
1

MakeLabels
A PDS4 Label Generator Tool

PDS Geosciences Node

Version 6

8-16-2018

Created by Dan Scholes

scholes@wunder.wustl.edu
Send question and comments

to Dan Scholes.

mailto:scholes@wunder.wustl.edu

2

Table of Contents

Summary .. 3

System Requirements ... 3

Installation .. 4

Directory Structure .. 4

Building the Worksheet(s) ... 5

Spreadsheet Structure ... 5

Using Two Sheets .. 6

Building the Template ... 7

Template Structure .. 7

Possible Template Tags ... 8

Miscellaneous ... 11

PDS4 Logical Identifier Requirements .. 11

PDS 4 Date Requirements ... 11

GUI Interface .. 12

Setting up the Primary Sheet ... 12

Adding a Secondary Sheet .. 13

Additional Settings ... 13

Generating Labels through the GUI.. 14

Command Line Program ... 16

Command Line Parameters ... 16

Updating the Configuration File .. 18

Command Line Examples .. 18

Troubleshooting .. 20

3

Summary

This application is designed to merge a PDS4 label template with data
records from a Microsoft Excel spreadsheet to produce a set of PDS4
labels. It replaces placeholders in the label template with values from the
spreadsheet, creating one label for each row in the spreadsheet. In fact,
the template does not need to be a PDS4 label template; it can be any text
file containing placeholders.

Users will most often use one Excel worksheet as the data source, but the
program can handle two worksheets linked by a common keyword. The two
worksheets can be in the same Excel file or separate files. This capability is
helpful in scenarios of one worksheet containing the primary information,
with a secondary worksheet of information referenced by one or more rows
of the first worksheet. For example, when dealing with spectral data, the
primary worksheet might contain information about the spectra, whereas
the secondary worksheet contains information about the target specimen.
Multiple spectra entries from the primary worksheet may be associated with
each specimen entry in the secondary worksheet. In database terms, this is
referred to as a “one-to-many” relationship; in this case, one specimen may
be associated with many spectra.

A graphical user interface (GUI) version of the program and a command
line version are provided. Most users will use the GUI version for rapid or
infrequent processing. The command line version is more useful when
setting up automated processes. In the command line version, settings can
be submitted from the command line or configured in the program's xml
configuration file.

System Requirements

- Microsoft Windows 7 or greater desktop OS or
- Microsoft Windows 2008 or greater server OS
- Microsoft Excel 2013 or greater .xlsx (has not been tested with older

versions)
- Microsoft .NET Framework 4.5.2 (64-bit) (included in this package)

4

Installation

To install, simply unzip the MakeLabels.zip file to a directory on your
machine or server.

Directory Structure

 MakeLabels
 Examples
 BasicOneSheet
 OneSheetSpectral
 OneSheetTwoWorksheets
 TwoSheetSpectral
 Program
 CommandLine
 Gui
 RequiredFiles

The base directory contains a readme file, which focuses on the usage of
the command line application. The directory also contains this pdf
document outlining instructions for both applications.

The “Examples” directory contains example templates, Excel files, and
output labels. Instructions and the commands to generate the same output
labels are provided below in the “Command Line Examples” section.

The "Program" directory contains the command line application, GUI, and
required files. The "Gui" directory contains the graphical user interface
(GUI) version of the program, which most users will prefer. The command
line version can be more helpful when setting up a data processing
pipeline.

The "RequiredFiles" directory contains the Microsoft .NET Framework 4.5.2
installation file, which is required for both versions to function. Windows 10
includes .NET Framework 4.5.2 preinstalled. Other Windows operating
systems may require the .NET Framework 4.5.2 to be installed. The
operating system's list of installed programs can be checked to confirm the
installation of the .NET Framework 4.5.2. Otherwise, the label generator
program will report an error indicating that the framework is missing, if it is

5

not installed. If the .NET Framework needs to be installed, simply double
click the provided installation file and follow the instructions. More
information about the .NET Framework 4.5.2 can be found here:
https://www.microsoft.com/en-us/download/details.aspx?id=42642

Building the Worksheet(s)

Spreadsheet Structure

As previously mentioned, this application can be executed with one or two
worksheets: a primary sheet and a secondary sheet. The worksheets may
be in the same file or separate files.

