AND SIGNAL AUTOCORRELATION FUNCTIONS.
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In this case we see that it really does not make any difference what
shape p(vT) has far away from the origin as long as it is less than 1.
The reason is that the factor (4k2 EE coszeo) has such a large value
that R(T) for practical purposes is zero, unless p(VT) is very
close to 1. Under these conditions we can only hope to determine p(vT)
from R(T) for small values of the argument, and this may not be enough
to draw conclusions about surface-roughness components with larger

scales.

B. SPECTRAL BROADENING OF THE REFLECTED SIGNAL

Equation (6.17) gives, for the power spectral density of the re-

flected signal,

s(f) ~ ALR(0) exp ~é(—L;)2(1 - f—)z (6.18)

4Nz h2 v cos 6 h2 gLl Te
where
W l . -
=— == (d
te Gy A ( ot * dor)
= center frequency in the spectrum of the reflected signal
¢ = free-space phase velocity

~H——= free-space wavelength at the center frequency

L. = horizontal scale parameter for the surface irregularities
60 = angle of incidence at the center of the first Fresnel zone
v = the velocity with which the center of the first Fresnel zone

is moving across the planetary surface.,
The power spectrum takes on other shapes for other values of h2.

For h2 equal to zero, the spectrum becomes a © function; and for

intermediate values of h2, one can find an expansion for the spectrum
containing a & function plus an infinite series [Ref. 14]. The power
associated with the & function has been assumed negligible in Eq. (6.18).

Finally we obtain the rms bandwidth of the spectrum from Eq. (6.18):

v COS 90

=% (6.19)

2Af=4\/2h'_2fc
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The rms bandwidth of the reflected signal can also be found directly
from Eq. (6.13) without first assuming that n2 >> Kz, and that p(vT)
for small arguments is given by Eq. (6.16). Assuming again that the

initial slope of p(vT) is zero, one obtains:

1/2

4v cos © _ dz'(x)
20F = £ ——m n? (S22%L (6.20)
dx 0

C. THE RADAR CROSS SECTION (cr) OF THE PLANET

The average reflected power per unit area at the spacecraft is R(O),
given by Eq. {6.15). Since l/dot is negligible compared to l/dor
and 2/Rp, we have

1 Et 2 cos 60

R(0) ~ {3 2d 2d__ cos © 0L
o ot or or e

R R

P B

We can now relate R{(O) to the radar cross section 0. of the
planet. Here the radar cross section will be defined so that Ur
times incident power per unit area on the planet gives a power which,
if scattered isotropically, would give the time average power per unit

area R(O) reflected to the receiver., Thus

1
R(0) = —| —
Zo dot 4nr

(6.22)

where rs is the distance between the spacecraft and the planet's
center. Figure 39 shows how the normalized radar cross section varies
with rS/Rp and 6 . The limiting cases rS/Rp =1 and rs/Rp = o
correspond to reflection from a plane and a distant sphere, respectively.
Figure 40 shows the same result as a function of &, which here is the
angle between the transmitter and the receiver as viewed from the
center of the planet.

It is of interest to check the results derived here by introducing

h2 = 0 and comparing it with the expressions one can derive for a
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I'S/RP =1.0

rSJIIRP =10
1.0_-_-—-_-—-—-___\

rg/Rp =0

rg = radius vector of space

0.5L receiver
Rp = planetary radius
0 = angle of incidence
i M N | i 1 " i
0¢ 307 §0° 90°
00

FIG. 39. RADAR CORSS SECTION-OF THE PLANET VS
r /R AND 6.
s’ p o
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rg/Rp = 1.0

radius vector of space receiver

_,
n

Rp = planetary radius

a = angle between the earth and the
space receiver as viewed from
the center of the planet

rs/RP =00

0" 30 60" 90° 120° 150° 180"
FIG. 40. RADAR CROSS SECTION OF THE PLANET VS rS/Rp AND (.

smooth conducting sphere. We notice the Gr does not depend on h2
at all, at least not to the degree of approximation used here., This
lack of dependence must mean that the Ur derived here is the same as
for a smooth conducting sphere. Comparison with expressions obtained
earlier for this case shows that this is indeed true [Ref. 15].

