

Interpretation and Use of Binary RSC-11-9 Data

This document describes and illustrates extraction of values from binary files generated according to the NASA Deep Space Network (DSN) RSC-11-9 Software Interface Specification (SIS). In this document, RSC-11-9 is referenced as:

[1] *Document 820-013 (Rev. A), DSN System Requirements, Detailed Interface Design, RSC-11-9, DSN Radio Science System Interface, Original Data Record*, effective date 1 March 1985 (PDS logical identifier urn:nasa:pds:radiosci.documentation:dsn.rsc-11-9)

RSC-11-9 is one of several modules within DSN 820-013 that governed generation of open loop radio science raw data products over about two decades starting in the late 1970s. RSC-11-9 specifies the format and content of the most important open loop radio science files collected using NASA Deep Space Network antennas near Canberra, Australia, during the Voyager 2 encounter with Uranus. A variation of this format, used for collection of data during the Voyager 2 encounter with Uranus at Parkes Observatory (Australia), is described separately. Its citation differs only in the year of the effective date.

[2] *Document 820-013 (Rev. A), DSN System Requirements, Detailed Interface Design, RSC-11-9, DSN Radio Science System Interface, Original Data Record*, effective date 1 March 1982 (PDS logical identifier urn:nasa:pds:radiosci.documentation:dsn.rsc-11-9p)

Data Overview:

The data were originally distributed on Computer-Compatible Tapes (CCTs). In the mid-1990s the tape data were copied to CD-ROM volumes, and in 2020 the CD-ROMs were copied to a laptop. Subsequent handling has been carried out on the electronic (laptop) files. Throughout, [1] has remained the descriptive document of the Canberra data.

Open loop data were the primary inputs for the study of radio occultations by the neutral atmosphere, ionosphere, and rings of Uranus. These digital data were generated by the Spectrum Processing Assembly (SPA) of the Deep Space Communications Complex (DSCC) Spectrum Processing Subsystem (DSP), using radio science software of the DSP, designated "DSP-R".

During the Uranus encounter, S- and X-band receiver outputs in right-circular polarization (RCP) from the 64-m antenna (DSS43) and the 34-m antenna (DSS42) at the DSCC near Canberra, Australia, were written to tape at 50000 8-bit (real) samples per second from each of the four receiver channels. Table 1 shows the Uranus encounter timeline, significant events, and the corresponding tape numbers. Table 2 lists recordings of test data.

