810-005, Rev. E DSMS Telecommunications Link Design Handbook 105, Rev. A Atmospheric and Environmental Effects December 15, 2002 Prepared by: Approved by: ----------------------- ----------------------- S.D. Slobin Date A.J. Freiley Date Antenna System Engineer Antenna Product Domain Service System Development Engineer Released by: [Signature on file in TMOD Library] ------------------------ TMOD Document Release Date Change Log Rev Issue Date Affected Paragraphs Change Summary Initial 1/15/2001 All All A 12/15/2002 All Provides monthly weather statistics for all stations and frequency bands Note to Readers There are two sets of document histories in the 810-005 document, and these histories are reflected in the header at the top of the page. First, the entire document is periodically released as a revision when major changes affect a majority of the modules. For example, this module is part of 810-005, Revision E. Second, the individual modules also change, starting as an initial issue that has no revision letter. When a module is changed, a change letter is appended to the module number on the second line of the header and a summary of the changes is entered in the module's change log. Contents Paragraph Page 1 Introduction.......................................................................................... 6 1.1 Purpose............................................................................................. 6 1.2 Scope............................................................................................... 6 2 General Information .................................................................................. 7 2.1 Atmospheric Attenuation and Noise Temperature....................................................... 7 2.1.1 Calculation of Mean Atmospheric Physical Temperature............................................. 10 2.1.2 Elevation Angle Modeling......................................................................... 10 2.1.3 Calculation of Noise Temperature From Attenuation ............................................... 10 2.1.4 Cosmic Background Adjustment..................................................................... 11 2.1.5 Example of Use of Attenuation Statistics to Calculate Atmospheric Noise Temperature, T_atm(theta, CD), and T_op(theta, CD) ........................................ 12 2.1.6 Best/Worst Month Ranges of Atmospheric Noise Temperature and Attenuation......................... 12 2.2 Rainfall Statistics................................................................................ 13 2.3 Wind Loading....................................................................................... 14 2.4 Hot Body Noise .................................................................................... 14 2.4.1 Solar Noise...................................................................................... 14 2.4.2 Lunar Noise...................................................................................... 17 2.4.3 Planetary Noise ................................................................................. 18 2.4.4 Galactic Noise .................................................................................. 19 Illustrations Figure Page 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- & S-Band, Goldstone DSCC..... 20 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- & S-Band, Canberra DSCC...... 21 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- & S-Band, Madrid DSCC........ 22 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band, Goldstone DSCC.......... 23 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band, Canberra DSCC........... 24 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band, Madrid DSCC............. 25 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band, Goldstone DSCC......... 26 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band, Canberra DSCC.......... 27 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band, Madrid DSCC............ 28 10. Probability Distribution of Wind Conditions at Goldstone........................................... 29 11. Solar Radio Flux at 2800 MHz (10.7 cm wavelength) During Solar Cycle 23 (1996-2007)................ 30 12. DSS 15 HEF Antenna X-Band System Noise Temperature Increases Due to the Sun at Various Offset Angles, Showing Larger Increases Perpendicular to Quadripod Directions............................. 31 13. DSS 16 S-Band Total System Noise Temperature at Various Offset Angles from the Sun................. 32 14. DSS 12 S-Band Total System Noise Temperature at Various Declination and Cross-Declination Offsets from the Sun....................................................................................... 33 15. DSS 12 X-Band Total System Noise Temperature at Various Declination and Cross-Declination Offsets from the Sun....................................................................................... 34 16. DSS 13 Beam-Waveguide Antenna X-Band Noise Temperature Increase Versus Offset Angle, March 1996.... 35 17. DSS 13 Beam-Waveguide Antenna Ka-Band Noise Temperature Increase Versus Offset Angle, March 1996... 35 18. Total S-Band System Noise Temperature for 70-m Antennas Tracking Spacecraft Near the Sun (Derived from 64-m Measurements)................................................................... 36 19. X-Band Noise Temperature Increase for 70-m Antennas as a Function of Sun-Earth-Probe Angle, Nominal Sun, 23,000 K Disk Temperature............................................................. 37 Tables Table Page 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- & S-Bands for Goldstone DSCC. 38 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- & S-Bands for Canberra DSCC.. 39 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- & S-Bands for Madrid DSCC.... 40 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Goldstone DSCC....... 41 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Canberra DSCC........ 42 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Madrid DSCC.......... 43 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Goldstone DSCC...... 44 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Canberra DSCC ...... 45 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Madrid DSCC......... 46 10. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Goldstone DSCC.... 47 11. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Canberra DSCC .... 48 12. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Madrid DSCC....... 49 13. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Goldstone DSCC............ 50 14. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Canberra DSCC............. 51 15. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Madrid DSCC............... 52 16. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Goldstone DSCC........... 53 17. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Canberra DSCC............ 54 18. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Madrid DSCC.............. 55 19. Monthly and Year-Average Rainfall Amounts at the DSN Antenna Locations............................. 56 20. Parameters for X-Band Planetary Noise Calculation, plus X-Band and Ka-Band Noise Temperatures at Mean Minimum Distance from Earth................................................................ 57 1 Introduction 1.1 Purpose This module provides sufficient information concerning atmospheric, environmental, and extraterrestrial effects to enable a flight project to design a telecommunications link at the L-, S-, X, and Ka-band frequencies used by the DSN. 1.2 Scope Statistics of atmospheric attenuation and noise temperature at each tracking antenna site are presented for those microwave frequencies used by the DSN. In this module, the values of attenuation and noise temperature increase are given relative to a no-atmosphere (vacuum) condition thus, this presentation is compatible for use with the vacuum gain and noise temperature presentations of antenna performance given in modules 101 for 70-m antennas, 102 for 26-m antennas, 103 for 34-m high-efficiency (HEF) antennas, and 104 for 34-m beam-waveguide (BWG) antennas. Statistics of wind speed at Goldstone are given. These are used both to determine the statistics of antenna gain reduction due to wind loading and also to ascertain the percentage of time an antenna will be unusable due to excessive wind speed. Extraterrestrial effects are primarily the increased system noise temperature due to hot body noise from the Sun, Moon, planets, and galactic radio sources. These effects are significant only when the antenna beam is in the vicinity of these noise sources during tracking of spacecraft. Charged-particle effects are given in module 106, Solar Corona and Solar Wind Effects. 2 General Information 2.1 Atmospheric Attenuation and Noise Temperature The principal sources of atmospheric attenuation and noise temperature weather effects are oxygen, water vapor, clouds, and rain. These two effects are related, and higher atmospheric attenuation produces a higher noise contribution. Also, atmospheric effects generally increase with increasing frequency. Ka-band effects are larger than X-band effects, which are larger than S-band and L-band effects. In the 810-005 antenna performance modules (modules 101, 102, 103, and 104), effective antenna gain (vacuum gain minus atmospheric attenuation) is presented in the figures for various atmospheric attenuation values. Strictly speaking, the gain of an antenna is not a function of atmospheric attenuation; however for stand-alone use, the effective gain, including atmospheric loss, is a useful concept, and the expressions for gain in the appendices of those modules include a term for atmospheric attenuation. Similarly, system operating noise temperature as presented in the appendices of those modules also includes a term for atmospheric noise contribution, although the antenna temperature (due to spillover, LNA contribution, waveguide loss, etc.) is also not a function of atmosphere contribution. The vacuum system noise temperature as given in those modules includes the nearly constant contribution from the cosmic background, which adds to the basic antenna temperature value. Design control tables used for telecommunications link design typically carry separate entries for atmospheric attenuation of the received or transmitted signal and atmospheric noise contribution as a function of elevation angle and