# TCI-20; REV. A dSN TELECOMMUNICATIONS INTERFACES, 26-METER ANTENNA SUBNET 

(Insert this modular document in your 810-5; Rev. D Handbook)
EFFECTIVE DATE: 1 October $1977 \quad$ Change 1: 15 January 1978
Approved by:

A. PURPOSE.

This module describes the primary telecommunications parameters pertaining to the DSN 26-meter antenna station subnet.
B. SCOPE.

The intent of this document is to provide the significant telecommunications parameters for system noise temperature, transmitter, and other RF-related data in sufficient detail to allow the telecommunications designer to predict link performance.
C. LOCATION OF MATERIAL.

1. Contents.GENERAL INFORMATION2

D. 1 .
Deep Space Network ..... 2
D. 2 . Telecommunications Parameters, S-Band3
2. Illustrations.

| Figure | Title | Page |
| :---: | :---: | :---: |
| 1 | Increase in System Noise Temperature vs Elevation Angle at S-Band (Typical) for 26-Meter Antenna Stations . . . . . . | 11 |

3. Tabular Data.

Table
Title
Page
$1 \begin{aligned} & \text { Primary Telecommunication Parameters } \\ & \text { for } 26-\text { Meter Subnet . . . . . . . . . . . . . . . }\end{aligned}$
D. GENERAL INFORMATION.

1. Deep Space Network.

The DSN includes three basic subnets as follows:
(a) 64-meter diameter antenna subnet (DSS 14, 43, 63)
(b) 26-meter diameter antenna subnet (DSS 11, 44, 62)
(c) 26-meter diameter antenna subnet (DSS 12, 42, 61) which will be upgraded to a 34 -meter subnet per the schedule in Figure 1 of TCI-30.

Other elements of the DSN include a Compatibility Test Area (CTA 21) at JPL, Pasadena, and a similar configuration of equipment in the Spaceflight Tracking and Data Network (STDN) station at Merritt Island, Florida.
2. Telecommunications Parameters, S-Band.

The more significant telecommunications parameters for the 26-meter antenna station subnet are given in Table l. They include (1) S-band transmit characteristics for 20 kilowatts, (2) S-band receive characteristics for traveling wave maser operation and Block III receiver configurations, and (3) characteristics for frequency and timing.

The operating system noise temperature ( $T_{o p}$ ) varies as a function of elevation angles, and typical values for the 26 -meter antenna stations are given in Figure 1.

| Main Antenna |  |  |
| :---: | :---: | :---: |
| Transmit Characteristics | Value | Remarks |
| Gain (dBi) <br> Beamwidth (deg) <br> Polarization (matched to receive) <br> Ellipticity (RCP or LCP)(dB) <br> Pointing loss Angular <br> Power (dB, 3 sigma) | $51.8 \pm 0.9$ $0.36 \pm 0.03$ <br> Normally RCP <br> Fixed linear <br> $1.0 \pm 0.4$ <br> See TRK-10 <br> 0.1 | For matched polarization. Referenced to transmitter output port (includes feedline losses). <br> Half-power angular width <br> LCP available if required <br> Orthogonal polarization available if required <br> Peak-to-peak voltage axial ratio <br> Conical scan control (to be implemented in CY 1978) |
| Acquisition Antenna (DSS 11, 12, 42, and 62 only) |  |  |
| Gain (dBi) <br> Beamwidth (deg) <br> Ellipticity (dB) <br> Polarization | $\begin{aligned} & 18.9 \pm 1.2 \\ & 17 \pm 1.0 \\ & 1.0+0.05 \\ & \text { RCP or LCP } \end{aligned}$ | Referenced to transmitter output port <br> (includes feedline losses) <br> Half-power angular width <br> Peak-to-peak voltage axial ratio |

Table 1. Primary Telecommunication Parameters for 26-Meter Subnet (Sheet 2 of 7)

| Transmitter Exciter |  |  |
| :---: | :---: | :---: |
| Transmit <br> Characteristics | Value | Remarks |
| RF power output | 20 kW power amplifier $+73 \pm 0.5 \mathrm{dBm}$ saturated drive Down to $+53 \pm 1.5 \mathrm{dBm}$ | Across VCO tuning range. Referenced to transmitter output terminal <br> Unsaturated drive |
| Total bandwidth (-1 dB) | 8 MHz nominal saturated drive ( 2110 to 2118 MHz ) TBD | Unsaturated drive |
| Power stability (dB) |  |  |
| Long term (12 hour period) | $\begin{aligned} & \pm 0.25 \\ & \pm 1.0 \end{aligned}$ | Saturated drive <br> Unsaturated drive |
| Short term | $\geq 0.1$ | Peak-to-peak, saturated or unsaturated drive conditions in $\pm 0.5 \mathrm{~Hz}$ bandwidth about the carrier frequency, under fixed primary ( 400 Hz ) voltage conditions. |
| Frequency range ( MHz ) | 2100 to 2120 | Two-way coherent mode extends from 2110 to 2118 MHz only |
| VCO frequency setting | 0.96 Hz increments |  |
| Manual VCO operation frequency stability | 1 part in $10^{7}$ <br> 3 parts in $10^{6}$ | For 20 min For 10 hr |
| VCO tuning range | $\pm 9$ parts in $10^{5}$ | -- |
| Spurious radiation |  | Saturated drive |
| Phase modulation (deg, rms) | 5 |  |
| Amplitude modulation (dB) | 60 | Below carrier |
| 2nd harmonic (dB) | 85 | Below carrier |
| 3 rd harmonic (dB) | 85 | Below carrier |
| 4 th harmonic (dB) | 85 or more | Below carrier |