Figure 1: Example worksheets in one spreadsheet.

Each worksheet must follow the same basic structure. The first and second
rows contain the column names in two forms. The first row is used by the
application to find the template placeholders for the corresponding values
of this column. These names must match between the template and
worksheet. That being said, not every column must be used in the
template. The second row is for your use and can follow any format that
helps you know what data should go in each column. The application
expects data to begin on the third row.

Figure 2: Example worksheet structure. Row 1: template placeholder name. Row 2:
more detailed column name. Row 3: data begins.

https://www.microsoft.com/en-us/download/details.aspx?id=42642

6

In the primary worksheet, each row corresponds to one label that will be
created. In the secondary worksheet, the information in a single row may
be used for multiple labels.

A column of the primary worksheet must provide the file names for the
output labels. The GUI and command line versions of the application
default to a column named “file_name”. An example is displayed in Figure
2. If a file extension is included in the field value, it will be replaced with
“.xml”, but no file extension is required in the column. The default file name
column can be changed through the GUI or the application’s configuration
file. The output file’s extension of “.xml” can be modified in the application’s
configuration file, as well. More about the configuration file will be
discussed later in this document.

Requirements

- The first cell in the spreadsheet (row 1, column 1) must contain a
column name, as it appears in a placeholder in the label template.

- Column names must be entirely lower case and be on row 1 of the
worksheet.

- Data begins on row 3 of the spreadsheet.
- A “file_name” or equivalent column is included in the primary

spreadsheet.

Using Two Sheets

When using both a primary and a secondary worksheet, there a couple of
other guidelines to follow.

Figure 3: Two worksheets in one Excel spreadsheet. “Spectra” is the primary sheet.
“Specimen” is the secondary sheet.

7

First, the worksheet designated as the primary sheet should be the
worksheet with the output label name column, such that each row will
correspond to one label.

Second, the two worksheets must have a “matching field” that links them
together. The following figure displays an example of this one-to-many
relationship.

Figure 4: Secondary worksheet. In this case, the matching field is the “specimen_id”.

Building the Template

Template Structure

This guide is not intended to provide a blueprint for building a PDS4 label,
but rather the label template that the tool will use to complete your labels
with the proper PDS4 information. Using a previously created sample label,
you will be able to prepare a template for use with the tool.

You will use a “template tag” to indicate placeholders in the template that
should be populated from a worksheet. This is very similar to a mail merge

8

template. The “template tag” will take a couple of different forms,
depending on its purpose.

Possible Template Tags

Populate a value from primary worksheet. This is the most common tag
type to place in a template. The column name from the worksheet’s first
row is wrapped with the opening and closing tags. For the column name

“lab_name”, the syntax would be “<!-- |lab_name| -->”. The exact

characters and spaces are required.

Figure 5: A value from the spreadsheet column named “lab_name” in the primary
worksheet will be used to replace the text shown in red.

Populate a value from the secondary worksheet. To populate the
template with a value from the secondary worksheet a similar tag must be
applied around the column name, with the addition of a template field
qualifier. The template field qualifier is a modifier to indicate columns in the
secondary worksheet. The template field qualifier is set from the GUI or in
the application’s configuration file. This will be discussed later. For the
secondary worksheet column “specimen_desc”, the syntax would be

“<!-- |specimen.specimen_desc| -->”.

Figure 6: A value from the column named “specimen_desc” in the secondary worksheet
“specimen” will be used to replace the text shown in red.

Populate the current UTC date in the form of YYYY-MM-DD. To
populate the template with the current coordinated universal time (UTC)
date value (at the time of producing the label), use the following syntax.
UTC dates and times are required for some PDS4 date/time attributes.