weather condition. It is important in those DCTs that the antenna gain and system operating noise temperature values reflect the vacuum performance of the antenna, so as to prevent double-bookkeeping of the atmospheric attenuation and noise temperature contributions. The atmospheric models presented here give L-band (1.7 GHz), S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32.0 GHz) atmospheric noise temperature and attenuation statistics in the form of cumulative distributions (CDs) for each effect. A cumulative distribution of 0.90 (90% weather) means that 90% of the time a particular weather effect (noise temperature or attenuation) is less than or equal to a given value. Conversely, that particular effect is exceeded only 10% of the time. Qualitatively, the weather conditions associated with selected cumulative distributions are described as follows: CD = 0.00 clear dry, lowest weather effect CD = 0.25 average clear weather CD = 0.50 clear humid, or very light clouds CD = 0.90 very cloudy, no rain CD > 0.95 very cloudy, rain By their very natures, clouds and rain are poorly modeled, and the water vapor radiometer data used here are sparse for the larger weather effects, which are exceeded only 5% of the time. The Ka-band model presented here is based on actual water vapor radiometer noise temperature measurements made at 31.4 GHz at all three DSN sites (Goldstone, Canberra, and Madrid). Used in the modeling were 66 months of Goldstone data covering the period October 1993 through August 2002, 35 months of Canberra data covering the period June 1999 through August 2002, and 112 months of Madrid data covering the period September 1990 through August 2002. There were missing months of data from each station. Note also that different numbers of months of data went into the model for each of the separate months (e.g., there may have been 6 Februaries, but only 4 Marches). It is felt that because of the large amount of Madrid data (more than 9 years), the results will fairly accurately represent true long-term statistics. The 5-1/2 years of Goldstone data will give a moderately accurate long-term model. The three years of Canberra data will probably not give a very accurate long-term model, and future updates of the Canberra model are likely to show relatively large changes in the distributions. Cumulative distributions at 31.4 GHz for each of the 12 months were calculated, then increased by 0.3 K (the oxygen-only difference due to frequency) to create a model for 32 GHz. A year-average model was developed by calculating the average noise temperature of all the 12 months, at each CD level. L-/S-band and X-band statistics were created from the Ka-band (32 GHz) statistics by subtracting out the 0% CD baseline (calculated for nominal temperatures and pressures, with 0% relative humidity), frequency squaring to the appropriate frequency (for example, [8.42/32.0]^2 ) and then adding in the 0% CD baseline at the new frequency. Note that the 0% CD baselines for the DSN sites differ because of different heights above sea level. Atmospheric attenuation statistics were created from the noise temperature statistics by methods given in Sections 2.1.1 and 2.1.3 below. The year-average attenuation statistics were calculated from the year-average noise temperature values rather than by calculating the average of all the monthly attenuations. These two methods give very slightly different results. It should be noted that although the noise temperature statistics are the best qualitative measures for comparison of different locations and different frequencies, especially when dealing with low-noise systems (where the atmospheric noise is a large part of the total system noise temperature), the basic data base of atmospheric effects is actually the attenuation statistics. Given a station location, frequency, and CD of interest, the attenuation data base value is extracted, modeled to the elevation angle of interest (Section 2.1.2), and then the appropriate atmospheric noise temperature is calculated (Section 2.1.3). In this way, the original zenith noise temperature statistics (Tables 1 through 9) can be re-calculated from the zenith attenuation values (Tables 10 through 18) using the method given in Section 2.1.3. The atmospheric models thus generated for a particular complex (for example, Goldstone) should be used for all antennas at that complex (for example, DSS 14, DSS 15, DSS 24, etc.), regardless of the small altitude differences among the antennas. Zenith atmospheric noise temperature statistics for the three DSN sites at S-band are provided in Tables 1 through 3. Tables 4 through 6 provide similar statistics for X-band and Tables 7 through 9 cover Ka-band. The tables include the maximum and minimum value for each CD level, the year average for that CD level and the average value for each month. These noise temperature statistics should be used only in a qualitative sense to describe the relative levels of atmospheric noise contributions at different locations and cumulative distributions. They should not be used for elevation modeling as this is properly performed using the calculated attenuation at a given elevation angle as a starting point and following the process that is described below. The use of these statistics depends on the context in which the antenna temperature is stated. When a nominal antenna zenith T_op (operating system noise temperature) is stated, it is considered to include the CD = 25% (average clear sky) value for the appropriate frequency and location. However, "vacuum" antenna temperatures are sometimes used to describe the performance of an antenna independent of location. In this case the operating system noise temperature should be referred to as T_(op, vac). Tables 10 through 18 provide similar presentations for zenith atmospheric attenuation. It can be noted that the L-/S-band attenuations do not monotonically increase as a function of CD, whereas the corresponding noise temperatures do. This is an artifact of the relationship between the modeled mean physical temperature of the atmosphere and the noise temperature used to calculate the corresponding attenuation. This relationship is seen below. In any case, the atmospheric effect at L-/S-band is nearly constant (to within 0.1 K and 0.003 dB over the CD range from 0% to 90%), and this small anomaly does not contribute to significant errors in modeling telecommunications performance. The tolerances of atmospheric noise temperature and attenuation, as given in Tables 1 through 18, should be considered to be 5% of the stated values at zenith, or 5% of the values calculated for elevation angles other than zenith. (see Section 2.1.5, below). Figures 1, 2, and 3 show the L-/S-band noise temperature statistics for Goldstone, Canberra, and Madrid respectively. Figures 4, 5, and 6 show X- band statistics for the three complexes. Figures 7, 8, and 9 provide the Ka-band statistics. On each figure, the year-average cumulative distribution, the minimum envelope value, and the maximum envelope values are given for all the individual months at each CD value stated in Tables 1-9. The year-average model from the previous revision of module 105 (dated November 30, 2000) is also given to aid the user in assessing the changes from one model to the next. Curves of zenith attenuation are not given, although using a rule-of thumb that a medium with 1 dB attenuation radiates a noise temperature of approximately 60 K, the Ka- band curves can be used to make rough estimates of the zenith attenuation at the various frequencies. This relationship is nearly linear over the range from 0 to 1 dB. For Ka-band, using 90% CD as a reference point, it is seen qualitatively that the Goldstone year-average model shows better weather than the previous module 105 presented; Canberra shows identical weather, although better at higher CDs; and Madrid slightly worse at 90% and slightly better above 96%. For other nearby frequencies within the L-, S-, X-, and Ka-bands, the weather-effects models presented here should be used without modification. 2.1.1 Calculation of Mean Atmospheric Physical Temperature The mean physical temperature of the atmosphere is modeled to be a function of weather condition, or cumulative distribution. This reflects the assumption that those effects that are of larger value (for example, high noise temperature) occur closer to the surface and hence are at a higher average physical temperature than those that have a lesser effect. The mean atmospheric physical temperature is modeled as T_p = 255 + 25 x CD , K (1) where CD = cumulative distribution of weather effect (0.0 <= CD <= 0.99). Note that the maximum value of T_p thus becomes nearly 280 K. 2.1.2 Elevation Angle Modeling Only the attenuation should be modeled as a function of elevation angle. The atmospheric noise temperature contribution at any elevation angle can be calculated from the modeled attenuation at that elevation angle. Elevation angle modeling can be performed using either a flat-Earth or a round-Earth model. A flat-Earth model is used here, wherein the attenuation increases with decreasing elevation angle: A(theta) = A_zen x AM = A_zen/sin(theta), dB (2) where theta = elevation angle of antenna beam A_zen = zenith atmospheric attenuation (dB), as given in Tables 10 through 18 AM = number of air masses (1.0 at zenith) The flat-Earth approximation produces a slightly higher attenuation then would be obtained with a round-Earth model for low elevation angles but is valid to within 1% to 3% at a 6-deg elevation angle, depending on the frequency and the amount of water vapor in the atmosphere. 2.1.3 Calculation of Noise Temperature From Attenuation An attenuating atmosphere creates a noise temperature contribution to ground antenna system temperature. The atmospheric noise temperature at any elevation angle (theta) is calculated from the attenuation by T_atm(theta) = T_p[1 - 1/(L(theta))], K (3) where T = mean physical temperature of atmosphere (K), calculated above L(theta) = loss factor of atmosphere = 10^(A(theta)/10) A(theta) = atmospheric attentuation at any elevation angle (dB), calculated above Note that typical values of L range from about 1.01 to 2.0 2.1.4 Cosmic Background Adjustment The noise temperature contribution of the cosmic background is reduced by atmospheric attenuation. For the bands of interest, the effective cosmic background noise before atmospheric attenuation is T_c = 2.7 (L-band and S-band) = 2.5 (X-band) = 2.0 (Ka-band) With atmosphere, the effective cosmic background effect is T'_c(theta) = T_c/(L(theta)), K (4) where T_c = effective cosmic background noise (K) without atmosphere L(theta) =loss factor of atmosphere at the elevation angle of interest, as calculated from Section 2.1.3. The expressions for T_(op, vac) in the telecommunications interface modules (for example, module 101) include the effective cosmic background contribution reduced by the effects of average clear weather. These values are within a few tenths of a Kelvin of the values given above, and variations in T'_c as a function of weather condition and elevation angle are typically neglected, as being at the sub-1K level. 