Event Time (UTC)	Canberra Event	1986 DOY	Tape Start UTC (s)	Tape Start (UTC)	Tape Stop (UTC)	Original Tape (S/N)	UC Tape	Backup Tape
		024	76501	21:15:01	21:23:01	1-0451	0452	0701
21:27:13	TWNC ON		76981	21:23:01	21:31:01	2-0453	0453	0702
			77461	21:31:01	21:39:01	3-0448	0454	0703
21:41:40	S-band ranging OFF		77941	21:39:01	21:47:01	4-0449	0455	0704
21:45:39	Telemetry OFF							
21:52:00	Begin mini-ASCAL		78421	21:47:01	21:55:01	5-0443	0456	0705
			78901	21:55:01	22:03:01	6-0450	0457	0706
22:04:00	End mini-ASCAL		79381	22:03:01	22:11:01	7-0446	0458	0707
			79861	22:11:01	22:19:01	8-0447	0459	0708
			80341	22:19:01	22:27:01	9-0444	0460	0709
22:28:30	ε -ring		80821	22:27:01	22:35:01	10-0442	0461	0710
			81301	22:35:01	22:43:01	11-0445	0462	0711
22:47	4-ring		81781	22:43:01	22:51:02	12-0255	0463	0712
22:55	X-band to low power		82262	22:51:02	22:59:02	13-0669	0464	0713
22:56:02	S-band to high power							
			82742	22:59:02	23:07:02	14-0678	0465	0714
			83222	23:07:02	23:15:02	15-0660	0466	0715
23:17	Ionosphere		83702	23:15:02	23:23:02	16-0679	0467	0716
23:21	Atmosphere (entry)							
			84182	23:23:02	23:31:02	17-0680	0468	0717
22:38	Enter absorption region		84662	23:31:02	23:39:02	18-0661	0469	0718
22:44	Exit absorption region		85142	23:39:02	23:47:02	19-0662	0470	0719
			85622	23:47:02	23:55:02	20-0663	0471	0720
			86102	23:55:02	00:03:02	21-0657	0472	0721
		025	86582	00:03:02	00:11:02	22-0659	0473	0722
00:19	Enter absorption region		87062	00:11:02	00:19:02	23-0693	0474	0723
			87542	00:19:02	00:27:02	24-0705	0475	0724
00:28	Exit absorption region		88022	00:27:02	00:35:02	25-0664	0476	0725
			88502	00:35:02	00:43:02	26-0665	0477	0726
00:44	Exit atmosphere		88982	00:43:02	00:51:02	27-0677	0478	0727
			89462	00:51:02	00:59:02	28-0666	0479	0728
01:03:14	S-band to low power		89942	00:59:02	01:07:02	29-0686	0480	0729
01:04:00	X-band to high power		90422	01:07:02	01:15:02	30-0685	0481	0730
01:19	4-ring		90902	01:15:02	01:23:03	31-0684	0482	0731
			91383	01:23:03	01:31:03	32-0675	0483	0732
01:37:40	ε -ring		91863	01:31:03	01:39:03	33-0681	0484	0733
			92343	01:39:03	01:47:03	34-0671	0485	0734
			92823	01:47:03	01:55:04	35-0670	0486	0735
			93304	01:55:04	02:03:04	36-0668	0487	0736
			93784	02:03:04	02:11:04	37-0682	0488	0737
02:16:36	Begin mini-ASCAL		94264	02:11:04	02:19:04	38-0667	0489	0738
			94744	02:19:04	02:27:04	39-0672	0490	0739
02:27:16	End mini-ASCAL.		95224	02:27:04	02:35:04	40-0380	0491	0740
02:32:04	Telemetry ON							
			95705	02:35:05	02:43:05	41-0374	0492	0741
			96185	02:43:05	02:51:01	42-0375	0493	0742
02:51:01	End recording		96661					

Table 1. This table lists significant radio science events during the Voyager 2 encounter with Uranus (as seen in Australia) as a function of time. Tapes which were delivered to the Voyager Radio Science Team are listed in column 8 (UC tapes). Backup tapes, created at Stanford University, are shown in column 9.

Tapes containing test data are listed in Table 2.

Event Time (UTC)	Canberra Event	1986 DOY	Tape Start UTC (s)	Tape Start (UTC)	Tape Stop (UTC)	Original Tape (S/N)	UC Tape	Backup Tape[:File]
		025	4680	01:18:00	01:19:35		86A2247	0746:0
				01:19:35	01:21:00		86A2250	0746:1
				01:21:10	01:22:45		86A2256	0746:2
				01:22:45	01:23:00		86A2257	0746:3
				01:23:03	01:31:03		Q00001	0747
				01:31:03	01:39:03		Q00002	0748

Table 2. Open loop test data collected after the Voyager 2 Uranus encounter. Tapes delivered to the Voyager Radio Science Team are listed in column 8 (UC Tape). Backup tapes, created at Stanford University, are listed in column 9. Notation mmmm:n denotes backup tape number mmmm and file number n (starting from 0).

File and Record Formats:

A typical tape contains a 32-byte tape header followed by 8 minutes of data in 24000 records of 4390 bytes each¹. Each data record comprises 80 bytes of header data (Figure 1), 4000 8-bit receiver samples (Figure 2), 300 bytes of Precision Power Monitor (PPM) data (Figure 3), and 10 bytes of operator-entered offsets (Figure 4). An example of RSC-11-9 binary data accompanies this document in the PDS4 archive; also included are translations of the binary to ASCII.

Important: RSC-11-9 binary data were written in “most significant byte” (MSB) first order. Most contemporary computers (ca. 2024) store and read numbers in “least significant byte” (LSB) order, so it is important to handle original RSC-11-9 data at the byte level to prevent corruption of values by unintentional “byte swapping”.