We assumed that the entire surface was illuminated when we applied
the Huygens-Kirchhoff principle. This assumption is no longer true for
large 90 because part of the surface will then lie in the shade of
hills and mountains. This shadowing will tend to reduce Gr for large

values of 9 .
o
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So far we have assumed that the surface is a perfect reflector. It

is necessary to multiply the radar cross section found above with the

power reflection coefficient when only part of the power is reflected.

D, NUMERIC EXAMPLE

A numeric example may be helpful in order to understand the problem
better, Figure 41 shows the hyperbolic trajectory for a spacecraft
flying by Venus.

10.7 km/s VENUS

A

7725 km 6125 km

9.9

POSITION II

THIS TRAJECTORY CORRESPONDS TO
A VELOCITY OF 5.5 km/sec AT INFINITY

POSITION 1

INCOMING WAVES

FIG, 41, ASSUMED FLY-BY TRAJECTORY.
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We shall first compare the power received from the reflected wave
and the direct traveling wave. The power received directly from the

earth (Pd) is given by

Pt i d
r
Pa =2 8r 2 (6.23)
D
where Pt = transmitted power
&p = transmitter gain toward Venus
Ard = receiving aperture directed toward the earth
D = distance between Venus and the earth,

For the power received from Venus (Pr)’ we have:

Pt cf Arr
P =—g — (6.24)
r 4nx °T D2 4nr2 .
s
where Arr = receiving aperture toward Venus
rs = distance between the spacecraft and the center of Venus
Ur = the radar cross section of Venus as viewed from the
spacecraft. A power reflection coefficient of 0.1 will be
used for the surface on Venus.
Assuming that A =A , we find
rr rd

= (6.25)

At positions I and II in Fig. 41, this gives

-25.4 db (position I)

Q@IHW

10 log
-17.0 db (position II)

We see that the total power reflected from the planet is way below the
power in the direct signal even though the receiver is passing by close

to the surface on Venus.
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The spectra are computed from Eq. (6.18) and shown in Fig. 42, It
has been assumed here that the waves from the earth have a frequency of
50 Mc in the Venus frame and 'J§§7L has been set equal to 1/10.

It is necessary to specify some more of the parameters involved
before we can estimate the signal~to-noise ratio for the reflected wave.

Let

P =400
+ 00 kw
gT = 360
g, = 1.4

0
D = 6-10l meters.

These values give, for the average reflected power received at the

spacecraft,

-16 .
0.366-10 w (p051tion I)

2.594.1071¢ (position II)

From Eq, (6.18) one can now find the maximum power spectral density:

0.474-10_18 w/cps (position I)

S(f ) =~
< 0.55-10" 18

w/cps (position II)
The total power received is increased as the spacecraft moves from
position I to position II, but the rms bandwidth of the spectrum is
increased too; as a result, the maximum power spectral density
S(fc) is only slightly increased in this example.

Assuming a constant noise temperature of 6000 °K, one finds for

the noise power spectral density N

20

N = kT = 8.275:10 w/cps
This gives the signal-to-noise ratio:
S(fc) 7.58 db (position I)
10 log — ~ 8.22 db (position II)
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FIG. 42. POWER SPECTRA OF DIRECT AND REFLECTED SIGNAL.



which is proportional to L/*Jzi. The above signal-to-noise ratios are
computed assuming L/~f§§ = 10. With L/~f§§ = 4 one would get a
reduction in the signal-to-noise ratio by 4 db, while 20 would give 3 db
increase in the signal level.

The power reflection coefficient in this numeric example was set
equal to 0.1 for both receiver position I and receiver position II,

That the reflectivity is considered equal in the two cases is just a
simplifying assumption, since both the angle of incidence (90) and
the surface material of the reflecting areas may be different. We will
come back to this problem in the next section.