Table 1. Primary Telecommunication Parameters for 26 -Meter Subnet (Sheet 3 of 7)

| Main Antenna |  |  |
| :---: | :---: | :---: |
| Receive Characteristics | Value | Remarks |
| Frequency range (MHz) <br> Gain to maser $1(\mathrm{dBi})$ | 2270 to 2300 <br> $53.3 \pm 0.6$ | For matched polarization, referenced to maser input terminal. (Includes feedline losses.) |
| Gain to maser $2(\mathrm{dBi})$ | $53.1 \pm 0.6$ | For matched polarization, referenced to maser input terminal. (Includes feedline losses.) |
| Beamwidth (deg) | $0.33 \pm 0.03$ | Half-power angular width |
| ```Polarization (matched to transmit)``` | RCP or <br> Fixed linear | LCP and orthogonal polarization available if required. |
| Ellipticity RCP or LCP)(dB) | $0.4 \pm 0.1$ | Peak-to-peak voltage axial ratio |
| Pointing loss Angular (deg) | See module TRK-10 for angular loss |  |
| Power ( $\mathrm{dB}, 3$ sigma) | 0.1 | Conical scan control (to be implemented in CY 1978) |
| Total System Noise Temperature |  |  |
| TWM 1 receiver connected to main antenna (Kelvins) | $33 \pm 3$ | Referenced to traveling wave maser (TWM 1) input terminal ${ }^{1}$. (Includes feedline losses.) |
| ${ }^{1}$ With simultaneous transmission of 20 kW , antenna directed to cold sky (near zenith), and for signal input value less than -110 dBm . |  |  |

Table 1. Primary Telecommunication Parameters for 26-Meter Subnet (Sheet 4 of 7)

| Total System Noise Temperature |  |  |
| :---: | :---: | :---: |
| Receive Characteristics | Value | Remarks |
| System temperature, TWM 1 receiver to main antenna vs elevation angle (Kelvins) | Refer to Figure 1 | For low elevation angles, the characteristic is dependent on azimuth and the terrain of particular site. See GEO-10. |
| System temperature, TWM 2 received connected to main antenna (Kelvins) | $41 \pm 3$ | Referenced to TWM 2 input terminals2. (Includes feedline losses.) |
| System temperature, TWM 2 connected to acquisition antenna (Kelvins) | $41 \pm 3$ max at zenith; 84 max at 10 deg elevation | Referenced to TWM 2 input terminals ${ }^{2}$. (Includes feedline losses.) |
| System temperature, receiver only connected to acquisition antenna (Kelvins) | 3300 max | Referenced to receiver preselector input terminal ${ }^{2}$. (Includes feedline losses.) |

2 With simultaneous transmission of 20 kW , antenna directed to cold sky (near zenith), and for signal input value less than -110 dBm

Table 1. Primary Telecommunication Parameters for 26-Meter Subnet (Sheet 5 of 7)

| Acquisition Aid Antenna (DSS 11, 12, 42, and 62 only) |  |  |
| :---: | :---: | :---: |
| Receive <br> Characteristics | Value | Remarks |
| Frequency range ( MHz ) | 2290 to 2300 | -- |
| Gain to maser 2 ( dBi ) | $21.7 \pm 1.1$ | Above isotropic, referenced to maser 2 input terminal (includes feedline losses) |
| Beamwidth (deg) | $16 \pm 1.0$ | Half-power angular width |
| Polarization | $\begin{aligned} & \mathrm{RCP} \\ & \mathrm{LCP} \end{aligned}$ | -- |
| Ellipticity (dB) | $0.3 \pm 0.1$ | Peak-to-peak voltage axial ratio |
| Minimum received signal strength ( dBm ) | -115 | For reliable transfer from acquisition aid to main antenna with conical scan (to be implemented in CY 1978) |
| Reference Channel RF Noise Bandwidth |  |  |
| Receive Characteristics | Value ( Hz ) | Remarks |
| Noise bandwidths | $\begin{gathered} 12_{-20 \%}^{+0} \\ 48_{-20 \%}^{+0} \\ 152_{-20 \%}^{+0} \end{gathered}$ | Effective two-sided threshold (design point) noise bandwidth, ${ }^{2} B_{L_{o}}$ |

Table 1. Primary Telecommunication Parameters for 26-Meter Subnet (Sheet 6 of 7)


Table 1. Primary Telecommunication Parameters for 26 -Meter Subnet (Sheet 7 of 7)

| Frequency and Timing (cont'd) |  |  |
| :---: | :---: | :---: |
| Characteristics | Value | Remarks |
| Station time relative to DSN master clock | $20 \mathrm{mic} \text { roseconds }$ | Rubidium standard synchronized by OTS |
|  | 3 milliseconds | Calibrated by HF radio |
| DSN master clock relative to NBS | 50 microseconds | Calibrated by portable cesium clock |
| DSS frequency offset relative to DSN master reference frequency | 1 part in $10^{11}$ | Rubidium standard or cesium beam standard synchronized by OTS |

810-5; Rev. D
TCI-20; Rev. A

Figure 1. Increase in System Noise Temperature vs Elevation Angle at S-Band (Typical) for 26-Meter Antenna Stations