¹ Tapes UC0463, UC0482, UC0486, and UC0490 contain 24050 records (one extra second). Tapes UC0451 and UC0493 are short, containing 7800 and 23750 records, respectively. Tapes with test data contain variable numbers of records.

WORD	BIT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0 S E C	COMPRESSION	TAPE NUMBER														
1	FACTOR																
2	RECORD NUMBER																
3	LENGTH OF RECORD																
4	PRIME FEA#																
4		SECONDARY FEA#															
5	SPACECRAFT NUMBER																
5	SPC CODE																
6	YEAR																
6	DAY OF YEAR																
7	UNUSED	MILLISECONDS PAST 0h UTC															
8	MILLISECOND OF DAY																
9																	
9		PREDICT SET IDENTIFICATION															
13																	
14	PCCA STATUS																
14		POCA FREQ (READBACK)															
15	POCA FREQUENCY (READBACK)																
16	POCA FREQUENCY (READBACK)																
17	POCA FREQUENCY (READBACK)																
18	UNUSED	TIME TAG OF POCA FREQ (READBACK)															
19	TIME TAG OF POCA FREQUENCY (READBACK)																
20	UNUSED	POCA FREQ (CALCULATED)															
21	POCA FREQUENCY (CALCULATED)																
22	POCA FREQUENCY (CALCULATED)																
23	POCA FREQUENCY (CALCULATED)																
24	FILTER	TIME TAG OF POCA (UPDATE CYCLE)															
25	TIME TAG OF POCA (UPDATE CYCLE)																
26	UNUSED	POCA FREQUENCY RATE															
27	POCA FREQUENCY RATE																
27		MULTIPLIER S															
28	FREQUENCY COUNTER NUMBER 1 CUMULATIVE PHASE																
29	FREQUENCY COUNTER NUMBER 1 CUMULATIVE PHASE																
30	FREQUENCY COUNTER NUMBER 1 CUMULATIVE PHASE																
31	FREQUENCY COUNTER NUMBER 2 CUMULATIVE PHASE																
32	FREQUENCY COUNTER NUMBER 2 CUMULATIVE PHASE																
33	FREQUENCY COUNTER NUMBER 2 CUMULATIVE PHASE																
34	TEST SIGNAL	SAMPLE CONTROL	COUNTER	COUNTER													
34		NO. 1, MODE	NO. 2, MODE														
35	UNUSED	TIME TAG OF FMS COUNTER															
36	TIME TAG OF FMS COUNTER																
37	A/D CONVERTER SAMPLE RATE																
38	A	5		5													
39	'24' COUNTER																
39		'N' REGISTER															
40	CONVERSION MODE REGISTER																
40	SIGNAL SELECT REGISTER																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	

Figure 1. Structure of RSC-11-9 record header. One 16-bit word (left margin) is two 8-bit bytes.

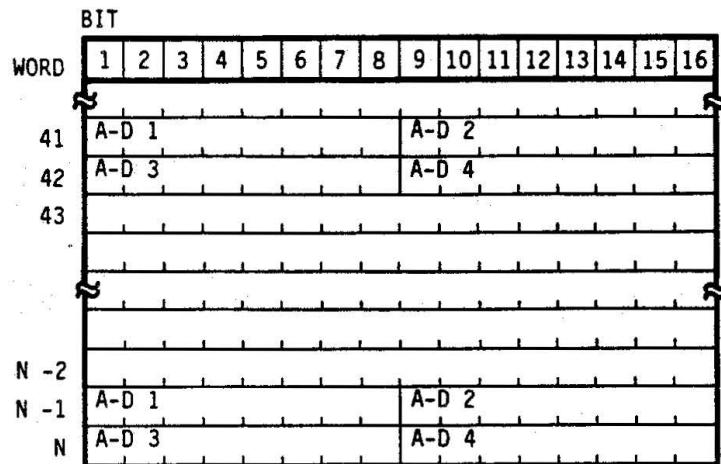


Figure 2. Structure of the RSC-11-9 data area. One 16-bit word (left margin) is two 8-bit bytes. For Voyager 2 at Uranus, the offset of the data area was $N=2040$ words and the analog-to-digital converter assignments were AD1=DSS-43 S-RCP, AD2=DSS-42 S-RCP, AD3=DSS-43 X-RCP, and AD4=DSS-42 X-RCP.