As we have seen, the signal reflected from Venus contains informa-
tion on the surface correlation function for the areas from which the
signal is reflected. By observing the reflected signal over a large
part of the orbit, one may determine how inhomogeneous the surface is
and may find planes and mountain terrain. The bistatic-radar experiment
may therefore offer a unique way of exploring the cloud-covered surface

on Venus.

E. THE POLARIZATION OF RADIO WAVES REFLECTED FROM PLANETARY SURFACES
AND ITS RELATION TO THE ELECTROMAGNETIC PROPERTIES OF THE SURFACE
MATERIAL
We saw in the previous sections how to relate the fading of the

reflected signal to the surface roughness. In this section we shall

briefly look into how'the polarization of the reflected wave can be
related to the electromagnetic properties of the surface material.

We will assume that a circularly polarized wave is transmitted from
the earth., The plane containing the transmitter, the planetary center,
and the receiver will be called the plane of incidence. This is the
Cogo—plane in Fig. 36, We shall denote the electric field components
of the reflected wave, Eri and Erp' Here Eri is the electric field
in the plane of incidence and Erp is the field perpendicular to the
plane of incidence.

The surface reflection coefficients are different for the two
components of the wave. By comparing the rms value of Eri with the

field of the direct traveling wave, one can estimate the reflection
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coefficient for this wave component, We have to make use of the approxi-
mation found for the radar cross section of a rough planet in order to
find the absolute values of the reflection coefficients. This source of

inaccuracy can be avoided if one instead considers the complex ratio (R):

E
. _ri +i X

rp

In general, both Eri and Erp are complex numbers. The sign in the
exponent is chosen so that R 1is equal to the ratio between the
reflection coefficients for the two wave components.

We will assume that the effects of small—séale roughness and multiple
reflections are negligible. '

The conductivity o and the relative dielectric constant er may
vary over that part of the surface which is contributing to the echo.
Assuming that the distribution in ¢ and er is sufficiently narrow,

one can show that their mean ¢ and Er are given by:

2
= . . 2 2 R +1
€.-1i—— =~sin"g_[1 + tan eo(R ~ 1) (6.27)

where i ='J:E and eo = dielectric constant of free space. The
relative magnetic permeability for the surface material has been set
equal to 1.

The size of the polarization ellipse of the reflected wave (measured
in volts/meter) will change rapidly due to the fading. However, the
axis ratio and the orientation of the ellipse will only change due to
changes in 60, T, and Er.

The method indicated here permits us to map © and Er' However,
the resolution will be relatively poor unless the spacecraft is passing
close to the surface. For multiple-layer surfaces it would be necessary

to use several frequencies in order to determine the different parameters.
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VII, CONCLUSIONS

In this study we have shown that bistatic radar may be used to
explore planetary ionospheres and surfaces.

Transmitting radio waves from the earth and receiving them in a
spacecraft that is moving behind a planet makes it possible to observe
the variations in amplitude, phase path, or group path caused by the
planetary ionosphere. It is shown that measurement of either the
amplitude, the phase path, or the group path may be used to determine
the radial electron density distribution in that part of the planetary
ionosphere which is probed by the signal. However, it may be an
advantage to do a couple of these measurements simultaneously in order
to reduce possible uncertainties due to changes in the interplanetary
medium or the earth's ionosphere during the experiment. The two radial
electron density distributions obtained from the measurements during
immersion and emersion are again related to the atmosphere on the planet.
This relationship will also help us to make a better atmospheric model.
The lower atmosphere may also be studied by using so high a freguency
that the signal is only influenced by the atmosphere. Besides being of
scientific interest, this information will be of vital importance if it
is decided to land vehicles on the planet.