2.1.5 Example of Use of Attenuation Statistics to Calculate Atmospheric Noise Temperature, T_atm(theta, CD), and T_op(theta, CD) The following example will show a typical calculation of atmospheric noise temperature and attenuation for a particular situation. The parameters for the example are DSS 43, Canberra Ka-band (32 GHz) 90% year average weather (CD = 0.90) 20-deg elevation angle (2.924 air masses) From Table 17, the year average zenith attenuation is given as A_zen = 0.404 dB. The attenuation at 20-deg elevation is A(20 degrees, 90%) = 0.404/sin(20) = 1.181 dB The loss factor L at 20-deg elevation is L(20 degrees, 90%) = 10^0.1181 = 1.312 The atmospheric mean physical temperature is T_p = 255 + 25 x 0.90 = 277.5 K The atmospheric noise temperature at 20-deg elevation is T_atm(20 degrees, 90%)= 277.5(1 - 1/1.312) = 65.991 K The operating system noise temperature at any elevation angle and for any weather condition is given by T_op (theta,CD)= T_(op,vac)(theta) + T_atm(theta, CD), K (5) where T_(op,vac)(theta) = vacuum system temperature at elevation angle theta from the appropriate antenna performance module (101, 102, 103 or 104). 2.1.6 Best/Worst Month Ranges of Atmospheric Noise Temperature and Attenuation Although the absolute accuracy of the 31.4-GHz water vapor radiometer measurements used to create the noise temperature statistics is thought to be on the order of the values stated in paragraph 2.1, the month-to-month variation of average noise temperature at any CD varies much more than this at all values of cumulative distribution greater than about 10%. A particular month might be the "worst" at the 90% CD level, but merely "moderate" at lower CD levels. An example is a winter month that has a large amount of rain but when not raining has low humidity and low noise temperature contribution. At this time, there are insufficient data to characterize "best" and "worst" months individually; however, tolerances on the mean statistics as given in Tables 1 through 18 can give the user a feeling of what yearly variations in atmospheric effects may be expected. Inspection of Tables 1 through 18 and Figures 1 through 9 will show that fictitious "best month" and "worst month" statistics can be generated from the values giving the minimum and maximum envelope values of noise temperature and attenuation, without regard to the variability among the months as a function of CD. At high values of CD, the adverse (maximum envelope) yearly tolerances can be as high as 40% of the year-average value of an effect. It should be noted that adverse tolerances for both noise temperature and attenuation give INCREASES from the values in Tables 1 through 18. An adverse VALUE is a mean PLUS the adverse tolerance. For mission planning purposes, with no need to create a model for a specific month, it may be sufficient to use the year-average value at a particular CD, and use the maximum/minimum envelope values to define very conservative adverse/favorable tolerances, with triangular distribution. For specific-month planning purposes, it may be sufficient to use the values given in Tables 1 through 18, with +/-5% tolerances (triangular distribution) as stated above. A very conservative approach (acknowledging that any individual month in the future can be well outside the historical range of available data) would be to use the "maximum" envelope as the model for a possible "bad" month. Note also, that for particular months, characterized by "bad weather", year-to-year variation of noise temperature and attenuation statistics can be quite large. 2.2 Rainfall Statistics To assist the user in determining which months may have large rainfall-related atmospheric noise temperature and attenuation increases, rainfall data are presented for the three DSN antenna locations. Months with large average rainfall amounts may not necessarily correspond to months with large noise temperature and attenuation values. Comparison with Tables 1 through 18 should be made. Table 19 presents the monthly and year-average rainfall amounts for the three DSN antenna locations. The Goldstone data (1973-2000) were taken at the administration center, located near the middle of the Goldstone antenna complex. Some antennas may be located as much as 10 miles from this location. The Canberra data (1966-2002) were taken at the Tidbinbilla Nature Reserve, located about 3 miles southwest of the antenna site. The Madrid data (1961-1990) are the averages of the rainfall at two locations: Avila, about 20 miles northwest of the antenna site, and Madrid (Quatro Vientos) about 20 miles east of the antenna site. Although these averages may not exactly reflect the rainfall at the antenna site, the relative monthly amounts are undoubtedly correct. 2.3 Wind Loading The effect of wind loading must be modeled probabilistically, since wind velocity varies randomly over time and space. Figure 10 shows the probability distribution of wind speed for Goldstone. Similar data for the Madrid and Canberra complexes will be supplied when available. The wind load on a particular antenna is dependent on the design of that antenna. Consequently, information about wind-load effect on antenna gain is listed in the appropriate antenna module. Statistics show that Goldstone is the windiest of the three Deep Space Network antenna complexes. The DSS 14 70-m antenna is stowed (pointed vertically) when wind gusts exceed 55 mph (88 km/hr). The frequency of occurrence of this event can be deduced from a relationship between wind gusts and average wind speed. This relationship is found to be: maximum hourly wind speed = 0.62 x strongest gust. Thus, for 55-mph (88 km/hr) gusts, the maximum hourly wind speed is found to be 34 mph (55 km/hr). From Figure 10, it is seen that this speed is exceeded approximately 2 % (175 hours) of the year and 4 % (29 hours) of the worst month. Actual practice has shown that no antenna has been stowed more than about 10 hours per year due to excessive wind-gust occurrences. 2.4 Hot Body Noise 2.4.1 Solar Noise The increase in system noise when tracking near the Sun depends on the intensity of solar radiation at the received frequency and on the position of the Sun relative to the antenna gain pattern. The subreflector support structure (typically a quadripod, but a tripod at the DSS 13 BWG antenna) introduces nonuniformities in the sidelobe structure. Increases in noise temperature are typically greater in directions at right angles to the planes established by the subreflector support legs and the center of the reflector surface. Thus, a quadripod-type antenna will have four enhanced regions of noise temperature, and a tripod-type antenna will have six. With an azimuth-elevation (AZ-EL) or X-Y mounted antenna, the plane containing the Sun-Earth-probe (SEP) angle will rotate through the sidelobes during a tracking pass. This causes the solar noise to fluctuate during a track even if the SEP angle is constant. A large number of measurements were made at Goldstone from 1987 to 1996 to determine the system noise temperature effects of tracking near the Sun (within about five deg from the center of the solar disk). These measurements were made at S-, X-, and Ka-bands on both 26- and 34-meter antennas. Figure 11 shows the 10.7-cm (2800-MHz) solar radio flux during solar cycle 23 (1996-2007, the expected "maximum" should have occurred in late 2000 or early 2001). The flux is measured in solar flux units (SFU) where one SFU = 1 x 10^-22 W/m^2/Hz. Updated solar flux predictions can be found at the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center web site (Solar Cycle Progression and Prediction Plots). Solar flux predictions can be used to model S- and X-band solar noise temperature contributions using the ratio of predicted solar flux to the solar flux that existed at the time the antenna noise temperatures were measured. The general characteristic of the 11-year cycle of 2800-MHz solar flux is a rapid rise to a peak approximately 4-5 years after the minimum, followed by a 7-6 year gradual decrease. From cycle to cycle, the peak flux can vary by as much as a factor of two. The 10.7-cm flux is varied during solar cycle 23 from a minimum of about 70 SFU during 1996 to a maximum of about 190 +/- 20 SFU during 2000-2001 and returning to an expected minimum of about 70 SFU during 2006. Figure 12 shows X-band system noise temperature increases as measured at the Goldstone DSS 15 HEF antenna. These measurements show the increased effect for the Sun located (offset) at right angles to the quadripod legs. The quadripod legs are arranged in an "X" configuration, with 90-deg spacing. The measurements were made in November 1987 (near the beginning of the solar cycle) with a measured 2800-MHz flux value of 101 SFU and an 8800MHz flux value of 259 SFU. The following expression may be used as an upper limit of X-band solar noise contribution at DSS 15 as shown in Figure 12. T_sun = 800e^(-2.0*theta) , K (6) where theta = offset angle between center of beam and center of solar disk, deg Figure 13 shows S-band (2295 MHz) total system noise temperature measurements made on the Goldstone DSS 16, 26-m antenna on December 20, 1989. This antenna has no quadripod, and it can be assumed that the noise temperature values shown are independent of solar "clock angle" around the center of the antenna beam. The reported 2800MHz solar flux at the time of the experiment was 194 SFU; at 8800 MHz it was 290 SFU. Note that compared to the November 1987 flux (Figure 12), the 2800-MHz flux has nearly doubled, but the 8800-MHz flux has only increased about 12 percent. The S-band solar contribution shown in Figure 13 can be modeled as T_sun = 1400e^(-1.4*theta) , K (7) where theta = offset angle between center