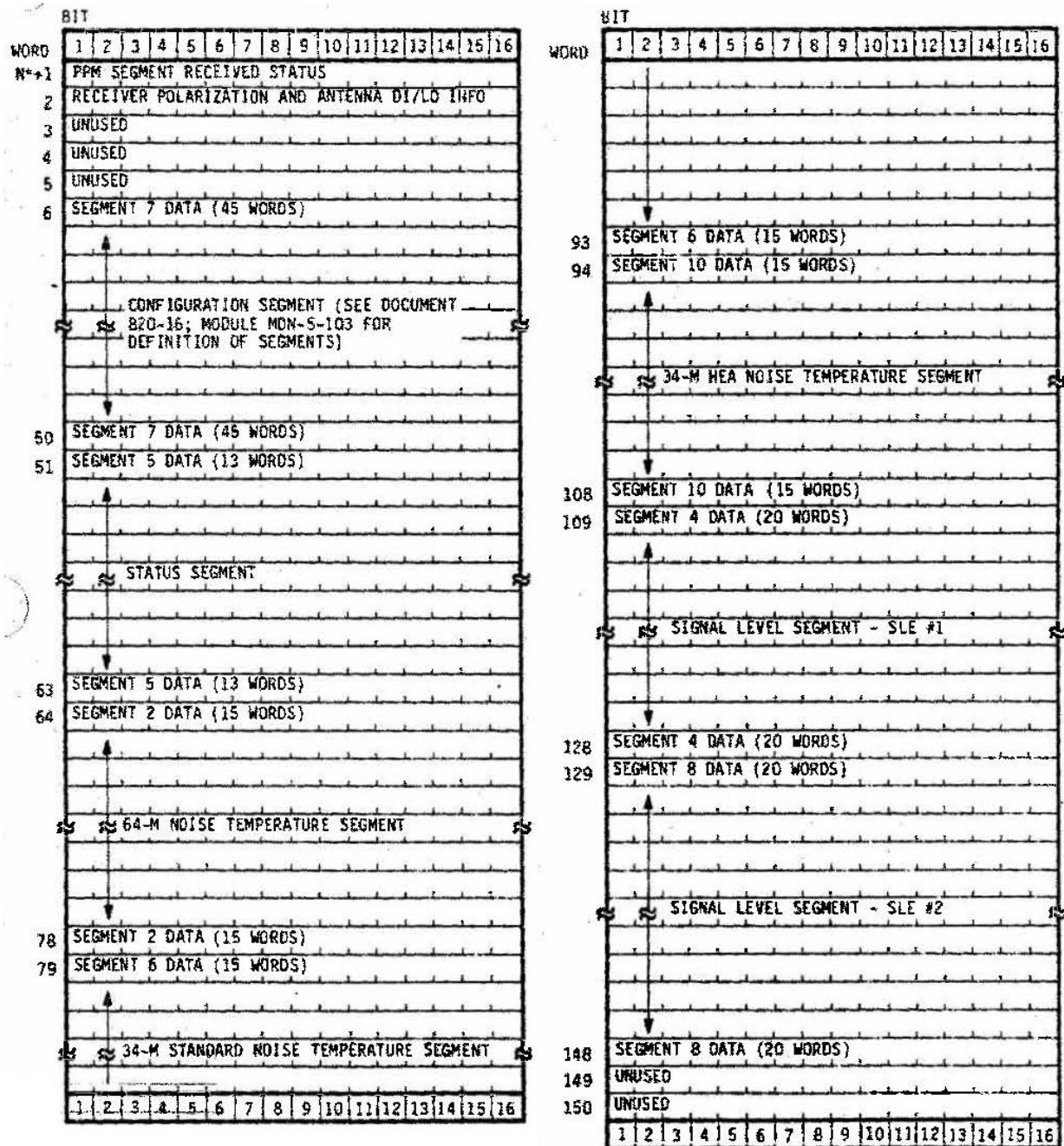


Figure 3. Structure of the RSC-11-9 PPM area. One 16-bit word (left margin) is two 8-bit bytes.
For Voyager 2 at Uranus, the offset was N=2040 words.