“<!-- |@CurrentUTCDate| -->”

Figure 7: Example of current UTC date.

9

Populate the current UTC date and time in the form of YYYY-MM-
DDThh:mm:ss To populate the template with the current coordinated
universal time (UTC) date and time value (at the time of producing the
label) to the second, use the following syntax.

“<!-- |@CurrentUTCDateTime| -->”

Figure 8: Example of current UTC date and time.

Populate the current date in the form of YYYY-MM-DD. To populate the
template with the current local system date, use the following syntax.

“<!-- |@CurrentDate| -->”

Figure 9: Example of current local date.

Populate the current date and time in the form of YYYY-MM-
DDThh:mm:ss To populate the template with the current local date and
time value to the second, use the following syntax.

“<!-- |@CurrentDateTime| -->”

Figure 10: Example of current local date and time.

Create a label section only if a column value is populated. If your
template has a section (such as an External_Reference) that will not
always be filled, use the following tags to surround the section. These tags
essentially act as an “if” statement. The “Hide …” and “End of Hide …” text
should be left-aligned and the only items on each line. Make sure there are
no trailing spaces after the closing tags of “|column_name| -->”, otherwise
blanks lines may appear in the output labels.

10

Figure 11: Example of second external reference column that may or may not be filled
in a worksheet.

Create a label section only if a column value equals a specified value.
If your template has a section that should be included only when specific
values occur, use the following tags to surround the section. These tags act
as an “if” statement. The “Show if …” and “End of Show if …” text should
be left aligned and the only items on each line. Make sure there are no
trailing spaces after the closing tags of “|matching value| -->”, otherwise
blanks lines may appear in the output labels.

Figure 12: Example of a show if column equals a specified value.

Multiple matching values may be included inside the double vertical bars.
Each value is delimited with a single vertical bar. If only one value is
provided, it is enclosed in the double vertical bars.

Figure 13: Example of providing a single optional value.

Create a label section only if a column value does not equal a
specified value. This syntax is the same as the previous section with the
exception of the conditional expression of “notequals”. Multiple matching
values or a single value may be provided.

Figure 14: Example of a show if column does not equal a provided value.

11

Miscellaneous

PDS4 Logical Identifier Requirements

- Every PDS4 product must have a unique logical identifier (LID) that
follows a specific format. (See your PDS contact or the PDS Data
Provider’s Handbook, for more information.)

- A product’s LID must be completely lowercase. The worksheet
column that will fill the LID in the template must therefore be
completely lowercase as well.

- The full LID may be no longer than 255 characters.

Figure 15: Example LID from a sample label.

PDS 4 Date Requirements
- The only acceptable format for “start_date_time” and

“stop_date_time” is yyyy-mm-ddThh:mm:ss.fffZ where
o yyyy = year
o mm = month (01 through 12)
o dd = day (01 through 31)
o T is just the letter T, always capitalized
o hh = hour
o mm = minute
o ss = second
o fff = fraction of a second
o Z is the letter Z, which means UTC time

- All data observations must be UTC times, so Z is required for those
attributes.

- All numeric fields must include leading zeroes as needed.
- You can truncate times from the right, if you only know the hour and

minute, for example.
- You can leave off the T and the time entirely if you only know the

date.
- You can also truncate dates from the right, if you only know the year,

for example.

12

GUI Interface

To open the GUI, double click on the file “guiMakeLabels.exe” in the
“Program\Gui” directory. The interface below will be launched.

Figure 16: MakeLabels GUI interface.

The same values that can be submitted from the command line are
available through this interface.

Setting up the Primary Sheet

First, you must enter the path to the primary spreadsheet and set the
worksheet to be processed.

Additionally, the column containing the filenames to be used for the output
labels must be set. The default column name is “file_name”. If a file

13

extension is included in the field value, it will be replaced with .xml, but no
extension is required.