of beam and center of solar disk, deg Figures 14 and 15 are contour plots of the DSS 12, 34-m HA-DEC total system noise temperature versus declination and cross-declination antenna pointing offsets. DSS 12 has been decommissioned since the measurements were made, but the figures are included because they are representative of the effects of the quadripod on solar noise at other antennas. The quadripod legs are arranged in a "+" configuration with 90-deg spacing, hence the peaks at right angles to the legs. Figure 14 is a contour plot of total S-band system noise temperature versus declination and cross-declination antenna pointing offsets at DSS 12.The contour interval is 50 K. These measurements were made on January 12, 1990. On this day the reported 2800-MHz solar flux was 173 SFU. Figure 15 is a contour plot of total X-band system noise temperature versus declination and cross-declination antenna pointing offsets at DSS 12. The contour interval, measurement date, and flux values are identical with those in Figure 14. The reported 8800-MHz solar flux was 272 SFU. Figures 16 and 17 show the X-band (8.4-GHz) and Ka-band (32-GHz) solar noise contributions at the DSS 13, 34-m research and development beam waveguide antenna as a function of offset angle from the center of the sun. These data were taken during mid-March, 1996, when the 10.7-cm solar flux was about 70 SFU (the minimum at the end of solar cycle 22 and at the beginning of solar cycle 23) and should be considered as representative of what is expected at the operational DSN beam waveguide antennas. The following expressions give an approximate upper envelope for the noise contributions shown in Figures 16 and 17 as a function of offset angle T_sun = | 1400e^(-5.1*theta), 0.35 < theta <= 0.75deg , at X-band (8) | 86e^(-1.4*theta), theta > 0.75deg T_sun = | 5000e^(-6.6*theta), 0.35 < theta <= 0.75deg , at Ka-band. (9) | 100e^(-1.4*theta), theta > 0.75deg At offset angles less than 0.35 deg (0.08 deg from the edge of the solar disk), solar noise contributions are likely to be in excess of 300 K at both frequencies. At offsets greater than 4.0 degrees, the solar contribution is negligible. All noise contribution expressions given above should be compared with values shown in the corresponding figures to assess their validity. Note that these expressions should be considered valid only for the flux values given at the time of measurement. For predictive purposes, Figure 11 may be used to obtain future predicted 2800-MHz solar flux, and the noise contributions at S- and X-band can be modeled as described below. During the 11-year solar cycle, the S-band flux varies by a factor of 3 (reference Figure 11) while the corresponding X-band flux varies by a factor of 2. For cycle 23, when the S-band range is expected to be from 70 SFU to as much as 210 SFU, the X-band range is predicted to be from about 200 SFU to about 400 SFU. The predicted X-band flux can be derived from the predicted S-band flux by the following expression. FLUX,X = 200 + 200(FLUX, S-70)/140 (10) For example, in January 2003 the mean S-band flux is predicted to be 125 SFU (from Figure 11). The mean predicted X-band flux would be 264 SFU. The predicted solar noise contribution can be calculated based on measured noise contributions described above. For example, using the equation provided for Figure 12 (Equation 6) and the predicted X-band solar flux in January of 2002 (264 SFU), the predicted X-band solar noise contribution for a 2- degree offset angle using the 34-m HEF antenna would be T_sun = (264/259)(800e^(-2.0x2.0)) = 14.6K (11) At Ka-band, the solar flux varies little over the solar cycle and the relationship between noise temperature increase and offset angle depicted in Figure 17 can be used at all times. Figure 18 shows examples of measured S-band system noise temperature made with a 64-m antenna tracking Pioneer 8 (November 1968, near the solar maximum) and Helios (April 1975, near the solar minimum). For all practical purposes, these curves may be used to predict S-band performance for the DSN 70- m antennas. The "maximum" and "minimum" curves for each month show the solar "clock angle" effect due to sidelobes at right angles to the quadripod legs. Figure 19 shows a theoretical curve of X-band 70-m antenna noise temperature as a function of SEP angle. This curve is generated based on an assumed X-band blackbody disk temperature of 23,000 K, representing an "average" value during the solar cycle. An expression giving quiet Sun brightness temperature, T_b (K), as a function of wavelength (mm) has been found to be T_b = 5672 * lambda^0.24517, K (12) For S-band (2.3 GHz), T_b = 18700 K. For X-band (8.5 GHz) T_b = 13600 K. For Ka-band (32 GHz) T_b = 9750 K. The active Sun may be expected to have an X-band brightness temperature of as much as two to four times as high as the 13600 K calculated above. 2.4.2 Lunar Noise For an antenna pointed near the Moon, a noise temperature determination similar to that made for the Sun should be carried out. The blackbody disk temperature of the Moon is about 240 K, and its apparent diameter is almost exactly that of the Sun's (approximately 0.5 deg). Figures 12 through 19 may be used for lunar calculations, with the noise temperature values scaled by 240/23000. Figures 13, 14, 15, and 18 include clear-sky system noise temperatures, which must be subtracted out before scaling in order to determine the lunar noise temperature increase. Nevertheless, at offset angles greater than 2 deg, the lunar noise contribution is negligible. 2.4.3 Planetary Noise The increase in system noise temperature when tracking near a planet can be calculated by the formula T_pl = (T_k * Gd^2/(16R^2))e^(-2.77(theta/theta_0)^2), K (13) where T_k =blackbody disk temperature of the planet, K d = planet diameter, km R = distance to planet, km theta = angular distance from planet center to antenna beam center theta_0 = antenna half-power beamwidth (full beamwidth at half power) G = antenna gain, ratio 10^(G(dBi)/10), including atmospheric attenuation. Table 20 presents all the parameters needed for calculation of planetary noise contributions. Also given are the maximum values of expected X- band noise contributions for the mean minimum distance from Earth, with the antenna beam pointed at the center of the planet (theta=0). Corresponding S-band noise temperature increases will be approximately 1/13 as large as the X-band increases because of the lower antenna gain (wider beamwidth) at the lower frequency. In the case of Jupiter, there is a significant and variable non- thermal component of the noise temperature. Thus the effective blackbody disk temperature at S-band appears to be much higher than at X-band. The S-band noise temperature increase will be approximately 1/6 the X-band values for average Jupiter emission; it will be about 1/3 the X-band values for maximum Jupiter emission. Except for Venus and Jupiter at inferior conjunction (minimum distance), the noise contribution from the planets at S-band is negligible. The expression for T_pl assumes that the angular extent of the radiating source is small compared to the antenna beamwidth. This approximation is adequate at X-band except for Venus near inferior conjunction (apparent diameter = 0.018 deg) using a 70-m antenna at X-band (beamwidth = 0.032 deg). At Ka-band with a 34-m antenna (beamwidth = 0.0174 deg), the approximation is not adequate for Venus near inferior conjunction and may not be adequate for Mars near inferior conjunction (apparent diameter = 0.005 deg). The expression also aassumes that the antenna main beam has a Gaussian shape, with circular symmetry. Antenna gains and half-power beamwidths are given in modules 101, 102, 103, and 104. 2.4.4 Galactic Noise The center of the Milky Way galaxy is located near -30 degrees declination, 17 h 40 min right ascension. It is possible for a spacecraft with a declination of -30 deg to be in the vicinity of the galactic center, and an increase of system noise temperature would then be observed. A declination of -30 degrees is not typically achieved by spacecraft moving in the plane of the ecliptic, but there are some circumstances (for example, a flight out of the ecliptic) where this location may be observed. Galactic noise temperature contributions at frequencies above 10 GHz are typically insignificant. At S- band, looking directly at the galactic center, a noise temperature increase of about 10 K would be observed. A map of the galactic noise distribution can be seen in chapter 8 of the classic reference J. D. Kraus, Radio Astronomy, Cygnus- Quasar Books, Powell, Ohio, 1986. Figure 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- Band and S-Band, Goldstone DSCC (Figure omitted in text-only document) Figure 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- Band and S-Band, Canberra DSCC (Figure omitted in text-only document) Figure 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- Band and S-Band, Madrid DSCC (Figure omitted in text-only document) Figure 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X- Band, Goldstone DSCC (Figure omitted in text-only document) Figure 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X- Band, Canberra DSCC (Figure omitted in text-only document) Figure 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X- Band, Madrid DSCC (Figure omitted in text-only document) Figure 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka- Band, Goldstone DSCC (Figure omitted in text-only document) Figure 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka- Band, Canberra DSCC (Figure omitted in text-only document) Figure 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka- Band, Madrid DSCC (Figure omitted in text-only document) Figure 10. Probability Distribution of Wind Conditions at Goldstone (Figure omitted in text-only document) Figure 11. Solar Radio Flux at 2800 MHz (10.7 cm wavelength) During Solar Cycle 23 (1996-2007) (Figure omitted in text-only document) Figure 12. DSS 15 HEF Antenna X-Band System Noise Temperature Increases Due to the Sun at Various Offset Angles, Showing Larger Increases Perpendicular to Quadripod Directions (Figure omitted in text-only document) Figure 13. DSS 16 S-Band Total System Noise Temperature at Various Offset Angles from the Sun (Figure omitted in text-only document) Figure 14. DSS 12 S-Band Total System Noise Temperature at Various Declination and Cross-Declination Offsets from the Sun (Figure omitted in text-only document) Figure 15. DSS 12 X-Band Total System Noise Temperature at Various Declination and Cross-Declination Offsets from the Sun (Figure omitted in text-only document) Figure 16. DSS 13 Beam-Waveguide Antenna X-Band Noise Temperature Increase Versus Offset Angle, March 1996 (Figure omitted in text-only document) Figure 17. DSS 13 Beam-Waveguide Antenna Ka-Band Noise Temperature Increase Versus Offset Angle, March 1996 (Figure omitted in text-only document) Figure 18. Total S-Band System Noise Temperature for 70-m Antennas Tracking Spacecraft Near the Sun (Derived from 64-m Measurements) (Figure omitted in text-only document) Figure 19. X-Band Noise Temperature Increase for 70-m Antennas as a Function of Sun-Earth-Probe Angle, Nominal Sun, 23,000 K Disk Temperature (Figure omitted in text-only document) Table 1. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Goldstone DSCC, K CD January February March April May June 0.000 1.917 1.917 1.917 1.917 1.917 1.917 0.100 1.923 1.923 1.923 1.924 1.926 1.925 0.200 1.925 1.925 1.925 1.927 1.929 1.928 0.250 1.926 1.925 1.926 1.927 1.930 1.929 0.300 1.927 1.927 1.927 1.929 1.932 1.930 0.400 1.928 1.928 1.929 1.930 1.935 1.933 0.500 1.930 1.930 1.931 1.932 1.938 1.936 0.600 1.933 1.932 1.932 1.934 1.941 1.941 0.700 1.938 1.935 1.935 1.936 1.945 1.947 0.800 1.945 1.940 1.938 1.939 1.950 1.952 0.850 1.951 1.945 1.941 1.940 1.954 1.955 0.900 1.963 1.954 1.945 1.943 1.961 1.961 0.925 1.978 1.961 1.947 1.945 1.967 1.967 0.930 1.981 1.963 1.948 1.945 1.968 1.968 0.950 2.002 1.975 1.952 1.948 1.983 1.975 0.960 2.017 1.984 1.957 1.950 1.990 1.981 0.975 2.059 2.005 1.973 1.956 2.010 2.001 0.980 2.075 2.015 1.982 1.963 2.016 2.011 0.990 2.142 2.051 2.022 1.992 2.042 2.051 Table 1 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Goldstone DSCC, K CD July August September October November December Minimum Year Maximum Average 0.000 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 1.917 0.100 1.929 1.930 1.932 1.927 1.924 1.922 1.922 1.926 1.932 0.200 1.934 1.935 1.935 1.930 1.926 1.925 1.925 1.929 1.935 0.250 1.936 1.937 1.936 1.930 1.927 1.925 1.925 1.930 1.937 0.300 1.938 1.940 1.939 1.932 1.929 1.927 1.927 1.931 1.940 0.400 1.942 1.945 1.943 1.935 1.931 1.928 1.928 1.934 1.945 0.500 1.947 1.951 1.948 1.937 1.934 1.930 1.930 1.937 1.951 0.600 1.954 1.955 1.952 1.940 1.939 1.932 1.932 1.941 1.955 0.700 1.962 1.959 1.958 1.943 1.943 1.935 1.935 1.945 1.962 0.800 1.969 1.963 1.964 1.948 1.948 1.941 1.938 1.950 1.969 0.850 1.972 1.967 1.967 1.952 1.952 1.947 1.940 1.954 1.972 0.900 1.977 1.972 1.975 1.958 1.958 1.957 1.943 1.960 1.977 0.925 1.981 1.976 1.980 1.961 1.961 1.964 1.945 1.966 1.981 0.930 1.982 1.976 1.980 1.961 1.961 1.967 1.945 1.967 1.982 0.950 1.987 1.983 1.986 1.966 1.965 1.985 1.948 1.975 2.002 0.960 1.991 1.987 1.992 1.970 1.968 1.997 1.950 1.982 2.017 0.975 2.003 2.000 2.008 1.983 1.978 2.028 1.956 2.000 2.059 0.980 2.011 2.001 2.024 1.990 1.989 2.042 1.963 2.010 2.075 0.990 2.049 2.009 2.098 2.025 2.031 2.098 1.992 2.051 2.142 Table 2. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Canberra DSCC, K CD January February March April May June 0.000 2.085 2.085 2.085 2.085 2.085 2.085 0.100 2.108 2.116 2.121 2.106 2.100 2.099 0.200 2.115 2.123 2.127 2.111 2.103 2.105 0.250 2.117 2.127 2.129 2.113 2.104 2.106 0.300 2.120 2.131 2.131 2.115 2.106 2.107 0.400 2.124 2.139 2.137 2.119 2.108 2.109 0.500 2.132 2.147 2.141 2.123 2.111 2.112 0.600 2.139 2.156 2.149 2.128 2.114 2.115 0.700 2.148 2.168 2.158 2.133 2.119 2.118 0.800 2.159 2.183 2.167 2.143 2.133 2.124 0.850 2.166 2.198 2.174 2.150 2.143 2.129 0.900 2.180 2.239 2.187 2.164 2.164 2.140 0.925 2.193 2.271 2.202 2.186 2.190 2.157 0.930 2.196 2.278 2.207 2.191 2.198 2.165 0.950 2.220 2.319 2.231 2.217 2.239 2.204 0.960 2.236 2.346 2.244 2.236 2.269 2.221 0.975 2.286 2.428 2.281 2.288 2.339 2.261 0.980 2.316 2.475 2.310 2.314 2.358 2.281 0.990 2.476 2.616 2.394 2.387 2.439 2.330 Table 2 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Canberra DSCC, K CD July August September October November December Minimum Year Maximum Average 0.000 2.085 2.085 2.085 2.085 2.085 2.085 2.085 2.085 2.085 0.100 2.097 2.097 2.101 2.102 2.109 2.102 2.097 2.105 2.121 0.200 2.100 2.101 2.105 2.107 2.114 2.109 2.100 2.110 2.127 0.250 2.102 2.102 2.107 2.108 2.117 2.112 2.102 2.112 2.129 0.300 2.103 2.103 2.108 2.110 2.119 2.115 2.103 2.114 2.131 0.400 2.105 2.105 2.112 2.113 2.124 2.120 2.105 2.118 2.139 0.500 2.108 2.107 2.115 2.117 2.129 2.125 2.107 2.122 2.147 0.600 2.111 2.110 2.119 2.123 2.135 2.132 2.110 2.128 2.156 0.700 2.115 2.114 2.125 2.131 2.144 2.141 2.114 2.134 2.168 0.800 2.122 2.121 2.133 2.146 2.162 2.157 2.121 2.146 2.183 0.850 2.128 2.128 2.140 2.158 2.179 2.172 2.128 2.155 2.198 0.900 2.138 2.144 2.152 2.181 2.206 2.197 2.138 2.174 2.239 0.925 2.151 2.161 2.164 2.208 2.232 2.219 2.151 2.195 2.271 0.930 2.155 2.166 2.169 2.215 2.239 2.227 2.155 2.200 2.278 0.950 2.171 2.190 2.198 2.262 2.279 2.261 2.171 2.233 2.319 0.960 2.183 2.212 2.220 2.288 2.303 2.278 2.183 2.253 2.346 0.975 2.209 2.285 2.266 2.365 2.392 2.322 2.209 2.310 2.428 0.980 2.223 2.309 2.296 2.414 2.432 2.343 2.223 2.339 2.475 0.990 2.274 2.394 2.423 2.532 2.547 2.412 2.274 2.435 2.616 Table 3. Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Madrid DSCC, K CD January February March April May June 0.000 2.008 2.008 2.008 2.008 2.008 2.008 0.100 2.014 2.013 2.018 2.019 2.026 2.029 0.200 2.017 2.017 2.022 2.023 2.031 2.034 0.250 2.018 2.018 2.023 2.024 2.032 2.035 0.300 2.020 2.019 2.025 2.026 2.034 2.037 0.400 2.023 2.022 2.028 2.028 2.038 2.041 0.500 2.027 2.025 2.031 2.032 2.041 2.044 0.600 2.032 2.029 2.035 2.036 2.044 2.047 0.700 2.042 2.034 2.041 2.042 2.048 2.051 0.800 2.066 2.042 2.052 2.054 2.057 2.055 0.850 2.092 2.054 2.063 2.066 2.075 2.059 0.900 2.139 2.077 2.088 2.084 2.114 2.065 0.925 2.192 2.102 2.116 2.102 2.155 2.070 0.930 2.201 2.107 2.122 2.106 2.163 2.072 0.950 2.272 2.145 2.157 2.142 2.211 2.085 0.960 2.299 2.167 2.179 2.163 2.237 2.098 0.975 2.361 2.227 2.237 2.211 2.298 2.140 0.980 2.380 2.247 2.259 2.225 2.320 2.169 0.990 2.450 2.324 2.335 2.276 2.394 2.282 Table 3 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at L- and S-Bands for Madrid DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 2.008 2.008 2.008 2.008 2.008 2.008 2.008 2.008 2.008 0.100 2.032 2.032 2.029 2.023 2.008 2.013 2.008 2.021 2.032 0.200 2.036 2.037 2.034 2.031 2.018 2.018 2.017 2.026 2.037 0.250 2.037 2.038 2.036 2.033 2.020 2.020 2.018 2.028 2.038 0.300 2.039 2.040 2.038 2.036 2.023 2.023 2.019 2.030 2.040 0.400 2.043 2.043 2.042 2.041 2.026 2.027 2.022 2.033 2.043 0.500 2.045 2.047 2.046 2.047 2.030 2.032 2.025 2.037 2.047 0.600 2.048 2.050 2.051 2.054 2.036 2.038 2.029 2.042 2.054 0.700 2.052 2.053 2.055 2.062 2.044 2.049 2.034 2.048 2.062 0.800 2.055 2.058 2.061 2.082 2.058 2.073 2.042 2.059 2.082 0.850 2.057 2.060 2.065 2.105 2.079 2.099 2.054 2.073 2.105 0.900 2.061 2.064 2.072 2.147 2.121 2.142 2.061 2.098 2.147 0.925 2.063 2.067 2.079 2.189 2.164 2.181 2.063 2.123 2.192 0.930 2.064 2.067 2.081 2.197 2.171 2.187 2.064 2.128 2.201 0.950 2.067 2.071 2.095 2.256 2.229 2.235 2.067 2.164 2.272 0.960 2.069 2.074 2.110 2.283 2.253 2.257 2.069 2.182 2.299 0.975 2.077 2.083 2.159 2.350 2.316 2.316 2.077 2.231 2.361 0.980 2.084 2.090 2.196 2.377 2.333 2.334 2.084 2.251 2.380 0.990 2.117 2.119 2.333 2.481 2.400 2.397 2.117 2.326 2.481 Table 4. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Goldstone DSCC, K CD January February March April May June 0.000 2.135 2.135 2.135 2.135 2.135 2.135 0.100 2.218 2.210 2.220 2.233 2.257 2.246 0.200 2.241 2.238 2.247 2.266 2.297 2.284 0.250 2.249 2.249 2.256 2.276 2.310 2.296 0.300 2.264 2.264 2.268 2.291 2.331 2.315 0.400 2.288 2.286 2.292 2.311 2.372 2.346 0.500 2.317 2.309 2.318 2.333 2.421 2.395 0.600 2.355 2.334 2.342 2.361 2.463 2.464 0.700 2.416 2.376 2.373 2.390 2.510 2.536 0.800 2.506 2.450 2.424 2.426 2.578 2.603 0.850 2.599 2.510 2.455 2.448 2.634 2.647 0.900 2.758 2.634 2.509 2.483 2.728 2.725 0.925 2.956 2.732 2.543 2.507 2.805 2.807 0.930 2.991 2.758 2.549 2.511 2.825 2.817 0.950 3.277 2.911 2.607 2.547 3.020 2.912 0.960 3.475 3.039 2.678 2.576 3.113 3.002 0.975 4.041 3.324 2.885 2.666 3.381 3.262 0.980 4.265 3.452 3.010 2.755 3.462 3.395 0.990 5.160 3.944 3.553 3.147 3.824 3.943 Table 4 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Goldstone DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 2.135 2.135 2.135 2.135 2.135 2.135 2.135 2.135 2.135 0.100 2.294 2.306 2.332 2.268 2.227 2.207 2.207 2.251 2.332 0.200 2.365 2.375 2.374 2.303 2.262 2.239 2.238 2.291 2.375 0.250 2.387 2.402 2.393 2.315 2.274 2.248 2.248 2.305 2.402 0.300 2.422 2.447 2.425 2.336 2.292 2.263 2.263 2.327 2.447 0.400 2.474 2.512 2.481 2.375 2.325 2.284 2.284 2.362 2.512 0.500 2.545 2.592 2.553 2.408 2.366 2.307 2.307 2.405 2.592 0.600 2.630 2.652 2.612 2.444 2.426 2.335 2.334 2.451 2.652 0.700 2.739 2.695 2.690 2.488 2.487 2.382 2.373 2.507 2.739 0.800 2.830 2.760 2.766 2.552 2.556 2.460 2.424 2.576 2.830 0.850 2.878 2.805 2.813 2.600 2.603 2.541 2.448 2.628 2.878 0.900 2.946 2.876 2.915 2.681 2.680 2.676 2.483 2.718 2.946 0.925 2.996 2.924 2.981 2.725 2.726 2.773 2.507 2.790 2.996 0.930 3.009 2.934 2.989 2.732 2.731 2.801 2.511 2.804 3.009 0.950 3.074 3.019 3.066 2.793 2.777 3.048 2.547 2.921 3.277 0.960 3.126 3.078 3.141 2.850 2.824 3.208 2.576 3.009 3.475 0.975 3.295 3.246 3.356 3.022 2.963 3.631 2.666 3.256 4.041 0.980 3.404 3.272 3.577 3.120 3.098 3.819 2.755 3.386 4.265 0.990 3.912 3.377 4.578 3.585 3.663 4.570 3.147 3.938 5.160 Table 5. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Canberra DSCC, K CD January February March April May June 0.000 2.327 2.327 2.327 2.327 2.327 2.327 0.100 2.631 2.741 2.815 2.607 2.531 2.513 0.200 2.725 2.841 2.895 2.679 2.568 2.594 0.250 2.763 2.892 2.924 2.705 2.587 2.612 0.300 2.792 2.948 2.953 2.732 2.607 2.626 0.400 2.853 3.057 3.021 2.783 2.641 2.656 0.500 2.955 3.162 3.087 2.843 2.678 2.691 0.600 3.057 3.287 3.187 2.902 2.714 2.730 0.700 3.177 3.439 3.303 2.978 2.782 2.777 0.800 3.321 3.641 3.433 3.101 2.974 2.849 0.850 3.419 3.848 3.527 3.198 3.112 2.918 0.900 3.604 4.396 3.704 3.385 3.387 3.063 0.925 3.780 4.829 3.898 3.687 3.738 3.299 0.930 3.821 4.921 3.963 3.757 3.848 3.401 0.950 4.138 5.483 4.287 4.109 4.399 3.929 0.960 4.361 5.843 4.465 4.366 4.802 4.164 0.975 5.027 6.950 4.966 5.062 5.740 4.695 0.980 5.435 7.580 5.350 5.412 5.997 4.965 0.990 7.589 9.469 6.492 6.392 7.091 5.622 Table 5 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Canberra DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 2.327 2.327 2.327 2.327 2.327 2.327 2.327 2.327 2.327 0.100 2.485 2.491 2.548 2.550 2.649 2.562 2.485 2.594 2.815 0.200 2.532 2.539 2.600 2.617 2.723 2.648 2.532 2.663 2.895 0.250 2.551 2.556 2.621 2.640 2.755 2.693 2.551 2.692 2.924 0.300 2.567 2.570 2.643 2.662 2.790 2.731 2.567 2.718 2.953 0.400 2.598 2.598 2.688 2.705 2.858 2.801 2.598 2.772 3.057 0.500 2.636 2.628 2.732 2.760 2.924 2.871 2.628 2.831 3.162 0.600 2.676 2.669 2.785 2.837 3.002 2.958 2.669 2.900 3.287 0.700 2.725 2.723 2.863 2.942 3.117 3.079 2.723 2.992 3.439 0.800 2.823 2.807 2.966 3.153 3.362 3.298 2.807 3.144 3.641 0.850 2.907 2.900 3.062 3.310 3.594 3.501 2.900 3.275 3.848 0.900 3.045 3.125 3.232 3.625 3.955 3.834 3.045 3.530 4.396 0.925 3.222 3.351 3.396 3.982 4.312 4.131 3.222 3.802 4.829 0.930 3.265 3.413 3.464 4.077 4.403 4.234 3.265 3.881 4.921 0.950 3.484 3.741 3.852 4.704 4.938 4.690 3.484 4.313 5.483 0.960 3.649 4.037 4.146 5.064 5.266 4.920 3.649 4.590 5.843 0.975 3.999 5.018 4.766 6.097 6.453 5.522 3.999 5.358 6.950 0.980 4.187 5.340 5.165 6.757 7.003 5.794 4.187 5.749 7.580 0.990 4.874 6.481 6.882 8.346 8.552 6.732 4.874 7.043 9.469 Table 6. Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Madrid DSCC, K CD January February March April May June 0.000 2.239 2.239 2.239 2.239 2.239 2.239 0.100 2.314 2.310 2.378 2.386 2.483 2.522 0.200 2.364 2.358 2.425 2.442 2.545 2.585 0.250 2.379 2.372 2.442 2.456 2.564 2.604 0.300 2.401 2.392 2.466 2.475 2.592 2.634 0.400 2.439 2.423 2.502 2.512 2.639 2.677 0.500 2.492 2.470 2.551 2.561 2.679 2.722 0.600 2.565 2.524 2.605 2.620 2.723 2.767 0.700 2.695 2.588 2.684 2.700 2.775 2.816 0.800 3.013 2.697 2.829 2.859 2.897 2.877 0.850 3.365 2.855 2.984 3.019 3.137 2.922 0.900 4.006 3.167 3.322 3.264 3.662 3.004 0.925 4.714 3.499 3.697 3.506 4.213 3.074 0.930 4.835 3.567 3.773 3.562 4.320 3.095 0.950 5.796 4.089 4.239 4.047 4.971 3.280 0.960 6.151 4.379 4.536 4.328 5.324 3.452 0.975 6.990 5.186 5.323 4.965 6.142 4.021 0.980 7.242 5.454 5.623 5.155 6.438 4.411 0.990 8.190 6.491 6.646 5.847 7.435 5.921 Table 6 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at X-Band for Madrid DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 2.239 2.239 2.239 2.239 2.239 2.239 2.239 2.239 2.239 0.100 2.560 2.563 2.519 2.442 2.235 2.312 2.235 2.419 2.563 0.200 2.618 2.626 2.588 2.542 2.373 2.375 2.358 2.487 2.626 0.250 2.636 2.645 2.611 2.571 2.397 2.398 2.372 2.506 2.645 0.300 2.662 2.674 2.646 2.616 2.436 2.436 2.392 2.536 2.674 0.400 2.704 2.717 2.699 2.688 2.483 2.500 2.423 2.582 2.717 0.500 2.744 2.760 2.754 2.765 2.538 2.565 2.470 2.633 2.765 0.600 2.784 2.806 2.814 2.855 2.615 2.649 2.524 2.694 2.855 0.700 2.825 2.851 2.874 2.972 2.717 2.794 2.588 2.774 2.972 0.800 2.873 2.910 2.951 3.241 2.910 3.114 2.697 2.931 3.241 0.850 2.902 2.943 3.002 3.544 3.196 3.461 2.855 3.111 3.544 0.900 2.948 2.997 3.095 4.108 3.757 4.037 2.948 3.447 4.108 0.925 2.981 3.029 3.196 4.674 4.342 4.572 2.981 3.791 4.714 0.930 2.987 3.036 3.218 4.779 4.438 4.650 2.987 3.855 4.835 0.950 3.034 3.086 3.414 5.576 5.212 5.289 3.034 4.336 5.796 0.960 3.064 3.125 3.614 5.940 5.540 5.592 3.064 4.587 6.151 0.975 3.168 3.253 4.272 6.842 6.389 6.380 3.168 5.244 6.990 0.980 3.257 3.344 4.769 7.208 6.619 6.624 3.257 5.512 7.242 0.990 3.702 3.734 6.609 8.606 7.512 7.475 3.702 6.514 8.606 Table 7. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Goldstone DSCC, K CD January February March April May June 0.000 6.700 6.700 6.700 6.700 6.700 6.700 0.100 7.904 7.785 7.925 8.119 8.463 8.302 0.200 8.227 8.181 8.321 8.594 9.041 8.856 0.250 8.354 8.342 8.441 8.731 9.233 9.031 0.300 8.564 8.563 8.626 8.948 9.531 9.304 0.400 8.915 8.888 8.967 9.237 10.127 9.748 0.500 9.325 9.218 9.346 9.563 10.837 10.450 0.600 9.870 9.575 9.688 9.962 11.441 11.447 0.700 10.764 10.181 10.134 10.383 12.115 12.488 0.800 12.058 11.252 10.868 10.909 13.100 13.459 0.850 13.395 12.119 11.316 11.226 13.912 14.098 0.900 15.703 13.903 12.100 11.726 15.260 15.217 0.925 18.556 15.328 12.600 12.070 16.383 16.399 0.930 19.068 15.702 12.683 12.133 16.670 16.548 0.950 23.198 17.912 13.523 12.651 19.479 17.919 0.960 26.054 19.756 14.550 13.068 20.820 19.226 0.975 34.229 23.875 17.527 14.366 24.702 22.976 0.980 37.463 25.724 19.338 15.656 25.866 24.904 0.990 50.394 32.834 27.182 21.314 31.090 32.814 Table 7 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Goldstone DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 6.700 0.100 8.999 9.167 9.539 8.617 8.028 7.746 7.746 8.383 9.539 0.200 10.021 10.163 10.153 9.130 8.529 8.197 8.181 8.951 10.163 0.250 10.341 10.559 10.424 9.301 8.701 8.337 8.337 9.150 10.559 0.300 10.848 11.213 10.890 9.606 8.969 8.549 8.549 9.468 11.213 0.400 11.592 12.143 11.701 10.170 9.444 8.854 8.854 9.982 12.143 0.500 12.618 13.303 12.736 10.649 10.037 9.186 9.186 10.606 13.303 0.600 13.848 14.174 13.595 11.156 10.899 9.585 9.575 11.270 14.174 0.700 15.424 14.787 14.714 11.805 11.782 10.264 10.134 12.070 15.424 0.800 16.742 15.727 15.812 12.722 12.786 11.389 10.868 13.069 16.742 0.850 17.426 16.371 16.487 13.410 13.465 12.566 11.226 13.816 17.426 0.900 18.419 17.398 17.964 14.581 14.576 14.521 11.726 15.114 18.419 0.925 19.131 18.090 18.919 15.220 15.229 15.921 12.070 16.154 19.131 0.930 19.323 18.247 19.040 15.317 15.304 16.325 12.133 16.363 19.323 0.950 20.260 19.474 20.152 16.204 15.976 19.884 12.651 18.053 23.198 0.960 21.008 20.321 21.234 17.020 16.651 22.199 13.068 19.326 26.054 0.975 23.451 22.752 24.331 19.512 18.657 28.306 14.366 22.890 34.229 0.980 25.032 23.123 27.535 20.927 20.607 31.025 15.656 24.767 37.463 0.990 32.362 24.643 41.986 27.647 28.774 41.871 21.314 32.743 50.394 Table 8. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Canberra DSCC, K CD January February March April May June 0.000 7.274 7.274 7.274 7.274 7.274 7.274 0.100 11.671 13.259 14.320 11.313 10.215 9.957 0.200 13.019 14.694 15.485 12.360 10.760 11.133 0.250 13.570 15.432 15.895 12.740 11.030 11.390 0.300 13.996 16.240 16.314 13.120 11.320 11.594 0.400 14.873 17.813 17.305 13.865 11.810 12.023 0.500 16.347 19.333 18.255 14.730 12.340 12.530 0.600 17.820 21.135 19.690 15.580 12.870 13.093 0.700 19.554 23.330 21.375 16.675 13.844 13.780 0.800 21.631 26.251 23.250 18.455 16.624 14.809 0.850 23.048 29.237 24.613 19.853 18.614 15.805 0.900 25.721 37.155 27.169 22.553 22.586 17.897 0.925 28.258 43.415 29.972 26.919 27.655 21.311 0.930 28.846 44.748 30.911 27.935 29.242 22.786 0.950 33.438 52.852 35.590 33.007 37.206 30.415 0.960 36.657 58.057 38.148 36.725 43.020 33.801 0.975 46.274 74.052 45.395 46.781 56.575 41.481 0.980 52.169 83.148 50.943 51.827 60.285 45.372 0.990 83.280 110.437 67.432 65.986 76.082 54.859 Table 8 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Canberra DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 7.274 7.274 7.274 7.274 7.274 7.274 7.274 7.274 7.274 0.100 9.563 9.638 10.470 10.500 11.923 10.670 9.563 11.125 14.320 0.200 10.235 10.333 11.213 11.467 12.993 11.917 10.235 12.134 15.485 0.250 10.505 10.580 11.523 11.800 13.452 12.553 10.505 12.539 15.895 0.300 10.743 10.789 11.840 12.113 13.957 13.103 10.743 12.927 16.314 0.400 11.188 11.190 12.493 12.737 14.940 14.117 11.188 13.696 17.813 0.500 11.730 11.619 13.128 13.533 15.893 15.133 11.619 14.548 19.333 0.600 12.313 12.215 13.887 14.633 17.030 16.381 12.215 15.554 21.135 0.700 13.028 12.988 15.017 16.155 18.682 18.143 12.988 16.881 23.330 0.800 14.442 14.200 16.511 19.203 22.224 21.303 14.200 19.075 26.251 0.850 15.655 15.547 17.889 21.470 25.576 24.236 15.547 20.962 29.237 0.900 17.645 18.804 20.349 26.021 30.782 29.038 17.645 24.643 37.155 0.925 20.202 22.063 22.720 31.181 35.946 33.327 20.202 28.581 43.415 0.930 20.824 22.967 23.690 32.545 37.255 34.818 20.824 29.714 44.748 0.950 23.988 27.691 29.298 41.607 44.979 41.402 23.988 35.956 52.852 0.960 26.372 31.975 33.550 46.812 49.729 44.727 26.372 39.964 58.057 0.975 31.422 46.147 42.500 61.731 66.869 53.428 31.422 51.054 74.052 0.980 34.134 50.786 48.262 71.255 74.809 57.345 34.134 56.695 83.148 0.990 44.061 67.266 73.060 94.217 97.186 70.896 44.061 75.397 110.437 Table 9. Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Madrid DSCC, K CD January February March April May June 0.000 7.000 7.000 7.000 7.000 7.000 7.000 0.100 8.081 8.027 9.008 9.129 10.527 11.095 0.200 8.807 8.715 9.680 9.934 11.424 12.001 0.250 9.020 8.918 9.928 10.128 11.700 12.279 0.300 9.345 9.209 10.275 10.413 12.094 12.701 0.400 9.893 9.661 10.801 10.941 12.778 13.321 0.500 10.660 10.343 11.505 11.649 13.349 13.978 0.600 11.705 11.122 12.284 12.505 13.985 14.626 0.700 13.588 12.034 13.426 13.658 14.740 15.331 0.800 18.184 13.617 15.527 15.956 16.508 16.218 0.850 23.264 15.894 17.764 18.261 19.967 16.865 0.900 32.518 20.404 22.635 21.803 27.555 18.056 0.925 42.747 25.199 28.054 25.304 35.506 19.059 0.930 44.501 26.176 29.154 26.115 37.057 19.361 0.950 58.380 33.714 35.887 33.118 46.457 22.041 0.960 63.503 37.904 40.178 37.171 51.554 24.514 0.975 75.622 49.567 51.540 46.376 63.371 32.733 0.980 79.259 53.436 55.884 49.123 67.655 38.373 0.990 92.957 68.414 70.648 59.108 82.045 60.183 Table 9 (Cont'd). Cumulative Distributions of Zenith Atmospheric Noise Temperature at Ka-Band for Madrid DSCC, K CD July August September October November Dec. Minimum Year Maximum Average 0.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 0.100 11.629 11.685 11.048 9.928 6.945 8.053 6.945 9.596 11.685 0.200 12.472 12.584 12.045 11.382 8.940 8.957 8.715 10.578 12.584 0.250 12.729 12.868 12.368 11.802 9.280 9.297 8.918 10.860 12.868 0.300 13.108 13.287 12.877 12.451 9.852 9.845 9.209 11.288 13.287 0.400 13.719 13.901 13.650 13.489 10.522 10.775 9.661 11.954 13.901 0.500 14.290 14.523 14.437 14.599 11.318 11.708 10.343 12.697 14.599 0.600 14.866 15.183 15.311 15.893 12.425 12.920 11.122 13.569 15.893 0.700 15.470 15.844 16.170 17.581 13.910 15.023 12.034 14.731 17.581 0.800 16.164 16.691 17.282 21.475 16.699 19.634 13.617 16.996 21.475 0.850 16.577 17.169 18.017 25.853 20.829 24.646 15.894 19.592 25.853 0.900 17.245 17.946 19.369 33.998 28.929 32.965 17.245 24.452 33.998 0.925 17.715 18.413 20.820 42.171 37.379 40.700 17.715 29.422 42.747 0.930 17.803 18.505 21.142 43.694 38.756 41.828 17.803 30.341 44.501 0.950 18.487 19.229 23.978 55.198 49.934 51.055 18.487 37.290 58.380 0.960 18.918 19.803 26.856 60.459 54.681 55.436 18.918 40.915 63.503 0.975 20.416 21.652 36.364 73.478 66.936 66.807 20.416 50.405 75.622 0.980 21.709 22.960 43.548 78.764 70.263 70.341 21.709 54.276 79.259 0.990 28.129 28.596 70.125 98.968 83.164 82.632 28.129 68.747 98.968 Table 10. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S- Bands for Goldstone DSCC, dB CD January February March April May June 0.000 0.033 0.033 0.033 0.033 0.033 0.033 0.100 0.033 0.033 0.033 0.033 0.033 0.033 0.200 0.032 0.032 0.032 0.032 0.032 0.032 0.250 0.032 0.032 0.032 0.032 0.032 0.032 0.300 0.032 0.032 0.032 0.032 0.032 0.032 0.400 0.032 0.032 0.032 0.032 0.032 0.032 0.500 0.031 0.031 0.031 0.031 0.032 0.032 0.600 0.031 0.031 0.031 0.031 0.031 0.031 0.700 0.031 0.031 0.031 0.031 0.031 0.031 0.800 0.031 0.031 0.031 0.031 0.031 0.031 0.850 0.031 0.031 0.031 0.031 0.031 0.031 0.900 0.031 0.031 0.031 0.031 0.031 0.031 0.925 0.031 0.031 0.031 0.030 0.031 0.031 0.930 0.031 0.031 0.031 0.030 0.031 0.031 0.950 0.031 0.031 0.031 0.030 0.031 0.031 0.960 0.032 0.031 0.031 0.030 0.031 0.031 0.975 0.032 0.031 0.031 0.031 0.031 0.031 0.980 0.032 0.031 0.031 0.031 0.031 0.031 0.990 0.033 0.032 0.032 0.031 0.032 0.032 Table 10 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Goldstone DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.100 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.200 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.250 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.300 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.400 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.500 0.032 0.032 0.032 0.032 0.032 0.031 0.031 0.032 0.032 0.600 0.032 0.032 0.032 0.031 0.031 0.031 0.031 0.031 0.032 0.700 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.800 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.850 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.900 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.925 0.031 0.031 0.031 0.031 0.031 0.031 0.030 0.031 0.031 0.930 0.031 0.031 0.031 0.031 0.031 0.031 0.030 0.031 0.031 0.950 0.031 0.031 0.031 0.031 0.031 0.031 0.030 0.031 0.031 0.960 0.031 0.031 0.031 0.031 0.031 0.031 0.030 0.031 0.032 0.975 0.031 0.031 0.031 0.031 0.031 0.032 0.031 0.031 0.032 0.980 0.031 0.031 0.032 0.031 0.031 0.032 0.031 0.031 0.032 0.990 0.032 0.031 0.033 0.032 0.032 0.033 0.031 0.032 0.033 Table 11. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S- Bands for Canberra DSCC, dB CD January February March April May June 0.000 0.036 0.036 0.036 0.036 0.036 0.036 0.100 0.036 0.036 0.036 0.036 0.036 0.036 0.200 0.035 0.036 0.036 0.035 0.035 0.035 0.250 0.035 0.036 0.036 0.035 0.035 0.035 0.300 0.035 0.035 0.035 0.035 0.035 0.035 0.400 0.035 0.035 0.035 0.035 0.035 0.035 0.500 0.035 0.035 0.035 0.035 0.034 0.034 0.600 0.035 0.035 0.035 0.034 0.034 0.034 0.700 0.034 0.035 0.035 0.034 0.034 0.034 0.800 0.034 0.035 0.034 0.034 0.034 0.034 0.850 0.034 0.035 0.034 0.034 0.034 0.034 0.900 0.034 0.035 0.034 0.034 0.034 0.034 0.925 0.034 0.036 0.035 0.034 0.034 0.034 0.930 0.034 0.036 0.035 0.034 0.034 0.034 0.950 0.035 0.036 0.035 0.035 0.035 0.034 0.960 0.035 0.037 0.035 0.035 0.035 0.035 0.975 0.036 0.038 0.036 0.036 0.037 0.035 0.980 0.036 0.039 0.036 0.036 0.037 0.036 0.990 0.039 0.041 0.037 0.037 0.038 0.036 Table 11 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Canberra DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.100 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.200 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.250 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.300 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.400 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.500 0.034 0.034 0.034 0.035 0.035 0.035 0.034 0.035 0.035 0.600 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.700 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.800 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.850 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.035 0.900 0.034 0.034 0.034 0.034 0.035 0.035 0.034 0.034 0.035 0.925 0.034 0.034 0.034 0.035 0.035 0.035 0.034 0.034 0.036 0.930 0.034 0.034 0.034 0.035 0.035 0.035 0.034 0.034 0.036 0.950 0.034 0.034 0.034 0.035 0.036 0.035 0.034 0.035 0.036 0.960 0.034 0.035 0.035 0.036 0.036 0.036 0.034 0.035 0.037 0.975 0.034 0.036 0.035 0.037 0.037 0.036 0.034 0.036 0.038 0.980 0.035 0.036 0.036 0.038 0.038 0.037 0.035 0.037 0.039 0.990 0.035 0.037 0.038 0.039 0.040 0.038 0.035 0.038 0.041 Table 12. Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Madrid DSCC, dB CD January February March April May June 0.000 0.034 0.034 0.034 0.034 0.034 0.034 0.100 0.034 0.034 0.034 0.034 0.034 0.034 0.200 0.034 0.034 0.034 0.034 0.034 0.034 0.250 0.034 0.034 0.034 0.034 0.034 0.034 0.300 0.034 0.034 0.034 0.034 0.034 0.034 0.400 0.033 0.033 0.033 0.033 0.034 0.034 0.500 0.033 0.033 0.033 0.033 0.033 0.033 0.600 0.033 0.033 0.033 0.033 0.033 0.033 0.700 0.033 0.033 0.033 0.033 0.033 0.033 0.800 0.033 0.032 0.033 0.033 0.033 0.033 0.850 0.033 0.032 0.033 0.033 0.033 0.032 0.900 0.034 0.033 0.033 0.033 0.033 0.032 0.925 0.034 0.033 0.033 0.033 0.034 0.032 0.930 0.034 0.033 0.033 0.033 0.034 0.032 0.950 0.036 0.034 0.034 0.034 0.035 0.033 0.960 0.036 0.034 0.034 0.034 0.035 0.033 0.975 0.037 0.035 0.035 0.034 0.036 0.033 0.980 0.037 0.035 0.035 0.035 0.036 0.034 0.990 0.038 0.036 0.036 0.035 0.037 0.036 Table 12 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at L- and S-Bands for Madrid DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.100 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.200 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.250 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.300 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.400 0.034 0.034 0.034 0.034 0.033 0.033 0.033 0.033 0.034 0.500 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.600 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.700 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.800 0.033 0.033 0.033 0.033 0.033 0.033 0.032 0.033 0.033 0.850 0.032 0.033 0.033 0.033 0.033 0.033 0.032 0.033 0.033 0.900 0.032 0.032 0.033 0.034 0.033 0.034 0.032 0.033 0.034 0.925 0.032 0.032 0.033 0.034 0.034 0.034 0.032 0.033 0.034 0.930 0.032 0.032 0.033 0.034 0.034 0.034 0.032 0.033 0.034 0.950 0.032 0.032 0.033 0.035 0.035 0.035 0.032 0.034 0.036 0.960 0.032 0.032 0.033 0.036 0.035 0.035 0.032 0.034 0.036 0.975 0.032 0.033 0.034 0.037 0.036 0.036 0.032 0.035 0.037 0.980 0.032 0.033 0.034 0.037 0.036 0.036 0.032 0.035 0.037 0.990 0.033 0.033 0.036 0.039 0.037 0.037 0.033 0.036 0.039 Table 13. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Goldstone DSCC, dB CD January February March April May June 0.000 0.037 0.037 0.037 0.037 0.037 0.037 0.100 0.038 0.037 0.038 0.038 0.038 0.038 0.200 0.038 0.038 0.038 0.038 0.039 0.038 0.250 0.038 0.038 0.038 0.038 0.039 0.038 0.300 0.038 0.038 0.038 0.038 0.039 0.038 0.400 0.038 0.038 0.038 0.038 0.039 0.039 0.500 0.038 0.038 0.038 0.038 0.039 0.039 0.600 0.038 0.038 0.038 0.038 0.040 0.040 0.700 0.039 0.038 0.038 0.038 0.040 0.041 0.800 0.040 0.039 0.038 0.038 0.041 0.041 0.850 0.041 0.040 0.039 0.039 0.042 0.042 0.900 0.043 0.041 0.039 0.039 0.043 0.043 0.925 0.046 0.043 0.040 0.039 0.044 0.044 0.930 0.047 0.043 0.040 0.039 0.044 0.044 0.950 0.051 0.046 0.041 0.040 0.047 0.046 0.960 0.054 0.048 0.042 0.040 0.049 0.047 0.975 0.063 0.052 0.045 0.042 0.053 0.051 0.980 0.067 0.054 0.047 0.043 0.054 0.053 0.990 0.081 0.062 0.056 0.049 0.060 0.062 Table 13 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Goldstone DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.100 0.039 0.039 0.040 0.038 0.038 0.037 0.037 0.038 0.040 0.200 0.040 0.040 0.040 0.039 0.038 0.038 0.038 0.038 0.040 0.250 0.040 0.040 0.040 0.039 0.038 0.038 0.038 0.038 0.040 0.300 0.040 0.041 0.040 0.039 0.038 0.038 0.038 0.039 0.041 0.400 0.041 0.041 0.041 0.039 0.038 0.038 0.038 0.039 0.041 0.500 0.042 0.042 0.042 0.039 0.039 0.038 0.038 0.039 0.042 0.600 0.043 0.043 0.042 0.039 0.039 0.038 0.038 0.040 0.043 0.700 0.044 0.043 0.043 0.040 0.040 0.038 0.038 0.040 0.044 0.800 0.045 0.044 0.044 0.040 0.041 0.039 0.038 0.041 0.045 0.850 0.045 0.044 0.044 0.041 0.041 0.040 0.039 0.042 0.045 0.900 0.046 0.045 0.046 0.042 0.042 0.042 0.039 0.043 0.046 0.925 0.047 0.046 0.047 0.043 0.043 0.044 0.039 0.044 0.047 0.930 0.047 0.046 0.047 0.043 0.043 0.044 0.039 0.044 0.047 0.950 0.048 0.047 0.048 0.044 0.043 0.048 0.040 0.046 0.051 0.960 0.049 0.048 0.049 0.045 0.044 0.050 0.040 0.047 0.054 0.975 0.052 0.051 0.052 0.047 0.046 0.057 0.042 0.051 0.063 0.980 0.053 0.051 0.056 0.049 0.048 0.060 0.043 0.053 0.067 0.990 0.061 0.053 0.072 0.056 0.057 0.072 0.049 0.062 0.081 Table 14. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Canberra DSCC, dB CD January February March April May June 0.000 0.040 0.040 0.040 0.040 0.040 0.040 0.100 0.045 0.046 0.048 0.044 0.043 0.043 0.200 0.046 0.048 0.049 0.045 0.043 0.044 0.250 0.046 0.048 0.049 0.045 0.043 0.044 0.300 0.046 0.049 0.049 0.045 0.043 0.044 0.400 0.047 0.050 0.050 0.046 0.043 0.044 0.500 0.048 0.052 0.050 0.046 0.044 0.044 0.600 0.049 0.053 0.052 0.047 0.044 0.044 0.700 0.051 0.055 0.053 0.048 0.045 0.044 0.800 0.053 0.058 0.055 0.049 0.047 0.045 0.850 0.054 0.061 0.056 0.051 0.049 0.046 0.900 0.057 0.069 0.058 0.053 0.053 0.048 0.925 0.059 0.076 0.061 0.058 0.059 0.052 0.930 0.060 0.078 0.062 0.059 0.060 0.053 0.950 0.065 0.086 0.067 0.064 0.069 0.062 0.960 0.068 0.092 0.070 0.068 0.075 0.065 0.975 0.079 0.109 0.078 0.079 0.090 0.074 0.980 0.085 0.119 0.084 0.085 0.094 0.078 0.990 0.119 0.150 0.102 0.100 0.112 0.088 Table 14 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Canberra DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.100 0.042 0.042 0.043 0.043 0.045 0.043 0.042 0.044 0.048 0.200 0.043 0.043 0.044 0.044 0.046 0.044 0.043 0.045 0.049 0.250 0.043 0.043 0.044 0.044 0.046 0.045 0.043 0.045 0.049 0.300 0.043 0.043 0.044 0.044 0.046 0.045 0.043 0.045 0.049 0.400 0.043 0.043 0.044 0.045 0.047 0.046 0.043 0.046 0.050 0.500 0.043 0.043 0.045 0.045 0.048 0.047 0.043 0.046 0.052 0.600 0.043 0.043 0.045 0.046 0.049 0.048 0.043 0.047 0.053 0.700 0.044 0.044 0.046 0.047 0.050 0.049 0.044 0.048 0.055 0.800 0.045 0.045 0.047 0.050 0.053 0.052 0.045 0.050 0.058 0.850 0.046 0.046 0.048 0.052 0.057 0.055 0.046 0.052 0.061 0.900 0.048 0.049 0.051 0.057 0.062 0.060 0.048 0.056 0.069 0.925 0.051 0.053 0.053 0.063 0.068 0.065 0.051 0.060 0.076 0.930 0.051 0.054 0.054 0.064 0.069 0.067 0.051 0.061 0.078 0.950 0.055 0.059 0.060 0.074 0.078 0.074 0.055 0.068 0.086 0.960 0.057 0.063 0.065 0.080 0.083 0.077 0.057 0.072 0.092 0.975 0.063 0.079 0.075 0.096 0.101 0.087 0.063 0.084 0.109 0.980 0.066 0.084 0.081 0.106 0.110 0.091 0.066 0.090 0.119 0.990 0.076 0.102 0.108 0.132 0.135 0.106 0.076 0.111 0.150 Table 15. Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Madrid DSCC, dB CD January February March April May June 0.000 0.038 0.038 0.038 0.038 0.038 0.038 0.100 0.039 0.039 0.040 0.040 0.042 0.043 0.200 0.040 0.040 0.041 0.041 0.043 0.043 0.250 0.040 0.040 0.041 0.041 0.043 0.044 0.300 0.040 0.040 0.041 0.041 0.043 0.044 0.400 0.040 0.040 0.041 0.041 0.043 0.044 0.500 0.041 0.040 0.042 0.042 0.044 0.044 0.600 0.041 0.041 0.042 0.042 0.044 0.045 0.700 0.043 0.041 0.043 0.043 0.044 0.045 0.800 0.048 0.043 0.045 0.045 0.046 0.046 0.850 0.053 0.045 0.047 0.048 0.050 0.046 0.900 0.063 0.050 0.052 0.051 0.058 0.047 0.925 0.074 0.055 0.058 0.055 0.066 0.048 0.930 0.076 0.056 0.059 0.056 0.068 0.049 0.950 0.091 0.064 0.067 0.064 0.078 0.051 0.960 0.097 0.069 0.071 0.068 0.084 0.054 0.975 0.110 0.081 0.084 0.078 0.097 0.063 0.980 0.114 0.086 0.088 0.081 0.101 0.069 0.990 0.129 0.102 0.104 0.092 0.117 0.093 Table 15 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at X-Band for Madrid DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.100 0.043 0.043 0.043 0.041 0.038 0.039 0.038 0.041 0.043 0.200 0.044 0.044 0.043 0.043 0.040 0.040 0.040 0.042 0.044 0.250 0.044 0.044 0.044 0.043 0.040 0.040 0.040 0.042 0.044 0.300 0.044 0.044 0.044 0.044 0.040 0.040 0.040 0.042 0.044 0.400 0.045 0.045 0.044 0.044 0.041 0.041 0.040 0.043 0.045 0.500 0.045 0.045 0.045 0.045 0.041 0.042 0.040 0.043 0.045 0.600 0.045 0.045 0.046 0.046 0.042 0.043 0.041 0.044 0.046 0.700 0.045 0.046 0.046 0.048 0.044 0.045 0.041 0.044 0.048 0.800 0.046 0.046 0.047 0.051 0.046 0.049 0.043 0.047 0.051 0.850 0.046 0.047 0.047 0.056 0.051 0.055 0.045 0.049 0.056 0.900 0.046 0.047 0.049 0.065 0.059 0.064 0.046 0.054 0.065 0.925 0.047 0.048 0.050 0.074 0.068 0.072 0.047 0.060 0.074 0.930 0.047 0.048 0.051 0.075 0.070 0.073 0.047 0.061 0.076 0.950 0.048 0.048 0.054 0.088 0.082 0.083 0.048 0.068 0.091 0.960 0.048 0.049 0.057 0.093 0.087 0.088 0.048 0.072 0.097 0.975 0.050 0.051 0.067 0.108 0.100 0.100 0.050 0.082 0.110 0.980 0.051 0.052 0.075 0.113 0.104 0.104 0.051 0.087 0.114 0.990 0.058 0.058 0.104 0.136 0.118 0.118 0.058 0.102 0.136 Table 16. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Goldstone DSCC, dB CD January February March April May June 0.000 0.116 0.116 0.116 0.116 0.116 0.116 0.100 0.135 0.133 0.136 0.139 0.145 0.142 0.200 0.140 0.139 0.141 0.146 0.154 0.150 0.250 0.141 0.141 0.143 0.148 0.156 0.153 0.300 0.144 0.144 0.145 0.151 0.161 0.157 0.400 0.149 0.148 0.150 0.154 0.169 0.163 0.500 0.154 0.152 0.154 0.158 0.180 0.173 0.600 0.162 0.157 0.159 0.163 0.188 0.188 0.700 0.175 0.165 0.165 0.169 0.198 0.204 0.800 0.195 0.181 0.175 0.176 0.212 0.218 0.850 0.216 0.195 0.182 0.180 0.224 0.227 0.900 0.253 0.223 0.194 0.188 0.246 0.245 0.925 0.300 0.246 0.201 0.193 0.264 0.264 0.930 0.308 0.252 0.203 0.194 0.268 0.266 0.950 0.377 0.288 0.216 0.202 0.315 0.289 0.960 0.426 0.319 0.233 0.208 0.337 0.310 0.975 0.568 0.388 0.281 0.229 0.402 0.373 0.980 0.625 0.419 0.311 0.250 0.422 0.405 0.990 0.863 0.542 0.444 0.344 0.512 0.542 Table 16 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Goldstone DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.116 0.100 0.154 0.157 0.164 0.148 0.138 0.133 0.133 0.144 0.164 0.200 0.171 0.173 0.173 0.155 0.145 0.139 0.139 0.152 0.173 0.250 0.175 0.179 0.177 0.157 0.147 0.141 0.141 0.155 0.179 0.300 0.183 0.190 0.184 0.162 0.151 0.144 0.144 0.160 0.190 0.400 0.194 0.204 0.196 0.170 0.158 0.148 0.148 0.167 0.204 0.500 0.210 0.222 0.212 0.176 0.166 0.152 0.152 0.176 0.222 0.600 0.229 0.234 0.224 0.183 0.179 0.157 0.157 0.185 0.234 0.700 0.253 0.242 0.241 0.192 0.192 0.167 0.165 0.197 0.253 0.800 0.273 0.256 0.257 0.206 0.207 0.184 0.175 0.211 0.273 0.850 0.283 0.265 0.267 0.216 0.217 0.202 0.180 0.223 0.283 0.900 0.298 0.281 0.291 0.234 0.234 0.233 0.188 0.243 0.298 0.925 0.309 0.292 0.306 0.244 0.245 0.256 0.193 0.260 0.309 0.930 0.313 0.295 0.308 0.246 0.246 0.263 0.194 0.263 0.313 0.950 0.328 0.315 0.326 0.260 0.256 0.321 0.202 0.291 0.377 0.960 0.340 0.328 0.344 0.273 0.267 0.360 0.208 0.312 0.426 0.975 0.381 0.369 0.396 0.314 0.300 0.464 0.229 0.371 0.568 0.980 0.407 0.375 0.450 0.338 0.333 0.511 0.250 0.403 0.625 0.990 0.534 0.400 0.706 0.452 0.471 0.704 0.344 0.541 0.863 Table 17. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Canberra DSCC, dB CD January February March April May June 0.000 0.126 0.126 0.126 0.126 0.126 0.126 0.100 0.201 0.230 0.248 0.195 0.176 0.171 0.200 0.223 0.253 0.267 0.212 0.184 0.190 0.250 0.232 0.264 0.273 0.217 0.187 0.194 0.300 0.238 0.277 0.279 0.223 0.191 0.196 0.400 0.251 0.302 0.293 0.233 0.198 0.202 0.500 0.274 0.326 0.307 0.246 0.205 0.208 0.600 0.297 0.354 0.329 0.258 0.212 0.216 0.700 0.323 0.389 0.355 0.274 0.226 0.225 0.800 0.356 0.436 0.384 0.302 0.271 0.240 0.850 0.378 0.486 0.405 0.324 0.303 0.256 0.900 0.422 0.624 0.447 0.368 0.369 0.290 0.925 0.465 0.737 0.495 0.442 0.455 0.346 0.930 0.475 0.761 0.511 0.459 0.482 0.371 0.950 0.555 0.913 0.593 0.547 0.622 0.502 0.960 0.612 1.013 0.639 0.613 0.727 0.561 0.975 0.786 1.337 0.770 0.796 0.983 0.698 0.980 0.897 1.533 0.874 0.891 1.055 0.769 0.990 1.535 2.181 1.198 1.168 1.378 0.948 Table 17 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Canberra DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.126 0.100 0.164 0.166 0.180 0.181 0.206 0.184 0.164 0.192 0.248 0.200 0.174 0.176 0.191 0.196 0.223 0.204 0.174 0.208 0.267 0.250 0.178 0.180 0.196 0.201 0.230 0.214 0.178 0.214 0.273 0.300 0.181 0.182 0.200 0.205 0.237 0.222 0.181 0.219 0.279 0.400 0.187 0.187 0.210 0.214 0.252 0.238 0.187 0.230 0.302 0.500 0.195 0.193 0.219 0.225 0.266 0.253 0.193 0.243 0.326 0.600 0.203 0.201 0.229 0.242 0.283 0.272 0.201 0.258 0.354 0.700 0.213 0.212 0.246 0.265 0.308 0.299 0.212 0.278 0.389 0.800 0.234 0.230 0.269 0.314 0.366 0.350 0.230 0.312 0.436 0.850 0.253 0.252 0.291 0.351 0.422 0.399 0.252 0.343 0.486 0.900 0.285 0.305 0.331 0.428 0.511 0.480 0.285 0.404 0.624 0.925 0.327 0.359 0.370 0.516 0.601 0.554 0.327 0.471 0.737 0.930 0.338 0.374 0.386 0.540 0.624 0.581 0.338 0.490 0.761 0.950 0.391 0.454 0.482 0.702 0.764 0.698 0.391 0.600 0.913 0.960 0.431 0.529 0.556 0.798 0.853 0.759 0.431 0.671 1.013 0.975 0.518 0.784 0.717 1.084 1.188 0.922 0.518 0.876 1.337 0.980 0.566 0.871 0.823 1.278 1.353 0.997 0.566 0.985 1.533 0.990 0.744 1.194 1.315 1.783 1.854 1.269 0.744 1.364 2.181 Table 18. Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Madrid DSCC, dB CD January February March April May June 0.000 0.121 0.121 0.121 0.121 0.121 0.121 0.100 0.138 0.138 0.155 0.157 0.181 0.191 0.200 0.150 0.148 0.165 0.169 0.195 0.205 0.250 0.153 0.151 0.168 0.172 0.199 0.209 0.300 0.157 0.155 0.173 0.176 0.205 0.215 0.400 0.165 0.161 0.181 0.183 0.215 0.224 0.500 0.177 0.171 0.191 0.193 0.222 0.233 0.600 0.192 0.183 0.202 0.206 0.231 0.242 0.700 0.222 0.196 0.219 0.223 0.242 0.251 0.800 0.297 0.221 0.252 0.260 0.269 0.264 0.850 0.382 0.257 0.289 0.297 0.326 0.274 0.900 0.541 0.332 0.370 0.355 0.454 0.292 0.925 0.725 0.412 0.462 0.414 0.593 0.308 0.930 0.757 0.429 0.481 0.428 0.621 0.313 0.950 1.021 0.560 0.599 0.549 0.792 0.358 0.960 1.122 0.634 0.675 0.621 0.887 0.399 0.975 1.371 0.848 0.886 0.788 1.117 0.541 0.980 1.448 0.922 0.969 0.839 1.204 0.641 0.990 1.754 1.218 1.264 1.031 1.508 1.052 Table 18 (Cont'd). Cumulative Distributions of Zenith Atmospheric Attenuation at Ka-Band for Madrid DSCC, dB CD July August September October November Dec. Minimum Year Maximum Average 0.000 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.100 0.201 0.202 0.190 0.171 0.119 0.138 0.119 0.165 0.202 0.200 0.213 0.215 0.206 0.194 0.152 0.152 0.148 0.180 0.215 0.250 0.217 0.219 0.211 0.201 0.157 0.157 0.151 0.184 0.219 0.300 0.222 0.226 0.218 0.211 0.166 0.166 0.155 0.191 0.226 0.400 0.231 0.234 0.230 0.227 0.176 0.180 0.161 0.200 0.234 0.500 0.238 0.242 0.241 0.244 0.188 0.194 0.171 0.211 0.244 0.600 0.246 0.251 0.254 0.263 0.205 0.213 0.183 0.224 0.263 0.700 0.254 0.260 0.266 0.290 0.228 0.246 0.196 0.241 0.290 0.800 0.263 0.272 0.282 0.353 0.272 0.322 0.221 0.277 0.353 0.850 0.269 0.279 0.293 0.427 0.340 0.406 0.257 0.319 0.427 0.900 0.279 0.290 0.314 0.568 0.478 0.549 0.279 0.401 0.568 0.925 0.286 0.297 0.338 0.714 0.627 0.687 0.286 0.486 0.725 0.930 0.287 0.299 0.343 0.742 0.651 0.707 0.287 0.501 0.757 0.950 0.298 0.310 0.391 0.958 0.857 0.879 0.298 0.624 1.021 0.960 0.305 0.320 0.440 1.061 0.947 0.962 0.305 0.689 1.122 0.975 0.330 0.350 0.606 1.325 1.190 1.187 0.330 0.864 1.371 0.980 0.351 0.372 0.736 1.438 1.257 1.259 0.351 0.938 1.448 0.990 0.460 0.468 1.253 1.896 1.532 1.520 0.460 1.225 1.896 Table 19. Monthly and Year-Average Rainfall Amounts at the DSN Antenna Locations Month Goldstone Canberra Madrid inches mm inches mm inches mm January 1.02 25.9 3.61 91.7 1.48 37.5 February 1.18 30.0 2.74 69.7 1.38 35.0 March 0.90 22.9 2.90 73.6 1.10 28.0 April 0.20 5.1 2.85 72.4 1.87 47.5 May 0.19 4.8 2.94 74.8 1.56 39.5 June 0.04 1.0 2.70 68.7 1.26 32.0 July 0.35 8.9 3.36 85.3 0.57 14.5 August 0.59 15.0 3.90 99.0 0.59 15.0 September 0.39 9.9 3.73 94.7 1.16 29.5 October 0.15 3.8 3.70 94.0 1.54 39.0 November 0.23 5.8 3.50 88.8 2.01 51.0 December 0.57 14.5 2.42 61.4 1.75 44.5 Year 5.81 147.6 38.67 982.1 16.26 413.0 Average Table 20. Parameters for X-Band Planetary Noise Calculation, plus X-Band and Ka- Band Noise Temperatures at Mean Minimum Distance from Earth Planet Diameter Mean Mean Black- T_Planet at Mean Minimum (km) Distance Distance body Distance (K) from from Sun Disk Earth Temp (K) X-Band Ka-Band (10^6 km) 70-m 34-m 34-m (78.8 (74.4 (68.3 dBi gain) dBi dBi gain) gain) polar equa- min Max. 10^6km AU torial Mercury 4880 91.7 207.5 57.9 0.387 625 3.05 0.75 8.39 Venus 12104 41.4 257.8 108.3 0.723 490 72.10 17.70 198.58 Earth 12757 - - 149.6 1.000 250-300^1 - - - Mars 6794 78.3 377.5 227.9 1.523 180 2.33 0.57 6.43 Jupiter 134102 142984 628.7 927.9 778.3 5.203 152 13.53 3.32 37.27 Saturn 108728 120536 1279.8 1579.0 1429.4 9.555 155 2.37 0.58 6.52 Uranus 51118 2721.4 3020.6 2871.0 19.191 160 0.10 0.02 0.27 Neptune 49532 4354.4 4653.6 4504.0 30.107 160 0.04 0.01 0.10 Pluto 2274 5763.9 6063.1 5913.5 39.529 160 0.00 0.00 0.00 Note: 1. Ocean (250) and Land (300)