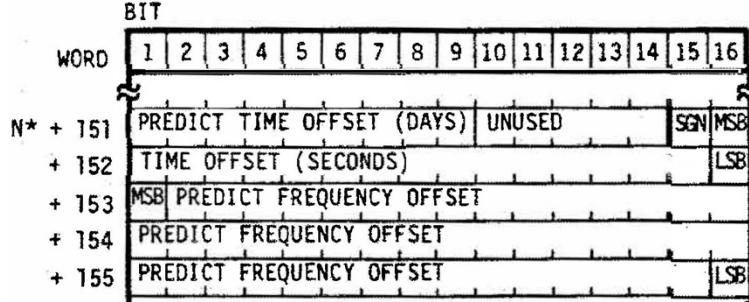


Figure 4. Structure of the RSC-11-9 operator-entered offset (OEO) area. One 16-bit word (left margin) is two 8-bit bytes. For Voyager 2 at Uranus, the offset was N=2040 words.

Example Data File:

An example of RSC-11-9 data (*uc0452a.dat*) generated at Canberra during the Voyager 2 encounter with Uranus accompanies this document in the PDS4 archive. Data were collected at the DSN ground station near Canberra, Australia, on 1986-024. The example file is a truncated version of original file *UC0452*, shown at 21:15:01 in Table 1. Figure 5 shows the first 240 bytes in hexadecimal format from the unix command

```
od -t x1 uc0452a.dat +0. | head -15
```

00000000	44	4d	4f	2d	35	32	30	35	2d	4f	50	2d	42	20	56	20
00000016	34	2e	33	20	00	00	00	00	00	00	00	00	00	00	00	00
00000032	c1	01	00	01	08	93	2b	00	20	28	ac	18	04	8f	50	08
00000048	5a	52	20	20	20	20	20	20	41	20	75	43	35	03	04	10
00000064	46	54	04	8f	50	08	00	43	35	03	04	10	61	02	84	8f
00000080	50	12	00	43	93	81	00	00	33	1f	1f	e5	00	00	33	1f
00000096	1f	e2	1d	10	04	8f	50	08	c3	50	a5	5a	12	f9	14	1b
00000112	8b	64	85	8a	b4	94	61	89	78	8c	70	86	7c	a5	95	81
00000128	aa	a6	90	8a	6b	7a	82	86	6c	71	90	88	91	77	8e	8a
00000144	92	8e	9f	89	89	85	a1	8a	8e	85	93	8a	80	aa	6c	8c
00000160	b2	93	7a	87	9f	8f	bb	81	77	8d	98	8c	7d	82	8f	94
00000176	7e	71	7f	8b	9c	b2	77	8a	8f	cf	9d	87	95	74	a7	88
00000192	8c	72	88	89	64	58	4f	8d	8b	82	80	86	71	a7	79	88
00000208	8f	6b	8b	84	b4	98	92	8d	7e	82	89	91	6e	7d	a2	88
00000224	98	76	8f	87	a2	99	96	8b	8f	93	95	84	84	81	7f	8e
00000240									...							

Figure 5. Hexadecimal dump of the first 240 bytes from file *uc0452a.dat*. The byte counter along the left margin is given in decimal. The first 32 bytes (yellow highlighting) contain the tape header, the next 80 bytes (green highlighting) contain the first record header. The first data sample is in byte 113.

A full hexadecimal dump of the example file is available (with annotations) in *uc0452a.hex.pdf*

Tape Header: The 32-byte tape header is a string of ASCII characters, which translates to

DMO-5205-OP-B V 4.3

followed by one ASCII space character (0x20) and 12 ASCII null characters (0x00).