We have also shown that the statistical properties of the signal
reflected from a planetary surface can be related to the surface statis-
tics. It was shown, for instance, that the surface autocorrelation
function can be related to the time autocorrelation function for the
reflected signal when the surface-roughness scale is larger than the
wavelength. This represents a generalization of results obtained
previously for monostatic radar. We have also shown that the mean value
for the dielectric constant and the conductivity can be found from the
shape and orientation of the polarization ellipse for the reflected
signal (assuming that a circularly polarized wave is transmitted). This
method may find useful application in exploring Venus, where the surface

is covered to a large extent by clouds.
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APPENDIX A, WAVE-THEORY MODIFICATIONS CLOSE TO CAUSTICS AND SHADOW
BOUNDARIES

The ray theory is not adequate along caustics and shadow boundaries.
In these regions the propagation can be studied by means of Huygens'
principle.

The caustic is the evolute of the wavefronts that have emerged from
the planetary ionosphere. By making use of this relationship, one can
find a convenient power series expansion for the phasé of the signal.
When maintaining terms up to the third power, one can express the fields
around the caustic in terms of tabulated functions. This analysis was
first worked out in optics by Airy, but the solution can also be found
in books on radio-wave propagation [Ref. 16]. Although the geometry may
appear to be somewhat different, the solution takes on the same form and
the derivation is therefore not repeated here. The analysis shows a
finite increase in the amplitude as the caustic is crossed.

The fields along a shadow boundary can also be determined from the
wave theory. Here the solution can be expressed in terms of the Fresnel
integrals, assuming that it is sufficient to maintain terms up to the
second power in the expansion for the phase. The result is the same as
for diffraction around an opaque straight edge (assuming that the
reflected signal is negligible and that the straight-edge approximation
applies), but one must take into account the fact that the ionosphere
and the atmosphere will change the apparent position of the transmitter
as viewed by the receiver.

One can show that the amplitude E(x,y) as a function of receiver

position x,y can be approximated by:

E(x,y) ~

o0
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where a factor exp [iwt - ik(D + y)] has been omitted. Here, sz(ro)
is given by Eq. (2.22), k 1is the free-space wave number, ro is the
dummy variable of integration, D is the distance between the trans-
mitter and the planet, and Rp is the radius of the-planet (see Fig. 5).
Equation (A.l) gives (1 N i) for the amplitude before the occultation
starts.

A numeric example is shown in Fig. 43. This figure shows ampli-
tude vs miss distance at 2300 Mc (the telemetry frequency on the space-
probe mission to Mars), 20,000 km behind Mars. Equation (2.17) is used
for the refractive index, assuming negligible water vapor, T = 200 °K,
and P =20 and O millibars, respectively. At 2300 Mc the effect
of the ionosphere is negligible.

Equation (A.l) can be changed into a more convenient form when the
perturbations on the wavefronts, caused by the atmosphere or the iono-
sphere, are small, 1In that case it is more economical to compute the
difference in amplitude with and without the perturbing medium present,.
This calculation will converge faster. The amplitude without any

perturbing medium present can be found from the Cornu's spiral.

P =0 mb (no atmosphere)
P=20mb

L 0 a0 /\ //_LLV f/\\//\\ -

\
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MISS DISTANCE (km)

FIG. 43. AMPLITUDE VS MISS DISTANCE AT 20,000 km BEHIND MARS
(f = 2300 Mc, H = 20 km, T = 200° K),
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APPENDIX B. DETERMINATION OF THE ELECTRON DENSITY DISTRIBUTION BASED
ON THE WAVE THEORY

Chapter V shows how one can determine the changes in the refractive
index from measurement, for instance, of phase or amplitude during
occultation. This analysis was all based on the ray theory. Equation
(A.1) can also be inverted so as to give sz(ro) (and therefore also

the radial variation in the refractive index). This inversion gives:

Sz(ro) =

= £n 1 [2?\<l + —l-)l_l/zf*mE(x y) exp- [ 15(l + l)(r - X L ) ]dx
21i y D y d 2\D y o y + D

00

(B.1)

for r, > Rp’ when y 1is independent of x. In this form the solution

requires both amplitude and phase information.
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