Figure 17: Section for primary sheet setup.

Adding a Secondary Sheet

If a secondary spreadsheet is used, the corresponding section must be
populated. First, check the “Use Secondary Spreadsheet” option to enable
this section of the form.

The corresponding file path and worksheet number are required.
Additionally, the matching field, which was previously discussed, must be
set. This is the column that must exist in both worksheets, so the rows can
be linked.

The template field qualifier is also set at this location. It is the modifier that
will precede the column name in the template tag to indicate columns in the
secondary worksheet. For example, the value “specimen” will be used for

the template tag “<!-- |specimen.specimen_desc| -->”.

Figure 18: Section for secondary sheet setup.

Additional Settings

The full path to the template file must be specified. The desired output
directory for the created labels must be set, as well.

14

An option for verbose processing details is available. If selected, when the
“Generate Labels” button is clicked, a status will be displayed for each
record that is processed. Otherwise, only a processing summary will be
displayed.

Figure 19: Section for additional settings

Generating Labels through the GUI

After values have been set, you can save the values for later by clicking the
“Save Settings” button. Your settings will be available the next time the
application is opened.

To produce the labels, click the “Generate Labels” button. Your settings will
be automatically saved.

You will receive a descriptive error message if the program detects any
invalid entries in the form when you try to save the settings or generate
labels.

After the process has completed, the status of the process is displayed.
The number of successfully processed worksheet rows are listed, in
addition to errors and warnings. More details will be produced by selecting
the verbose option.

The processing report can be saved as a text file with the “Save Processing
Report” button.

15

Figure 20: Processing status screen

The labels that were produced should be in the output directory you set on
the previous form.

16

Command Line Program

To run the application from the command line, you must make the
“CommandLine” folder your current directory. From there, the program is
run by calling MakeLabels.exe, followed by keyword value pairs. The
command should be placed on one line, although the command window
may wrap the text.

Figure 21: Command line processing screen capture

Command Line Parameters

Each parameter is a combination of -keyword value. All of these
parameters can be declared on the command line or changed in the
program’s configuration file (MakeLabels.exe.config). References to "full
path" refer to an absolute file path including the drive letter or a Windows
UNC (Universal Naming Convention) path. Examples:
c:\MakeLabels\example\file.xyz or
\\serverName\MakeLabels\example\file.xyz

-list
The full path to the primary spreadsheet (.xlsx file).
example: -list c:\tempLocation\primaryFile.xlsx

17

-worksheet
The primary spreadsheet’s worksheet to be processed. The application
defaults to 1 (that is, the first worksheet in the spreadsheet file) if no value
is provided at the command line or in the configuration file.
example: -worksheet 1

The following three parameters are only for two-sheet configurations.

-secondaryList
The full path to the secondary spreadsheet (.xlsx file). This must be
included, even if it is the same as the primary spreadsheet.
example: -secondaryList c:\tempLocation\secondaryFile.xlsx

-secondaryWorksheet
The secondary spreadsheet’s worksheet to be processed. The application
defaults to 1 if no value is provided at the command line or in the
configuration file.
example: -secondaryWorksheet 1

-secondaryMatchingField
The field used to link the two sheets. This column needs to be in both
spreadsheet worksheets.
example -secondaryMatchingField specimen_id

-template
The full path to the template file to be used when executing the program.
This value can also be set in the program’s configuration file under the
<defaultXMLTemplateFile> tag.
example: -template c:\tempLocation\templateFile.xml

-output
The directory to output the newly created labels. This directory must exist
or an error message will be displayed.
example: -output c:\tempLocation\files\

Important additional note: The command line version of the MakeLabels
tool expects the primary spreadsheet’s worksheet to contain a column
named “file_name”. This column is used to indicate each output label’s file
name. The ".xml" file extension is attached to the file name or any provided
extension is replaced with ".xml". The column name for this feature can be

18

changed in the program's configuration file. The configuration key is
"primaryFileNameColumn". The file extension for the output files (defaulting
to ".xml") can be changed in the configuration file, as well. Its key is
"defaultOutputFileExtension". The next section includes more information
about the configuration file.