Record Headers: The first record header may be unpacked as shown in Table 3. Asterisks (*) in the right column denote flag values; see [1] for interpretations. Headers from all ten records are given in accompanying file *uc0452a.hdr*. If *uc0452a.hdr* were read into a spreadsheet (such as Microsoft Excel), file *uc0452a.txt* provides field headers which can be added to the spreadsheet.

Table 3. Unpacked Record Header from Data Record 1 (uc0452a.dat)

Bytes	Bit Numbers	Value (b = binary) (h = hexadecimal)	Description	Unpacked Value
1	1	1 _b	Time tag and configuration flag	1*
1	2	1 _b	Start of recording flag	1*
1	3	0 _b	Error flag	0*
1	4	0 _b	Sample resolution	0*
1	5-8	1 _h	Compression factor	1*
2	9-16	01 _h	Tape number	1
3-4	17-32	0001 _h	Record number	1
5-6	33-48	0893 _h	Record length (words)	2195
7	49-56	2b _h	Prime front end area (FEA)	43
8	57-64	00 _h	Secondary FEA	0
9	65-72	20 _h	Spacecraft number	32
10	73-80	28 _h	Signal Processing Center (SPC)	40
11	81-87	56 _h	Year (last two digits)	86
11-12	88-96	18 _h	Day of year	24
13-16	97-128	048f5008 _h	Time of first sample (milliseconds past 0h UTC)	76501000
17-26	129-208	5a522020202020204120 _h	Predict set ID	ZR A
27	209	0 _b	POCA status (source of control)	0*
27	210	1 _b	POCA status (readiness)	1*
27	211	1 _b	POCA status (synthesizer power)	1*
27	212	1 _b	POCA status (synthesizer lock status)	1*
27	213	0 _b	POCA status (limit enable)	0*
27	214	1 _b	POCA status (track)	1*
27	215	0 _b	POCA status (acquisition)	0*
27	216	1 _b	POCA status (sweep)	1*
28-34	217-272	43350304104654 _h	POCA readback frequency (BCD, μ Hz)	43350304104654
35-38	273-304	048f5008 _h	FTS readback time (milliseconds past 0h UTC)	76501000
39-46	305-368	0043350304106102 _h	POCA calculated frequency (BCD, μ Hz)	43350304106102
47	369-372	8 _h	Receiver filter	8
47-50	373-400	48f5012 _h	Diagnostic POCA time tag (milliseconds past 0h UTC)	76501010
52-54	409-428	43938 _h	POCA rate (BCD, Hz per second)	43938
54	429-431	000 _b	POCA rate power of ten	0
54	432	1 _b	POCA rate sign	1*
55-60	433-480	0000331f1fe5 _h	1-s Σ phase, counter 1 (scaled to 2^{-8} cycles)	857677797
61-66	481-528	0000331f1fe2 _h	1-s Σ phase, counter 2 (scaled to 2^{-8} cycles)	857677794
67	529-532	1 _h	Test signal selection	1
67	533-536	d _h ²	Sample control register	13
68	537-540	1 _h	Frequency counter 1 mode register	1
68	541-544	0 _h	Frequency counter 2 mode register	0
69-72	545-576	048f5008 _h	FMS time tag (milliseconds past 0h UTC)	76501000
73-74	577-592	c350 _h	Single ADC sample rate	50000
75-76	593-608	a55a _h	NBOC sync code	a55a _h
79	625	0 _b	NBOC overflow flag	0*
79	628	1 _b	Sample rate flag	1*
79	629	0 _b	Test mode flag	0*
79	630	1 _b	8-bit sample flag	1*
79	631-632	00 _b	ADC assignment flag	00*
80	633-634	00 _b	AD1 assignment	00 _b
80	635-636	01 _b	AD2 assignment	01 _b
80	637-638	10 _b	AD3 assignment	10 _b
80	639-640	11 _b	AD4 assignment	11 _b

² The expected value in this field is hexadecimal b_h or decimal 11 [1].

Data Values: The first record in the example file includes 4000 8-bit data samples. In Figure 5, samples begin with hexadecimal value 0x8b (decimal 139) in byte 113. This sample as well as the fifth, ninth, etc. came from AD1. The second, sixth, tenth, etc. samples came from AD2; the third, seventh, etc. came from AD3; and the fourth, eighth, etc. came from AD4 (Figure 2). If the data records are parsed in this way, the original sample stream can be recovered (see accompanying files *uc0452a1.tab*, *uc0452a2.tab*, *uc0452a3.tab*, and *uc0452a4.tab*, respectively). Figure 7 shows histograms of the sample values from each of the A-D converters in records 1-10 of the example file. Figure 8 shows power in AD outputs. Note that the histograms have similar shapes and the means are within 1 unit; but the distribution from AD4 is about 5 times narrower (and the histogram peak is about 5 time larger) than for the other three converters.

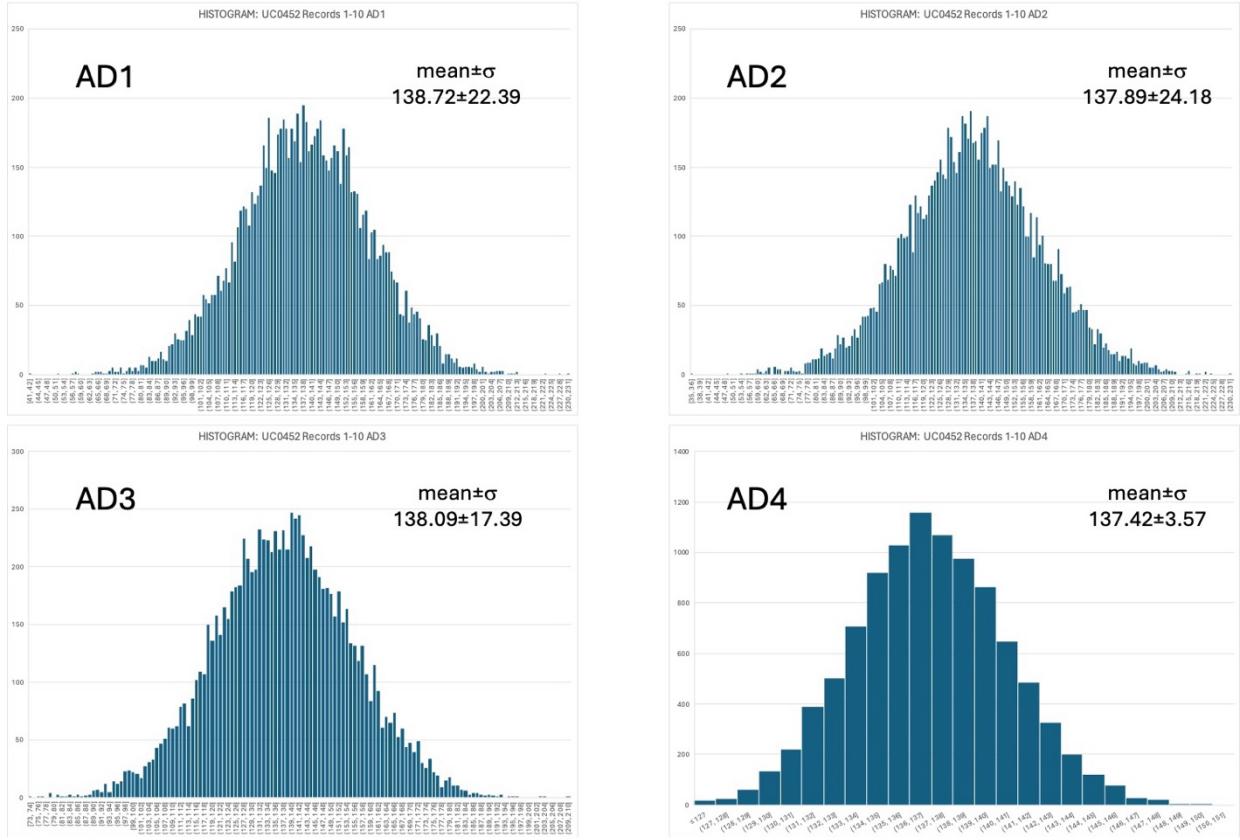


Figure 7. Histograms of the samples from each analog-to-digital converter in records 1-10 of the example file. The histograms are very similar except that the peak value for AD4 is about 5 times larger and its standard deviation is about 5 times smaller than for the other histograms.