Updating the Configuration File

As previously mentioned, the command line parameters can also be set
and retrieved from the program’s configuration file. The file is named
MakeLabels.exe.config. This file must be located in the same directory as
the command line program (MakeLabels.exe). The program will first
attempt to use any value submitted from the command line. If the
parameters are not found, it will look to the configuration file for the
information. Parameters submitted from the command line always take
precedence over those found in the configuration file. We have included an
additional example configuration file in this directory. If you wish to make
changes to this file, we recommend using a text editor program.

The configuration file of the GUI version of MakeLabels can be modified,
but most of its values are overwritten with user preferences each time the
GUI produces labels. The file is named guiMakeLabels.exe.config. It is
located in the same directory as the GUI interface (guiMakeLabels.exe).

Command Line Examples

For each of the following examples the executable program
(MakeLabels.exe) and following commands should be placed on one line.
You will most likely need to change the basic path provided to the correct
path for your environment. The examples output sample labels to
“OutputTest” directories, so you can compare your labels with the example
labels provided in the “Output” directories.

BasicOneSheet
This basic sample contains an abbreviated template, abbreviated
spreadsheet, and defaults to worksheet 1.

MakeLabels.exe
-list D:\MakeLabels\Examples\BasicOneSheet\basic_sheet.xlsx

19

-template D:\MakeLabels\Examples\BasicOneSheet\basic_template.xml
-output D:\MakeLabels\Examples\BasicOneSheet\outputTest

OneSheetSpectral
This sample uses a full template and one spreadsheet.

MakeLabels.exe
-list D:\MakeLabels\Examples\OneSheetSpectral\basic_sheet.xlsx
-worksheet 1
-template
D:\MakeLabels\Examples\OneSheetSpectral\one_sheet_spectra_template.
xml
-output D:\MakeLabels\Examples\OneSheetSpectral\outputTest

OneSheetTwoWorksheets
This sample uses a full template and one spreadsheet with two worksheets
of data to be linked.

MakeLabels.exe
-list
D:\MakeLabels\Examples\OneSheetTwoWorksheets\complete_sheet.xlsx
-worksheet 1
-secondaryList
D:\MakeLabels\Examples\OneSheetTwoWorksheets\complete_sheet.xlsx
-secondaryWorksheet 2
-secondaryMatchingField specimen_id
-template
D:\MakeLabels\Examples\OneSheetTwoWorksheets\two_sheet_template.x
ml
-output D:\MakeLabels\Examples\OneSheetTwoWorksheets\outputTest

TwoSheetSpectral
This sample uses a full template and two linked spreadsheets
(spectra + specimen).

MakeLabels.exe
-list D:\MakeLabels\Examples\TwoSheetSpectral\spectra_sheet.xlsx
-worksheet 1
-secondaryList
D:\MakeLabels\Examples\TwoSheetSpectral\specimen_sheet.xlsx

20

-secondaryWorksheet 1
-secondaryMatchingField specimen_id
-template
D:\MakeLabels\Examples\TwoSheetSpectral\two_sheet_template.xml
-output D:\MakeLabels\Examples\TwoSheetSpectral\outputTest

Troubleshooting

It is recommended to save and close a referenced Excel spreadsheet
before running the label generator. Closing the file is not absolutely
required, but it is good practice.

Sometimes blank lines are output in labels from templates using the “Hide
if” or “Show if” tags. This can occur if trailing blank spaces or tabs are left at
the end of the lines of these tags.
Example: “<!-- Hide if not populated: |instr2_id| --> ”

Questions can be directed to Dan Scholes (scholes@wunder.wustl.edu) at
the PDS Geosciences Node.

scholes@wunder.wustl.edu