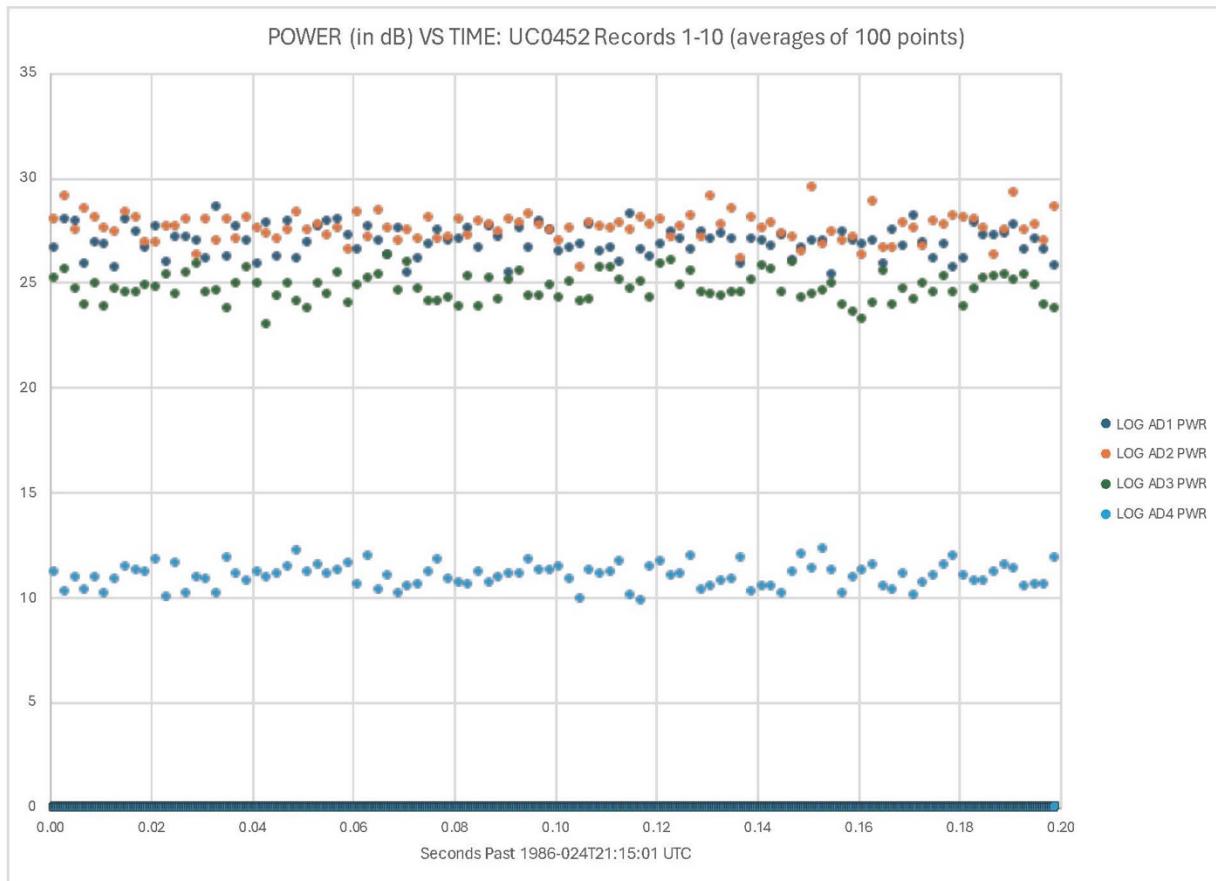


Figure 8. Power versus time in the samples from each analog-to-digital converter (ADC) versus time. Each sample value was reduced by the mean for its channel, the result was squared, and 101 such values were averaged to produce one plotted point. Sample values were extracted from the first 10 data records of UC0452; so there were 10000 original samples and 100 plotted points for each ADC.